Datasets:

Languages:
English
License:
kimsan0622 commited on
Commit
21aac29
1 Parent(s): 6b0a878

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +316 -1
README.md CHANGED
@@ -7,4 +7,319 @@ language:
7
  size_categories:
8
  - 100K<n<1M
9
  pretty_name: Coco
10
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
  size_categories:
8
  - 100K<n<1M
9
  pretty_name: Coco
10
+ ---
11
+
12
+ # Coco dataset loader based on tensorflow dataset coco
13
+
14
+ ## Object Detection
15
+
16
+ ```python
17
+ import os
18
+ from datasets import load_dataset
19
+ from PIL import Image, ImageFont, ImageDraw, ImageColor
20
+
21
+ def calc_lum(rgb):
22
+ return (0.2126*rgb[0] + 0.7152*rgb[1] + 0.0722*rgb[2])
23
+
24
+ COLOR_MAP = [ImageColor.getrgb(code) for name, code in ImageColor.colormap.items()]
25
+
26
+ def get_text_bbox(bb, tbb, margin, im_w, im_h, anchor="leftBottom"):
27
+ m = margin
28
+ l, t, r, b = bb
29
+ tl, tt, tr, tb = tbb
30
+ bbw, bbh = r - l, b - t
31
+ tbbw, tbbh = tr - tl, tb - tt
32
+
33
+ # bbox (left-top)
34
+ if anchor == "leftTop":
35
+ ax, ay = l, t
36
+ if tbbw*3 > bbw or tbbh*4 > bbh:
37
+ # align (text box: left-bottom)
38
+ x1, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
39
+ x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
40
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
41
+ else:
42
+ # align (text box: left-top)
43
+ x1, y1 = max(ax, 0), max(ay, 0)
44
+ x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
45
+ return (( x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
46
+ elif anchor == "rightTop":
47
+ ax, ay = r, t
48
+ if tbbw*3 > bbw or tbbh*4 > bbh:
49
+ # align (text box: left-bottom)
50
+ x2, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
51
+ x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
52
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
53
+ else:
54
+ # align (text box: left-top)
55
+ x2, y1 = max(ax, 0), max(ay, 0)
56
+ x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
57
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
58
+ elif anchor == "rightBottom":
59
+ ax, ay = r, b
60
+ if tbbw*3 > bbw or tbbh*4 > bbh:
61
+ # align (text box: left-top)
62
+ x2, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
63
+ x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
64
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
65
+ else:
66
+ # align (text box: left-bottom)
67
+ x2, y2 = min(ax, im_w), max(ay, 0)
68
+ x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
69
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
70
+ elif anchor == "leftBottom":
71
+ ax, ay = l, b
72
+ if tbbw*3 > bbw or tbbh*4 > bbh:
73
+ # align (text box: left-top)
74
+ x1, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
75
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
76
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
77
+ else:
78
+ # align (text box: left-bottom)
79
+ x1, y2 = min(ax, im_w), max(ay, 0)
80
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
81
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
82
+ elif anchor == "centerBottom":
83
+ ax, ay = (l+r)//2, b
84
+ if tbbw*3 > bbw or tbbh*4 > bbh:
85
+ # align (text box: left-top)
86
+ x1, y2 = min(ax - tr//2 - m, im_w), min(ay + tb + 2*m, im_h)
87
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
88
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
89
+ else:
90
+ # align (text box: left-bottom)
91
+ x1, y2 = min(ax - tr//2 - m, im_w), max(ay, 0)
92
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
93
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
94
+
95
+ def draw_bbox(image, objects, out_path, label_names=None, font="Roboto-Bold.ttf", fontsize=15, fill=True, opacity=60, width=2, margin=3, anchor="leftBottom"):
96
+ fnt = ImageFont.truetype(font, fontsize)
97
+ im_w, im_h = image.size
98
+
99
+
100
+ img = image.convert("RGBA")
101
+ overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
102
+ draw = ImageDraw.Draw(overlay)
103
+ for bb, lbl_id in zip(objects["bbox"], objects["label"]):
104
+ c = COLOR_MAP[min(lbl_id, len(COLOR_MAP)-1)]
105
+ fill_c = c + (opacity, ) if fill else None
106
+ draw.rectangle((bb[0], bb[1], bb[2], bb[3]), outline=c, fill=fill_c, width=width)
107
+
108
+ text = ""
109
+ if label_names is not None:
110
+ text = label_names[lbl_id]
111
+ tbb = fnt.getbbox(text)
112
+ btn_bbox, text_pos = get_text_bbox(bb, tbb, margin, im_w, im_h, anchor)
113
+ fc = (0, 0, 0) if calc_lum(c) > 150 else (255, 255, 255)
114
+ draw.rectangle(btn_bbox, outline=c, fill=c + (255, ))
115
+ draw.text(text_pos, text, font=fnt, fill=fc + (255, ))
116
+
117
+ img = Image.alpha_composite(img, overlay)
118
+ overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
119
+ draw = ImageDraw.Draw(overlay)
120
+ img = img.convert("RGB")
121
+ img.save(out_path)
122
+
123
+ raw_datasets = load_dataset(
124
+ "coco.py",
125
+ "2017",
126
+ cache_dir="./huggingface_datasets",
127
+ )
128
+
129
+ train_dataset = raw_datasets["train"]
130
+ label_list = raw_datasets["train"].features["objects"].feature['label'].names
131
+
132
+ for idx, item in zip(range(10), train_dataset):
133
+ draw_bbox(item["image"], item["objects"], item["image/filename"], label_list)
134
+
135
+ ```
136
+
137
+ ![sample1](./images/000000000009.jpg)
138
+ ![sample2](./images/000000000025.jpg)
139
+
140
+
141
+ ## Panoptic segmentation
142
+
143
+ ```python
144
+
145
+ import numpy as np
146
+ from datasets import load_dataset
147
+ from PIL import Image, ImageFont, ImageDraw, ImageColor
148
+ from transformers.image_transforms import (
149
+ rgb_to_id,
150
+ )
151
+
152
+ def calc_lum(rgb):
153
+ return (0.2126*rgb[0] + 0.7152*rgb[1] + 0.0722*rgb[2])
154
+
155
+ COLOR_MAP = [ImageColor.getrgb(code) for name, code in ImageColor.colormap.items()]
156
+
157
+ def get_text_bbox(bb, tbb, margin, im_w, im_h, anchor="leftBottom"):
158
+ m = margin
159
+ l, t, r, b = bb
160
+ tl, tt, tr, tb = tbb
161
+ bbw, bbh = r - l, b - t
162
+ tbbw, tbbh = tr - tl, tb - tt
163
+
164
+ # bbox (left-top)
165
+ if anchor == "leftTop":
166
+ ax, ay = l, t
167
+ if tbbw*3 > bbw or tbbh*4 > bbh:
168
+ # align (text box: left-bottom)
169
+ x1, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
170
+ x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
171
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
172
+ else:
173
+ # align (text box: left-top)
174
+ x1, y1 = max(ax, 0), max(ay, 0)
175
+ x2, y2 = min(x1 + tr + 2*m, im_w), min(y1 + tb + 2*m, im_h)
176
+ return (( x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
177
+ elif anchor == "rightTop":
178
+ ax, ay = r, t
179
+ if tbbw*3 > bbw or tbbh*4 > bbh:
180
+ # align (text box: left-bottom)
181
+ x2, y1 = max(ax, 0), max(ay - tb - 2*m, 0)
182
+ x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
183
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
184
+ else:
185
+ # align (text box: left-top)
186
+ x2, y1 = max(ax, 0), max(ay, 0)
187
+ x1, y2 = max(x2 - tr - 2*m, 0), min(y1 + tb + 2*m, im_h)
188
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
189
+ elif anchor == "rightBottom":
190
+ ax, ay = r, b
191
+ if tbbw*3 > bbw or tbbh*4 > bbh:
192
+ # align (text box: left-top)
193
+ x2, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
194
+ x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
195
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
196
+ else:
197
+ # align (text box: left-bottom)
198
+ x2, y2 = min(ax, im_w), max(ay, 0)
199
+ x1, y1 = max(x2 - tr - 2*m, 0), max(y2 - tb - 2*m, 0)
200
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
201
+ elif anchor == "leftBottom":
202
+ ax, ay = l, b
203
+ if tbbw*3 > bbw or tbbh*4 > bbh:
204
+ # align (text box: left-top)
205
+ x1, y2 = min(ax, im_w), min(ay + tb + 2*m, im_h)
206
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
207
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
208
+ else:
209
+ # align (text box: left-bottom)
210
+ x1, y2 = min(ax, im_w), max(ay, 0)
211
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
212
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
213
+ elif anchor == "centerBottom":
214
+ ax, ay = (l+r)//2, b
215
+ if tbbw*3 > bbw or tbbh*4 > bbh:
216
+ # align (text box: left-top)
217
+ x1, y2 = min(ax - tr//2 - m, im_w), min(ay + tb + 2*m, im_h)
218
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
219
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
220
+ else:
221
+ # align (text box: left-bottom)
222
+ x1, y2 = min(ax - tr//2 - m, im_w), max(ay, 0)
223
+ x2, y1 = min(x1 + tr + 2*m, im_w), max(y2 - tb - 2*m, 0)
224
+ return ((x1, y1, x2, y2), (max(x1+m, 0), max(y1+m, 0)))
225
+
226
+ # Copied from transformers.models.detr.image_processing_detr.masks_to_boxes
227
+ def masks_to_boxes(masks: np.ndarray) -> np.ndarray:
228
+ """
229
+ Compute the bounding boxes around the provided panoptic segmentation masks.
230
+ Args:
231
+ masks: masks in format `[number_masks, height, width]` where N is the number of masks
232
+ Returns:
233
+ boxes: bounding boxes in format `[number_masks, 4]` in xyxy format
234
+ """
235
+ if masks.size == 0:
236
+ return np.zeros((0, 4))
237
+
238
+ h, w = masks.shape[-2:]
239
+ y = np.arange(0, h, dtype=np.float32)
240
+ x = np.arange(0, w, dtype=np.float32)
241
+ # see https://github.com/pytorch/pytorch/issues/50276
242
+ y, x = np.meshgrid(y, x, indexing="ij")
243
+
244
+ x_mask = masks * np.expand_dims(x, axis=0)
245
+ x_max = x_mask.reshape(x_mask.shape[0], -1).max(-1)
246
+ x = np.ma.array(x_mask, mask=~(np.array(masks, dtype=bool)))
247
+ x_min = x.filled(fill_value=1e8)
248
+ x_min = x_min.reshape(x_min.shape[0], -1).min(-1)
249
+
250
+ y_mask = masks * np.expand_dims(y, axis=0)
251
+ y_max = y_mask.reshape(x_mask.shape[0], -1).max(-1)
252
+ y = np.ma.array(y_mask, mask=~(np.array(masks, dtype=bool)))
253
+ y_min = y.filled(fill_value=1e8)
254
+ y_min = y_min.reshape(y_min.shape[0], -1).min(-1)
255
+
256
+ return np.stack([x_min, y_min, x_max, y_max], 1)
257
+
258
+ def draw_seg(image, panoptic_image, oids, labels, out_path, label_names=None, font="Roboto-Bold.ttf", fontsize=15, opacity=160, anchor="leftBottom"):
259
+ fnt = ImageFont.truetype(font, fontsize)
260
+ im_w, im_h = image.size
261
+
262
+ masks = np.asarray(panoptic_image, dtype=np.uint32)
263
+ masks = rgb_to_id(masks)
264
+
265
+ oids = np.array(oids, dtype=np.uint32)
266
+ masks = masks == oids[:, None, None]
267
+ masks = masks.astype(np.uint8)
268
+
269
+ bboxes = masks_to_boxes(masks)
270
+
271
+ img = image.convert("RGBA")
272
+
273
+ for label, mask, bbox in zip(labels, masks, bboxes):
274
+ c = COLOR_MAP[min(label, len(COLOR_MAP)-1)]
275
+ cf = np.array(c + (opacity, )).astype(np.uint8)
276
+ cmask = mask[:, :, None] * cf[None, None, :]
277
+ cmask = Image.fromarray(cmask)
278
+ img = Image.alpha_composite(img, cmask)
279
+
280
+ if label_names is not None:
281
+ text = label_names[label]
282
+ tbb = fnt.getbbox(text)
283
+ btn_bbox, text_pos = get_text_bbox(bbox, tbb, 3, im_w, im_h, anchor=anchor)
284
+
285
+ overlay = Image.new('RGBA', img.size, (0, 0, 0, 0))
286
+ draw = ImageDraw.Draw(overlay)
287
+
288
+ fc = (0, 0, 0) if calc_lum(c) > 150 else (255, 255, 255)
289
+
290
+ draw.rectangle(btn_bbox, outline=c, fill=c + (255, ))
291
+ draw.text(text_pos, text, font=fnt, fill=fc + (255, ))
292
+
293
+ img = Image.alpha_composite(img, overlay)
294
+
295
+ img = img.convert("RGB")
296
+ img.save(out_path)
297
+
298
+
299
+
300
+ raw_datasets = load_dataset(
301
+ "coco.py",
302
+ "2017_panoptic",
303
+ cache_dir="./huggingface_datasets",
304
+ # data_dir="./data",
305
+ )
306
+
307
+ train_dataset = raw_datasets["train"]
308
+ label_list = raw_datasets["train"].features["panoptic_objects"].feature['label'].names
309
+
310
+ for idx, item in zip(range(10), train_dataset):
311
+ draw_seg(
312
+ item["image"],
313
+ item["panoptic_image"],
314
+ item["panoptic_objects"]["id"],
315
+ item["panoptic_objects"]["label"],
316
+ "panoptic_" + item["image/filename"],
317
+ label_list)
318
+
319
+ ```
320
+
321
+ ![sample1](./images/panoptic_000000000009.jpg)
322
+ ![sample2](./images/panoptic_000000000025.jpg)
323
+
324
+
325
+