ToxiCN / ToxiCN_ex /src /Models.py
JunyuLu's picture
Upload 17 files
e82a469 verified
from transformers import BertModel
# from chinesebert import ChineseBertForMaskedLM, ChineseBertTokenizerFast, ChineseBertConfig
from src.BERT import BertModel
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
# 2022.4.28 Glove + LSTM
class BiLSTM(nn.Module):
def __init__(self, config, embedding_weight):
super(BiLSTM, self).__init__()
self.device = config.device
self.vocab_size = embedding_weight.shape[0]
self.embed_dim = embedding_weight.shape[1]
# Embedding Layer
embedding_weight = torch.from_numpy(embedding_weight).float()
embedding_weight = Variable(embedding_weight, requires_grad=config.if_grad)
self.embedding = nn.Embedding(self.vocab_size, self.embed_dim, _weight=embedding_weight)
# Encoder layer
self.bi_lstm = nn.LSTM(self.embed_dim, config.lstm_hidden_dim, bidirectional=True, batch_first=True)
def forward(self, **kwargs):
emb = self.embedding(kwargs["title_text_token_ids"].to(self.device)) # [batch, len] --> [batch, len, embed_dim]
lstm_out, _ = self.bi_lstm(emb) # [batch, len, embed_dim] --> [batch, len, lstm_hidden_dim*2]
lstm_out_pool = torch.mean(lstm_out, dim=1) # [batch, lstm_hidden_dim*2]
return lstm_out, lstm_out_pool
class Bert_Layer(torch.nn.Module):
def __init__(self, config):
super(Bert_Layer, self).__init__()
# self.use_cuda = kwargs['use_cuda']
self.device = config.device
# BERT/Roberta
self.bert_layer = BertModel.from_pretrained(config.model_name)
# ChineseBERT
# self.config = ChineseBertConfig.from_pretrained(config.model_name)
# self.bert_layer = ChineseBertForMaskedLM.from_pretrained("ShannonAI/ChineseBERT-base", config=self.config)
self.dim = config.vocab_dim
def forward(self, **kwargs):
bert_output = self.bert_layer(input_ids=kwargs['text_idx'].to(self.device),
token_type_ids=kwargs['text_ids'].to(self.device),
attention_mask=kwargs['text_mask'].to(self.device),
toxic_ids=kwargs["toxic_ids"].to(self.device))
return bert_output[0], bert_output[1]
class TwoLayerFFNNLayer(torch.nn.Module):
'''
2-layer FFNN with specified nonlinear function
must be followed with some kind of prediction layer for actual prediction
'''
def __init__(self, config):
super(TwoLayerFFNNLayer, self).__init__()
self.output = config.dropout
self.input_dim = config.vocab_dim
self.hidden_dim = config.fc_hidden_dim
self.out_dim = config.num_classes
self.dropout = nn.Dropout(config.dropout)
self.model = nn.Sequential(nn.Linear(self.input_dim, self.hidden_dim),
nn.Tanh(),
nn.Linear(self.hidden_dim, self.out_dim))
def forward(self, att_input, pooled_emb):
att_input = self.dropout(att_input)
pooled_emb = self.dropout(pooled_emb)
return self.model(pooled_emb)