Jorgvt commited on
Commit
27ae164
·
1 Parent(s): 3fe3cc4
Files changed (1) hide show
  1. TID2008.py +18 -17
TID2008.py CHANGED
@@ -47,34 +47,34 @@ class TID2008(datasets.GeneratorBasedBuilder):
47
 
48
  def _split_generators(self, dl_manager):
49
  data_path = dl_manager.download("data.zip")
50
- data_path = dl_manager.download_and_extract(data_path)
51
- df = pd.read_csv(os.path.join(data_path, "image_pairs_mos.csv"), index_col=0)
52
- reference_paths = (
53
- df["Reference"]
54
- .apply(lambda x: os.path.join(data_path, "reference_images", x))
55
- .to_list()
56
- )
57
- distorted_paths = (
58
- df["Distorted"]
59
- .apply(lambda x: os.path.join(data_path, "distorted_images", x))
60
- .to_list()
61
- )
62
 
63
  return [
64
  datasets.SplitGenerator(
65
  name=datasets.Split.TRAIN,
66
  gen_kwargs={
67
- "reference": reference_paths,
68
- "distorted": distorted_paths,
69
- "mos": df["MOS"],
70
  "split": "train",
71
  },
72
  )
73
  ]
74
 
75
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
76
- def _generate_examples(self, reference, distorted, mos, split):
77
- for key, (ref, dist, m) in enumerate(zip(reference, distorted, mos)):
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  yield (
79
  key,
80
  {
@@ -83,3 +83,4 @@ class TID2008(datasets.GeneratorBasedBuilder):
83
  "mos": m,
84
  },
85
  )
 
 
47
 
48
  def _split_generators(self, dl_manager):
49
  data_path = dl_manager.download("data.zip")
 
 
 
 
 
 
 
 
 
 
 
 
50
 
51
  return [
52
  datasets.SplitGenerator(
53
  name=datasets.Split.TRAIN,
54
  gen_kwargs={
55
+ "data": dl_manager.download_and_extract(data_path),
 
 
56
  "split": "train",
57
  },
58
  )
59
  ]
60
 
61
  # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
62
+ def _generate_examples(self, data, split):
63
+ df = pd.read_csv(os.path.join(data, "image_pairs_mos.csv"), index_col=0)
64
+ reference_paths = (
65
+ df["Reference"]
66
+ .apply(lambda x: os.path.join(data, "reference_images", x))
67
+ .to_list()
68
+ )
69
+ distorted_paths = (
70
+ df["Distorted"]
71
+ .apply(lambda x: os.path.join(data, "distorted_images", x))
72
+ .to_list()
73
+ )
74
+
75
+ for key, (ref, dist, m) in enumerate(
76
+ zip(reference_paths, distorted_paths, df["MOS"])
77
+ ):
78
  yield (
79
  key,
80
  {
 
83
  "mos": m,
84
  },
85
  )
86
+