|
|
|
"""yelp_dataset.ipynb |
|
|
|
Automatically generated by Colaboratory. |
|
|
|
Original file is located at |
|
https://colab.research.google.com/drive/14UtK4YCjMSx4cVbUb9NBRHviWZg07dtY |
|
""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""TODO: Add a description here.""" |
|
|
|
!pip install datasets |
|
|
|
import csv |
|
import json |
|
import os |
|
from typing import List |
|
import datasets |
|
import logging |
|
|
|
|
|
|
|
_CITATION = """\ |
|
@InProceedings{huggingface:dataset, |
|
title = {A great new dataset}, |
|
author={huggingface, Inc. |
|
}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
|
|
|
|
_DESCRIPTION = """\ |
|
This new dataset is designed to solve this great NLP task and is crafted with a lot of care. |
|
""" |
|
|
|
|
|
_HOMEPAGE = "https://www.yelp.com/dataset/download" |
|
|
|
|
|
_LICENSE = "" |
|
|
|
|
|
|
|
|
|
_URL = "https://yelpdata.s3.us-west-2.amazonaws.com/" |
|
_URLS = { |
|
"train": _URL + "yelp_train.csv", |
|
"test": _URL + "yelp_test.csv", |
|
} |
|
|
|
class YelpDataset(datasets.GeneratorBasedBuilder): |
|
"""TODO: Short description of my dataset.""" |
|
|
|
_URLS = _URLS |
|
VERSION = datasets.Version("1.1.0") |
|
|
|
def _info(self): |
|
raise ValueError('woops!') |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"business_id": datasets.Value("string"), |
|
"name": datasets.Value("string"), |
|
"address": datasets.Value("string"), |
|
"city": datasets.Value("string"), |
|
"state": datasets.Value("string"), |
|
"postal_code": datasets.Value("string"), |
|
"latitude": datasets.Value("float64"), |
|
"longitude": datasets.Value("float64"), |
|
"stars_x": datasets.Value("float64"), |
|
"review_count": datasets.Value("int64"), |
|
"is_open": datasets.Value("int64"), |
|
"attributes": datasets.features.Sequence( |
|
{ "RestaurantsDelivery":datasets.Value("boolean"), |
|
"OutdoorSeating":datasets.Value("boolean"), |
|
"BusinessAcceptsCreditCards":datasets.Value("boolean"), |
|
"BusinessParking": datasets.features.Sequence( |
|
{'garage':datasets.Value("boolean"), |
|
'street':datasets.Value("boolean"), |
|
'validated':datasets.Value("boolean"), |
|
'lot':datasets.Value("boolean"), |
|
'valet':datasets.Value("boolean")}), |
|
"BikeParking":datasets.Value("boolean"), |
|
"RestaurantsPriceRange2":datasets.Value("int64"), |
|
"RestaurantsTakeOut":datasets.Value("boolean"), |
|
"ByAppointmentOnly":datasets.Value("boolean"), |
|
"WiFi":datasets.Value("string"), |
|
"Alcohol":datasets.Value("string"), |
|
"Caters":datasets.Value("boolean"), |
|
'Corkage':datasets.Value("boolean"), |
|
'WheelchairAccessible':datasets.Value("boolean"), |
|
'HasTV':datasets.Value("boolean"), |
|
'Open24Hours':datasets.Value("boolean"), |
|
'BikeParking':datasets.Value("boolean"), |
|
'Ambience': datasets.features.Sequence( |
|
{'touristy': datasets.Value("boolean"), |
|
'hipster': datasets.Value("boolean"), |
|
'romantic': datasets.Value("boolean"), |
|
'divey': datasets.Value("boolean"), |
|
'intimate': datasets.Value("boolean"), |
|
'trendy': datasets.Value("boolean"), |
|
'upscale': datasets.Value("boolean"), |
|
'classy': datasets.Value("boolean"), |
|
'casual': datasets.Value("boolean")}), |
|
'RestaurantsAttire': datasets.Value("string"), |
|
'DriveThru':datasets.Value("boolean"), |
|
'BusinessAcceptsBitcoin':datasets.Value("boolean"), |
|
'NoiseLevel': datasets.Value("string"), |
|
'Smoking': datasets.Value("string"), |
|
'BestNights':datasets.features.Sequence( |
|
{u'monday': datasets.Value("boolean"), |
|
u'tuesday': datasets.Value("boolean"), |
|
u'wednesday': datasets.Value("boolean"), |
|
u'thursday': datasets.Value("boolean"), |
|
u'friday': datasets.Value("boolean"), |
|
u'saturday': datasets.Value("boolean"), |
|
u'sunday': datasets.Value("boolean")}), |
|
'GoodForMeal':datasets.features.Sequence( |
|
{'dessert': datasets.Value("boolean"), |
|
'latenight': datasets.Value("boolean"), |
|
'lunch': datasets.Value("boolean"), |
|
'dinner': datasets.Value("boolean"), |
|
'brunch': datasets.Value("boolean"), |
|
'breakfast': datasets.Value("boolean")}), |
|
'RestaurantsGoodForGroups':datasets.Value("boolean"), |
|
'GoodForDancing':datasets.Value("boolean"), |
|
'Music':datasets.features.Sequence( |
|
{'dj': datasets.Value("boolean"), |
|
'background_music': datasets.Value("boolean"), |
|
'no_music': datasets.Value("boolean"), |
|
'jukebox': datasets.Value("boolean"), |
|
'live': datasets.Value("boolean"), |
|
'video': datasets.Value("boolean"), |
|
'karaoke': datasets.Value("boolean")}), |
|
'DietaryRestrictions':datasets.features.Sequence( |
|
{'dairy-free': datasets.Value("boolean"), |
|
'gluten-free': datasets.Value("boolean"), |
|
'vegan': datasets.Value("boolean"), |
|
'kosher': datasets.Value("boolean"), |
|
'halal': datasets.Value("boolean"), |
|
'soy-free': datasets.Value("boolean"), |
|
'vegetarian': datasets.Value("boolean")}), |
|
'RestaurantsReservations':datasets.Value("boolean"), |
|
'HairSpecializesIn':datasets.features.Sequence( |
|
{'straightperms': datasets.Value("boolean"), |
|
'coloring': datasets.Value("boolean"), |
|
'extensions': datasets.Value("boolean"), |
|
'africanamerican': datasets.Value("boolean"), |
|
'curly': datasets.Value("boolean"), |
|
'kids': datasets.Value("boolean"), |
|
'perms': datasets.Value("boolean"), |
|
'asian': datasets.Value("boolean")}), |
|
'BYOBCorkage': datasets.Value("string"), |
|
'BYOB':datasets.Value("boolean"), |
|
'DogsAllowed':datasets.Value("boolean"), |
|
'RestaurantsCounterService':datasets.Value("boolean"), |
|
'RestaurantsTableService':datasets.Value("boolean"), |
|
'CoatCheck':datasets.Value("boolean"), |
|
'AgesAllowed': datasets.Value("string"), |
|
'AcceptsInsurance':datasets.Value("boolean"), |
|
'HappyHour':datasets.Value("boolean"), |
|
'GoodForKids':datasets.Value("boolean"), |
|
} |
|
), |
|
"categories": datasets.Value("string"), |
|
"hours": datasets.Value("string"), |
|
"review_id": datasets.Value("string"), |
|
"user_id": datasets.Value("string"), |
|
"stars_y": datasets.Value("float64"), |
|
"useful": datasets.Value("int64"), |
|
"funny": datasets.Value("int64"), |
|
"cool": datasets.Value("int64"), |
|
"text": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
|
|
} |
|
), |
|
|
|
|
|
supervised_keys=None, |
|
homepage="https://www.yelp.com/dataset/download", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]: |
|
urls_to_download = self._URLS |
|
downloaded_files = dl_manager.download_and_extract(urls_to_download) |
|
|
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
"""This function returns the examples in the raw (text) form.""" |
|
logging.info("generating examples from = %s", filepath) |
|
with open(filepath, encoding="utf-8") as csv_file: |
|
reader = csv.DictReader(csv_file) |
|
for i, row in enumerate(reader): |
|
|
|
example = {key: value for key, value in row.items() if value is not None} |
|
yield i, example |