hdallatorre commited on
Commit
30e0b97
·
1 Parent(s): ae990bd

feat: Add main file

Browse files
nucleotide_transformer_downstream_tasks_v2.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script
2
+ # contributor.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """Script for the dataset containing the 18 downstream tasks from the Nucleotide
16
+ Transformer paper."""
17
+
18
+ from typing import List
19
+
20
+ import datasets
21
+
22
+
23
+ # This function is a basic reimplementation of SeqIO's parse method. This allows the
24
+ # dataset viewer to work as it does not require an external package.
25
+ def parse_fasta(fp):
26
+ name, seq = None, []
27
+ for line in fp:
28
+ line = line.rstrip()
29
+ if line.startswith(">"):
30
+ if name:
31
+ # Slice to remove '>'
32
+ yield (name[1:], "".join(seq))
33
+ name, seq = line, []
34
+ else:
35
+ seq.append(line)
36
+ if name:
37
+ # Slice to remove '>'
38
+ yield (name[1:], "".join(seq))
39
+
40
+
41
+ # Find for instance the citation on arxiv or on the dataset repo/website
42
+ _CITATION = """\
43
+ @article{dalla2023nucleotide,
44
+ title={The Nucleotide Transformer: Building and Evaluating Robust Foundation Models for Human Genomics},
45
+ author={Dalla-Torre, Hugo and Gonzalez, Liam and Mendoza-Revilla, Javier and Carranza, Nicolas Lopez and Grzywaczewski, Adam Henryk and Oteri, Francesco and Dallago, Christian and Trop, Evan and Sirelkhatim, Hassan and Richard, Guillaume and others},
46
+ journal={bioRxiv},
47
+ pages={2023--01},
48
+ year={2023},
49
+ publisher={Cold Spring Harbor Laboratory}
50
+ }
51
+ """
52
+
53
+ # You can copy an official description
54
+ _DESCRIPTION = """\
55
+ The 18 classification downstream tasks from the Nucleotide Transformer paper. Each task
56
+ corresponds to a dataset configuration.
57
+ """
58
+
59
+ _HOMEPAGE = "https://github.com/instadeepai/nucleotide-transformer"
60
+
61
+ _LICENSE = "https://github.com/instadeepai/nucleotide-transformer/LICENSE.md"
62
+
63
+ _TASKS = [
64
+ "H4ac",
65
+ "H3K36me3",
66
+ "splice_sites_donors",
67
+ "splice_sites_acceptors",
68
+ "H3",
69
+ "H4",
70
+ "H3K4me3",
71
+ "splice_sites_all",
72
+ "H3K4me1",
73
+ "H3K14ac",
74
+ "enhancers_types",
75
+ "promoter_no_tata",
76
+ "H3K79me3",
77
+ "H3K4me2",
78
+ "promoter_tata",
79
+ "enhancers",
80
+ "H3K9ac",
81
+ "promoter_all",
82
+ ]
83
+
84
+
85
+ class NucleotideTransformerDownstreamTasksConfig(datasets.BuilderConfig):
86
+ """BuilderConfig for The Nucleotide Transformer downstream taks dataset."""
87
+
88
+ def __init__(self, *args, task: str, **kwargs):
89
+ """BuilderConfig downstream tasks dataset.
90
+ Args:
91
+ task (:obj:`str`): Task name.
92
+ **kwargs: keyword arguments forwarded to super.
93
+ """
94
+ super().__init__(
95
+ *args,
96
+ name=f"{task}",
97
+ **kwargs,
98
+ )
99
+ self.task = task
100
+
101
+
102
+ class NucleotideTransformerDownstreamTasks(datasets.GeneratorBasedBuilder):
103
+ VERSION = datasets.Version("1.1.0")
104
+ BUILDER_CONFIG_CLASS = NucleotideTransformerDownstreamTasksConfig
105
+ BUILDER_CONFIGS = [
106
+ NucleotideTransformerDownstreamTasksConfig(task=task) for task in _TASKS
107
+ ]
108
+ DEFAULT_CONFIG_NAME = "enhancers"
109
+
110
+ def _info(self):
111
+
112
+ features = datasets.Features(
113
+ {
114
+ "sequence": datasets.Value("string"),
115
+ "name": datasets.Value("string"),
116
+ "label": datasets.Value("int32"),
117
+ }
118
+ )
119
+ return datasets.DatasetInfo(
120
+ # This is the description that will appear on the datasets page.
121
+ description=_DESCRIPTION,
122
+ # This defines the different columns of the dataset and their types
123
+ features=features,
124
+ # Homepage of the dataset for documentation
125
+ homepage=_HOMEPAGE,
126
+ # License for the dataset if available
127
+ license=_LICENSE,
128
+ # Citation for the dataset
129
+ citation=_CITATION,
130
+ )
131
+
132
+ def _split_generators(
133
+ self, dl_manager: datasets.DownloadManager
134
+ ) -> List[datasets.SplitGenerator]:
135
+
136
+ train_file = dl_manager.download_and_extract(self.config.task + "/train.fna")
137
+ test_file = dl_manager.download_and_extract(self.config.task + "/test.fna")
138
+
139
+ return [
140
+ datasets.SplitGenerator(
141
+ name=datasets.Split.TRAIN, gen_kwargs={"file": train_file}
142
+ ),
143
+ datasets.SplitGenerator(
144
+ name=datasets.Split.TEST, gen_kwargs={"file": test_file}
145
+ ),
146
+ ]
147
+
148
+ # method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
149
+ def _generate_examples(self, file):
150
+ key = 0
151
+ with open(file, "rt") as f:
152
+ fasta_sequences = parse_fasta(f)
153
+
154
+ for name, seq in fasta_sequences:
155
+
156
+ # parse descriptions in the fasta file
157
+ sequence, name = str(seq), str(name)
158
+ label = int(name.split("|")[-1])
159
+
160
+ # yield example
161
+ yield key, {
162
+ "sequence": sequence,
163
+ "name": name,
164
+ "label": label,
165
+ }
166
+ key += 1