multi_species_genomes / multi_species_genomes.py
tpierrot's picture
Upload multi_species_genomes.py
198549f
raw
history blame
6.68 kB
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script
# contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Script for the multi-species genomes dataset. This dataset contains the genomes
from 850 different species."""
from typing import List
import datasets
import pandas as pd
from Bio import SeqIO
# Find for instance the citation on arxiv or on the dataset repo/website
_CITATION = """\
@article{o2016reference,
title={Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation},
author={O'Leary, Nuala A and Wright, Mathew W and Brister, J Rodney and Ciufo, Stacy and Haddad, Diana and McVeigh, Rich and Rajput, Bhanu and Robbertse, Barbara and Smith-White, Brian and Ako-Adjei, Danso and others},
journal={Nucleic acids research},
volume={44},
number={D1},
pages={D733--D745},
year={2016},
publisher={Oxford University Press}
}
"""
# You can copy an official description
_DESCRIPTION = """\
Genomes from 850 different species.
"""
_HOMEPAGE = "https://www.ncbi.nlm.nih.gov/"
_LICENSE = "https://www.ncbi.nlm.nih.gov/home/about/policies/"
url_df = pd.read_csv('urls.csv')
urls = list(url_df['URL'])
_TEST_URLS = urls[-50:] # 50 genomes for test set
_VALIDATION_URLS = urls[-100:-50] # 50 genomes for validation set
_TRAIN_URLS = urls[:-100] # 800 genomes for training
_CHUNK_LENGTHS = [6000, 12000]
_OVERLAP = 100
def filter_fn(char: str) -> str:
"""
Transforms any letter different from a base nucleotide into an 'N'.
"""
if char in {'A', 'T', 'C', 'G'}:
return char
else:
return 'N'
def clean_sequence(seq: str) -> str:
"""
Process a chunk of DNA to have all letters in upper and restricted to
A, T, C, G and N.
"""
seq = seq.upper()
seq = map(filter_fn, seq)
seq = ''.join(list(seq))
return seq
class MultiSpeciesGenomesConfig(datasets.BuilderConfig):
"""BuilderConfig for The Human Reference Genome."""
def __init__(self, *args, chunk_length: int, **kwargs):
"""BuilderConfig for the multi species genomes.
Args:
chunk_length (:obj:`int`): Chunk length.
**kwargs: keyword arguments forwarded to super.
"""
num_kbp = int(chunk_length/1000)
super().__init__(
*args,
name=f'{num_kbp}kbp',
**kwargs,
)
self.chunk_length = chunk_length
class MultiSpeciesGenomes(datasets.GeneratorBasedBuilder):
"""Genomes from 850 species, filtered and split into chunks of consecutive
nucleotides. 50 genomes are taken for test, 50 for validation and 800
for training."""
VERSION = datasets.Version("1.1.0")
BUILDER_CONFIG_CLASS = MultiSpeciesGenomesConfig
BUILDER_CONFIGS = [MultiSpeciesGenomesConfig(chunk_length=chunk_length) for chunk_length in _CHUNK_LENGTHS]
DEFAULT_CONFIG_NAME = "6kbp"
def _info(self):
features = datasets.Features(
{
"sequence": datasets.Value("string"),
"description": datasets.Value("string"),
"start_pos": datasets.Value("int"),
"end_pos": datasets.Value("int"),
}
)
return datasets.DatasetInfo(
# This is the description that will appear on the datasets page.
description=_DESCRIPTION,
# This defines the different columns of the dataset and their types
features=features,
# Homepage of the dataset for documentation
homepage=_HOMEPAGE,
# License for the dataset if available
license=_LICENSE,
# Citation for the dataset
citation=_CITATION,
)
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
train_downloaded_files = dl_manager.download_and_extract(_TRAIN_URLS)
test_downloaded_files = dl_manager.download_and_extract(_TEST_URLS)
validation_downloaded_files = dl_manager.download_and_extract(_VALIDATION_URLS)
return [
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"files": train_downloaded_files, "chunk_length": self.config.chunk_length}),
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"files": validation_downloaded_files, "chunk_length": self.config.chunk_length}),
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"files": test_downloaded_files, "chunk_length": self.config.chunk_length}),
]
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
def _generate_examples(self, files, chunk_length):
key = 0
for file in files:
with open(file, 'rt') as f:
fasta_sequences = SeqIO.parse(f, 'fasta')
for record in fasta_sequences:
# parse descriptions in the fasta file
sequence, description = str(record.seq), record.description
# clean chromosome sequence
sequence = clean_sequence(sequence)
seq_length = len(sequence)
# split into chunks
num_chunks = (seq_length - 2 * _OVERLAP) // chunk_length
if num_chunks < 1:
continue
sequence = sequence[:(chunk_length * num_chunks + 2 * _OVERLAP)]
seq_length = len(sequence)
for i in range(num_chunks):
# get chunk
start_pos = i * chunk_length
end_pos = min(seq_length, (i+1) * chunk_length + 2 * _OVERLAP)
chunk_sequence = sequence[start_pos:end_pos]
# yield chunk
yield key, {
'sequence': chunk_sequence,
'description': description,
'start_pos': start_pos,
'end_pos': end_pos
}
key += 1