\Merge branch 'main' of https://huggingface.co/datasets/IlyaGusev/pikabu into main
Browse files
README.md
CHANGED
@@ -59,4 +59,101 @@ dataset_info:
|
|
59 |
num_examples: 6907622
|
60 |
download_size: 20196853689
|
61 |
dataset_size: 96105803658
|
|
|
|
|
|
|
|
|
|
|
|
|
62 |
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
59 |
num_examples: 6907622
|
60 |
download_size: 20196853689
|
61 |
dataset_size: 96105803658
|
62 |
+
task_categories:
|
63 |
+
- text-generation
|
64 |
+
language:
|
65 |
+
- ru
|
66 |
+
size_categories:
|
67 |
+
- 1M<n<10M
|
68 |
---
|
69 |
+
|
70 |
+
|
71 |
+
# Pikabu dataset
|
72 |
+
|
73 |
+
## Table of Contents
|
74 |
+
- [Table of Contents](#table-of-contents)
|
75 |
+
- [Description](#description)
|
76 |
+
- [Usage](#usage)
|
77 |
+
- [Data Instances](#data-instances)
|
78 |
+
- [Source Data](#source-data)
|
79 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
80 |
+
|
81 |
+
## Description
|
82 |
+
|
83 |
+
**Summary:** Dataset of posts and comments from [pikabu.ru](https://pikabu.ru/), a website that is Russian Reddit/9gag.
|
84 |
+
|
85 |
+
**Script:** [convert_pikabu.py](https://github.com/IlyaGusev/rulm/blob/master/data_processing/convert_pikabu.py)
|
86 |
+
|
87 |
+
**Point of Contact:** [Ilya Gusev](ilya.gusev@phystech.edu)
|
88 |
+
|
89 |
+
**Languages:** Mostly Russian.
|
90 |
+
|
91 |
+
|
92 |
+
## Usage
|
93 |
+
|
94 |
+
Prerequisites:
|
95 |
+
```bash
|
96 |
+
pip install datasets zstandard jsonlines pysimdjson
|
97 |
+
```
|
98 |
+
|
99 |
+
Dataset iteration:
|
100 |
+
```python
|
101 |
+
from datasets import load_dataset
|
102 |
+
dataset = load_dataset('IlyaGusev/pikabu', split="train", streaming=True)
|
103 |
+
for example in dataset:
|
104 |
+
print(example["text_markdown"])
|
105 |
+
```
|
106 |
+
|
107 |
+
## Data Instances
|
108 |
+
|
109 |
+
```
|
110 |
+
{
|
111 |
+
"id": 69911642,
|
112 |
+
"title": "Что можно купить в Китае за цену нового iPhone 11 Pro",
|
113 |
+
"text_markdown": "...",
|
114 |
+
"timestamp": 1571221527,
|
115 |
+
"author_id": 2900955,
|
116 |
+
"username": "chinatoday.ru",
|
117 |
+
"rating": -4,
|
118 |
+
"pluses": 9,
|
119 |
+
"minuses": 13,
|
120 |
+
"url": "...",
|
121 |
+
"tags": ["Китай", "AliExpress", "Бизнес"],
|
122 |
+
"blocks": {"data": ["...", "..."], "type": ["text", "text"]},
|
123 |
+
"comments": {
|
124 |
+
"id": [152116588, 152116426],
|
125 |
+
"text_markdown": ["...", "..."],
|
126 |
+
"text_html": ["...", "..."],
|
127 |
+
"images": [[], []],
|
128 |
+
"rating": [2, 0],
|
129 |
+
"pluses": [2, 0],
|
130 |
+
"minuses": [0, 0],
|
131 |
+
"author_id": [2104711, 2900955],
|
132 |
+
"username": ["FlyZombieFly", "chinatoday.ru"]
|
133 |
+
}
|
134 |
+
}
|
135 |
+
```
|
136 |
+
|
137 |
+
You can use this little helper to unflatten sequences:
|
138 |
+
|
139 |
+
```python
|
140 |
+
def revert_flattening(records):
|
141 |
+
fixed_records = []
|
142 |
+
for key, values in records.items():
|
143 |
+
if not fixed_records:
|
144 |
+
fixed_records = [{} for _ in range(len(values))]
|
145 |
+
for i, value in enumerate(values):
|
146 |
+
fixed_records[i][key] = value
|
147 |
+
return fixed_records
|
148 |
+
```
|
149 |
+
|
150 |
+
|
151 |
+
## Source Data
|
152 |
+
|
153 |
+
* The data source is the [Pikabu](https://pikabu.ru/) website.
|
154 |
+
* An original dump can be found here: [pikastat](https://pikastat.d3d.info/)
|
155 |
+
* Processing script is [here](https://github.com/IlyaGusev/rulm/blob/master/data_processing/convert_pikabu.py).
|
156 |
+
|
157 |
+
## Personal and Sensitive Information
|
158 |
+
|
159 |
+
The dataset is not anonymized, so individuals' names can be found in the dataset. Information about the original authors is included in the dataset where possible.
|