|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Gazeta: Dataset for Automatic Summarization of Russian News""" |
|
|
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@InProceedings{10.1007/978-3-030-59082-6_9, |
|
author="Gusev, Ilya", |
|
editor="Filchenkov, Andrey and Kauttonen, Janne and Pivovarova, Lidia", |
|
title="Dataset for Automatic Summarization of Russian News", |
|
booktitle="Artificial Intelligence and Natural Language", |
|
year="2020", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="122--134", |
|
isbn="978-3-030-59082-6" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = "Dataset for automatic summarization of Russian news" |
|
_HOMEPAGE = "https://github.com/IlyaGusev/gazeta" |
|
_URLS = { |
|
"train": "gazeta_train.jsonl", |
|
"val": "gazeta_val.jsonl", |
|
"test": "gazeta_test.jsonl" |
|
} |
|
_DOCUMENT = "text" |
|
_SUMMARY = "summary" |
|
|
|
|
|
class GazetaDataset(datasets.GeneratorBasedBuilder): |
|
"""Gazeta Dataset""" |
|
|
|
VERSION = datasets.Version("2.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="default", version=VERSION, description=""), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
_DOCUMENT: datasets.Value("string"), |
|
_SUMMARY: datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"url": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=(_DOCUMENT, _SUMMARY), |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
downloaded_files = dl_manager.download_and_extract(_URLS) |
|
return [ |
|
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), |
|
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), |
|
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, data |
|
|