|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Dataset for automatic summarization of Russian news""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@InProceedings{10.1007/978-3-030-59082-6_9, |
|
author="Gusev, Ilya", |
|
editor="Filchenkov, Andrey and Kauttonen, Janne and Pivovarova, Lidia", |
|
title="Dataset for Automatic Summarization of Russian News", |
|
booktitle="Artificial Intelligence and Natural Language", |
|
year="2020", |
|
publisher="Springer International Publishing", |
|
address="Cham", |
|
pages="122--134", |
|
isbn="978-3-030-59082-6" |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\\nDataset for automatic summarization of Russian news |
|
""" |
|
|
|
_HOMEPAGE = "https://github.com/IlyaGusev/gazeta" |
|
|
|
_LICENSE = "" |
|
|
|
_URLs = { |
|
'basic': "https://github.com/IlyaGusev/gazeta/releases/download/1.0/gazeta_jsonl.tar.gz", |
|
} |
|
|
|
|
|
class GazetaDataset(datasets.GeneratorBasedBuilder): |
|
"""Dataset for automatic summarization of Russian news""" |
|
|
|
VERSION = datasets.Version("1.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="basic", version=VERSION, description=""), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "basic" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"text": datasets.Value("string"), |
|
"summary": datasets.Value("string"), |
|
"title": datasets.Value("string"), |
|
"date": datasets.Value("string"), |
|
"url": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
my_urls = _URLs[self.config.name] |
|
data_dir = dl_manager.download_and_extract(my_urls) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "gazeta_train.jsonl"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "gazeta_test.jsonl"), |
|
"split": "test" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, "gazeta_val.jsonl"), |
|
"split": "dev", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples( |
|
self, filepath, split |
|
): |
|
with open(filepath, encoding="utf-8") as f: |
|
for id_, row in enumerate(f): |
|
data = json.loads(row) |
|
yield id_, data |
|
|