Datasets:
Tasks:
Summarization
Modalities:
Text
Formats:
parquet
Languages:
Russian
Size:
10K - 100K
ArXiv:
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and Ilya Gusev | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Gazeta: Dataset for Automatic Summarization of Russian News""" | |
import json | |
import os | |
import datasets | |
_CITATION = """ | |
@InProceedings{10.1007/978-3-030-59082-6_9, | |
author="Gusev, Ilya", | |
editor="Filchenkov, Andrey and Kauttonen, Janne and Pivovarova, Lidia", | |
title="Dataset for Automatic Summarization of Russian News", | |
booktitle="Artificial Intelligence and Natural Language", | |
year="2020", | |
publisher="Springer International Publishing", | |
address="Cham", | |
pages="122--134", | |
isbn="978-3-030-59082-6" | |
} | |
""" | |
_DESCRIPTION = "Dataset for automatic summarization of Russian news" | |
_HOMEPAGE = "https://github.com/IlyaGusev/gazeta" | |
_URLS = { | |
"train": "gazeta_train.jsonl", | |
"val": "gazeta_val.jsonl", | |
"test": "gazeta_test.jsonl" | |
} | |
_DOCUMENT = "text" | |
_SUMMARY = "summary" | |
class GazetaDataset(datasets.GeneratorBasedBuilder): | |
"""Gazeta Dataset""" | |
VERSION = datasets.Version("2.0.0") | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig(name="default", version=VERSION, description=""), | |
] | |
DEFAULT_CONFIG_NAME = "default" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
_DOCUMENT: datasets.Value("string"), | |
_SUMMARY: datasets.Value("string"), | |
"title": datasets.Value("string"), | |
"date": datasets.Value("string"), | |
"url": datasets.Value("string") | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=(_DOCUMENT, _SUMMARY), | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files["train"]}), | |
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files["test"]}), | |
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files["val"]}), | |
] | |
def _generate_examples(self, filepath): | |
with open(filepath, encoding="utf-8") as f: | |
for id_, row in enumerate(f): | |
data = json.loads(row) | |
yield id_, data | |