Datasets:

Languages:
English
ArXiv:
License:
SeJinPark commited on
Commit
a72e4b5
2 Parent(s): 5921c4b 6e08666

Merge branch 'main' of https://huggingface.co/datasets/IVLLab/MultiDialog into main

Browse files
Files changed (1) hide show
  1. README.md +67 -9
README.md CHANGED
@@ -16,16 +16,74 @@ size_categories:
16
  # path: test_freq/*, metadata.jsonl
17
  ---
18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
 
20
- # Dataset Description
21
- This dataset includes manually annotated metadata linking audio files to transcriptions, emotions, and other attributes. The `test_freq.parquet` file contains these links and metadata.
22
 
23
- ## Data Fields
24
- - `id`: unique identifier for each conversation.
25
- - 'utterance' : uterrance index.
26
- - `from`: who the message is from (human, gpt)
27
- - `value`: the text of the utterance.
28
- - `emotion`: the emotion of the utterance.
29
- - `audpath`: path to the associated audio file.
30
 
31
 
 
16
  # path: test_freq/*, metadata.jsonl
17
  ---
18
 
19
+ ## Dataset Description
20
+
21
+ - **Homepage:** https://multidialog.github.io
22
+ - **Repository:** https://github.com/MultiDialog/MultiDialog
23
+ - **Paper:** https://arxiv.org/abs/2106.06909
24
+ - **Point of Contact:** [jinny960812@kaist.ac.kr](mailto:jinny960812@kaist.ac.kr)
25
+ - **Point of Contact:** [chaewonkim@kaist.ac.kr](mailto:chaewonkim@kaist.ac.kr)
26
+
27
+ ## Dataset Description
28
+ This dataset includes manually annotated metadata linking audio files to transcriptions, emotions, and other attributes.
29
+
30
+ ### Example Usage
31
+ There are 'train', 'test_freq', 'test_rare', 'valid_freq', and 'valid_rare' splits. Below is the example usage.
32
+ ```python
33
+ from datasets import load_dataset
34
+
35
+ MultiD = load_dataset("IVLLab/MultiDialog", "valid_freq", use_auth_token=True)
36
+
37
+ # see structure
38
+ print(MultiD)
39
+
40
+ # load audio sample on the fly
41
+ audio_input = MultiD["valid_freq"][0]["audio"] # first decoded audio sample
42
+ transcription = MultiD["valid_freq"][0]["value"] # first transcription
43
+ ```
44
+
45
+ ### Supported Tasks
46
+ - `multimodal dialogue generation`
47
+ - `automatic-speech-recognition`: The dataset can be used to train a model for Automatic Speech Recognition (ASR).
48
+ - `text-to-speech`: The dataset can also be used to train a model for Text-To-Speech (TTS).
49
+
50
+ ### Languages
51
+ Multidialog contains audio and transcription data in English.
52
+
53
+ ## Dataset Structure
54
+ ### Data Instances
55
+ ```python
56
+ {
57
+ 'conv_id': 't_ffa55df6-114d-4b36-87a1-7af6b8b63d9b',
58
+ 'utterance_id': 0,
59
+ 'from': 'gpt',
60
+ 'audio':
61
+ {
62
+ # in streaming mode 'path' will be 'xs_chunks_0000/YOU0000000315_S0000660.wav'
63
+ 'path': '/home/user/.cache/huggingface/datasets/downloads/extracted/9d48cf31/xs_chunks_0000/YOU0000000315_S0000660.wav',
64
+ 'array': array([0.0005188 , 0.00085449, 0.00012207, ..., 0.00125122, 0.00076294, 0.00036621], dtype=float32),
65
+ 'sampling_rate': 16000
66
+ },
67
+ 'value': 'Are you a football fan?',
68
+ 'emotion': 'Neutral',
69
+ 'original_full_path': 'audio/youtube/P0004/YOU0000000315.opus'
70
+ }
71
+ ```
72
+
73
+ ### Data Fields
74
+ * conv_id (string) - unique identifier for each conversation.
75
+ * utterance_id (float) - uterrance index.
76
+ * from (string) - who the message is from (human, gpt).
77
+ * audio (Audio feature) - a dictionary containing the path to the audio, the decoded audio array, and the sampling rate.
78
+ In non-streaming mode (default), the path point to the locally extracted audio. In streaming mode, the path is the relative path of an audio.
79
+ segment inside its archive (as files are not downloaded and extracted locally).
80
+ * value (string) - transcription of the utterance.
81
+ * emotion (string) - the emotion of the utterance.
82
+ * original_full_path (string) - the relative path to the original full audio sample in the original data directory.
83
+
84
+ Emotion is assigned from the following labels:
85
+ "Neutral", "Happy", "Fear", "Angry", "Disgusting", "Surprising", "Sad"
86
 
 
 
87
 
 
 
 
 
 
 
 
88
 
89