|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The Something-Something dataset (version 2) is a collection of 220,847 labeled video clips of humans performing pre-defined, basic actions with everyday objects.""" |
|
|
|
|
|
import csv |
|
import json |
|
import os |
|
|
|
import datasets |
|
|
|
from .classes import SOMETHING_SOMETHING_V2_CLASSES |
|
|
|
_CITATION = """ |
|
@inproceedings{goyal2017something, |
|
title={The" something something" video database for learning and evaluating visual common sense}, |
|
author={Goyal, Raghav and Ebrahimi Kahou, Samira and Michalski, Vincent and Materzynska, Joanna and Westphal, Susanne and Kim, Heuna and Haenel, Valentin and Fruend, Ingo and Yianilos, Peter and Mueller-Freitag, Moritz and others}, |
|
booktitle={Proceedings of the IEEE international conference on computer vision}, |
|
pages={5842--5850}, |
|
year={2017} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Something-Something dataset (version 2) is a collection of 220,847 labeled video clips of humans performing pre-defined, basic actions with everyday objects. It is designed to train machine learning models in fine-grained understanding of human hand gestures like putting something into something, turning something upside down and covering something with something. |
|
""" |
|
|
|
|
|
class SomethingSomethingV2(datasets.GeneratorBasedBuilder): |
|
"""Charades is dataset composed of 9848 videos of daily indoors activities collected through Amazon Mechanical Turk""" |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name="default")] |
|
DEFAULT_CONFIG_NAME = "default" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"video_id": datasets.Value("string"), |
|
"video": datasets.Value("string"), |
|
"text": datasets.Value("string"), |
|
"label": datasets.features.ClassLabel( |
|
num_classes=len(SOMETHING_SOMETHING_V2_CLASSES), names=SOMETHING_SOMETHING_V2_CLASSES |
|
), |
|
"placeholders": datasets.Sequence(datasets.Value("string")), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
@property |
|
def manual_download_instructions(self): |
|
return ( |
|
"To use Something-Something-v2, please download the 19 data files and the labels file " |
|
"from 'https://developer.qualcomm.com/software/ai-datasets/something-something'. " |
|
"Unzip the 19 files and concatenate the extracts in order into a tar file named '20bn-something-something-v2.tar.gz. " |
|
"Use command like `cat 20bn-something-something-v2-?? >> 20bn-something-something-v2.tar.gz` " |
|
"Place the `labels.zip` file and the tar file into a folder '/path/to/data/' and load the dataset using " |
|
"`load_dataset('something-something-v2', data_dir='/path/to/data')`" |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_dir = dl_manager.manual_dir |
|
labels_path = os.path.join(data_dir, "labels.zip") |
|
videos_path = os.path.join(data_dir, "20bn-something-something-v2.tar.gz") |
|
if not os.path.exists(labels_path): |
|
raise FileNotFoundError(f"labels.zip doesn't exist in {data_dir}. Please follow manual download instructions.") |
|
|
|
if not os.path.exists(videos_path): |
|
raise FileNotFoundError(f"20bn-something-sokmething-v2.tar.gz doesn't exist in {data_dir}. Please follow manual download instructions.") |
|
|
|
labels_path = dl_manager.extract(labels_path) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_file": os.path.join(labels_path, "labels", "train.json"), |
|
"video_files": dl_manager.iter_archive(videos_path), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annotation_file": os.path.join(labels_path, "labels", "validation.json"), |
|
"video_files": dl_manager.iter_archive(videos_path), |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_file": os.path.join(labels_path, "labels", "test.json"), |
|
"video_files": dl_manager.iter_archive(videos_path), |
|
"labels_file": os.path.join(labels_path, "labels", "test-answers.csv"), |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, annotation_file, video_files, labels_file=None): |
|
data = {} |
|
labels = None |
|
if labels_file is not None: |
|
with open(labels_file, "r", encoding="utf-8") as fobj: |
|
labels = {} |
|
for label in fobj.readlines(): |
|
label = label.strip().split(";") |
|
labels[label[0]] = label[1] |
|
|
|
with open(annotation_file, "r", encoding="utf-8") as fobj: |
|
annotations = json.load(fobj) |
|
for annotation in annotations: |
|
if "template" in annotation: |
|
annotation["template"] = annotation["template"].replace("[", "").replace("]", "") |
|
if labels: |
|
annotation["template"] = labels[annotation["id"]] |
|
data[annotation["id"]] = annotation |
|
|
|
idx = 0 |
|
for path, file in video_files: |
|
video_id = os.path.splitext(os.path.split(path)[1])[0] |
|
|
|
if video_id not in data: |
|
continue |
|
|
|
info = data[video_id] |
|
yield idx, { |
|
"video_id": video_id, |
|
"video": file, |
|
"placeholders": info.get("placeholders", []), |
|
"label": info["template"], |
|
"text": info["label"] if "label" in info else -1 |
|
} |
|
|
|
idx += 1 |
|
|