thomasw21 commited on
Commit
622d8d0
·
1 Parent(s): da3e34c

Test out arrowBuilder

Browse files
Files changed (1) hide show
  1. pmd.py +169 -157
pmd.py CHANGED
@@ -12,7 +12,6 @@
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
15
- """Wikipedia-based Image Text (WIT) Dataset is a large multimodal multilingual dataset"""
16
  import json
17
  import re
18
  import sqlite3
@@ -22,15 +21,16 @@ from hashlib import md5
22
  from multiprocessing import Pool
23
  from pathlib import Path
24
  from typing import Any, Dict, List, Optional
 
25
 
26
  from datetime import datetime
27
  from urllib.parse import unquote_plus
28
 
29
- # TODO: @thomasw21
30
  import datasets
31
  from datasets import load_dataset, Dataset
32
  from langdetect import detect
33
 
 
34
  _CITATION = """"""
35
 
36
  # TODO: @thomasw21
@@ -74,7 +74,7 @@ class BaseLoader:
74
  self.split = split
75
 
76
  @abstractmethod
77
- def _generate_examples(self):
78
  raise NotImplementedError()
79
 
80
 
@@ -93,7 +93,6 @@ class DatasetsLoader(BaseLoader):
93
  self.dataset_name = dataset_name
94
  self.config_name = config_name
95
  self.num_proc = num_proc
96
- print(self.num_proc)
97
  # # In order to not have memory explode we define a batch size per proc
98
  # self.batch_size_per_proc = batch_size // self.num_proc
99
  # assert self.batch_size_per_proc >= 1
@@ -101,55 +100,48 @@ class DatasetsLoader(BaseLoader):
101
  self.batch_size_per_proc = batch_size
102
 
103
  @abstractmethod
104
- def cast_to_pmd_features(self, row: Dict) -> List[Dict[str, Any]]:
105
  """Return list of caster rows. Casted row are either PMD features"""
106
  raise NotImplementedError()
107
 
108
- def convert_batch_to_list_of_rows(self, batch: Dict) -> List[Dict[str, Any]]:
109
- # batch_size can be different to self.batch_size, ie due to last batch
110
- batch_size = len(next(iter(batch.values())))
111
- column_names = list(batch.keys())
112
- return [
113
- {column_name: batch[column_name][i] for column_name in column_names}
114
- for i in range(batch_size)
115
- ]
116
 
117
- def _generate_rows_casted_pmd_features(self, batch_start: int, dset: Dataset):
118
  dataset_size = len(dset)
119
  batch_end = min(batch_start + self.batch_size_per_proc, dataset_size)
120
  batch = dset[batch_start:batch_end]
121
- rows = self.convert_batch_to_list_of_rows(batch)
122
 
123
- rows_casted_pmd_features = []
124
- for row in rows:
125
- rows_casted_pmd_features += self.cast_to_pmd_features(row)
126
- return rows_casted_pmd_features
127
-
128
- def _generate_examples(self):
129
  dataset = load_dataset(self.dataset_name, self.config_name, split=self.split)
130
  dataset_size = len(dataset)
131
 
132
  # load batches and yield individual rows
133
  if self.num_proc == 1:
134
  for batch_start in range(0, dataset_size, self.batch_size_per_proc):
135
- rows_casted_pmd_features = self._generate_rows_casted_pmd_features(dset=dataset, batch_start=batch_start)
136
- for row_casted_pmd_features in rows_casted_pmd_features:
137
- yield row_casted_pmd_features
 
138
 
139
  # Parallel version
140
  else:
141
  assert self.num_proc > 1
142
  with Pool(self.num_proc) as pool:
143
- # TODO @thomasw21 figure out if we care about imap.
144
- batch_iterator = pool.imap_unordered(
145
- partial(self._generate_rows_casted_pmd_features, dset=dataset),
146
  range(0, dataset_size, self.batch_size_per_proc),
147
  )
148
- for rows_casted_pmd_features in batch_iterator:
149
- # DEBUG in order to know how fast we get the batches
150
- print("hello")
151
- for row_casted_pmd_features in rows_casted_pmd_features:
152
- yield row_casted_pmd_features
153
 
154
 
155
  class BaseLoaderWithDLManager(BaseLoader):
@@ -164,11 +156,11 @@ class BaseLoaderWithDLManager(BaseLoader):
164
  raise NotImplementedError()
165
 
166
  @abstractmethod
167
- def _generate_examples_with_kwargs(self, **kwargs):
168
  raise NotImplementedError()
169
 
170
- def _generate_examples(self):
171
- for elt in self._generate_examples_with_kwargs(**self.gen_kwargs):
172
  yield elt
173
 
174
 
@@ -202,9 +194,9 @@ class COCOloader(BaseLoaderWithDLManager):
202
  "base_image_path": image_folder / self._SPLIT_MAP[self.split],
203
  }
204
 
205
- def _generate_examples_with_kwargs(
206
  self, annotation_file: str, base_image_path: Path
207
- ):
208
  with open(annotation_file, "r", encoding="utf-8") as fi:
209
  annotations = json.load(fi)
210
 
@@ -221,20 +213,22 @@ class COCOloader(BaseLoaderWithDLManager):
221
  image_id = image_metadata["id"]
222
  image_path = base_image_path / f"{image_id:012}.jpg"
223
  for annotation in annotations_per_image_id[image_id]:
224
- yield {
225
- "image_url": None,
226
- "image": str(image_path.absolute()),
227
- "texts": [annotation["caption"]],
228
- "source": self.source,
229
- "meta": json.dumps(
230
- {
231
- "image_metadata": image_metadata,
232
- "annotation": annotation,
233
- },
234
- default=json_serializer,
235
- indent=2,
236
- ),
237
- }
 
 
238
 
239
 
240
  class SBULoader(DatasetsLoader):
@@ -244,24 +238,26 @@ class SBULoader(DatasetsLoader):
244
  config_name=None,
245
  split=split,
246
  batch_size=batch_size,
247
- num_proc=1
248
  )
249
 
250
- def cast_to_pmd_features(self, row: Dict) -> List[Dict[str, Any]]:
251
- meta = {k: v for k, v in row.items() if k not in ["image_url", "caption"]}
252
- return [
253
- {
254
- "image_url": row["image_url"],
255
- "image": None,
256
- "texts": [row["caption"]],
257
- "source": self.source,
258
- "meta": json.dumps(
259
- meta,
 
260
  default=json_serializer,
261
  indent=2,
262
- ),
263
- }
264
- ]
 
265
 
266
 
267
  class LocalizedNarrativesOpenImagesLoader(BaseLoaderWithDLManager):
@@ -282,7 +278,7 @@ class LocalizedNarrativesOpenImagesLoader(BaseLoaderWithDLManager):
282
  annotation_file = dl_manager.download(self._ANNOTATION_URLs[self.split])
283
  return {"annotation_file": annotation_file, "split": self.split}
284
 
285
- def _generate_examples_with_kwargs(self, annotation_file: str, split: str):
286
  with open(annotation_file, "r", encoding="utf-8") as fi:
287
  for line in fi:
288
  annotation = json.loads(line)
@@ -327,7 +323,7 @@ class LocalizedNarrativesCOCOLoader(BaseLoaderWithDLManager):
327
  "base_image_path": image_folder / self._SPLIT_MAP[self.split],
328
  }
329
 
330
- def _generate_examples_with_kwargs(
331
  self, annotation_file: str, base_image_path: Path
332
  ):
333
  with open(annotation_file, "r", encoding="utf-8") as fi:
@@ -389,7 +385,7 @@ class LocalizedNarrativesFlickr30kLoader(BaseLoaderWithDLManager):
389
  dataset can then be loaded using the following command `datasets.load_dataset("pmd", data_dir="<path/to/folder>")`.
390
  """
391
 
392
- def _generate_examples_with_kwargs(
393
  self, annotation_file: str, base_image_path: Path
394
  ):
395
  with open(annotation_file, "r", encoding="utf-8") as fi:
@@ -438,7 +434,7 @@ class LocalizedNarrativesADE20kLoader(BaseLoaderWithDLManager):
438
  "base_image_path": image_base_dir / self._SPLIT_MAP[self.split],
439
  }
440
 
441
- def _generate_examples_with_kwargs(
442
  self, annotation_file: str, base_image_path: Path
443
  ):
444
  with open(annotation_file, "r", encoding="utf-8") as fi:
@@ -466,18 +462,22 @@ class VisualGenomeLoader(DatasetsLoader):
466
  config_name="region_descriptions_v1.2.0",
467
  split=split,
468
  batch_size=batch_size,
469
- num_proc=num_proc
470
  )
471
 
472
- def cast_to_pmd_features(self, row: Dict) -> List[Dict[str, Any]]:
473
- meta = {k: v for k, v in row.items() if k not in ["image", "regions"]}
474
- image = row["image"]
475
- # Maybe I need to load this into memory
476
- image.load()
477
- rows = [
 
 
 
 
 
 
478
  {
479
- "image_url": None,
480
- # TODO @thomasw21 I believe this is slow as hell
481
  "image": image.crop(
482
  (
483
  region["x"],
@@ -486,18 +486,20 @@ class VisualGenomeLoader(DatasetsLoader):
486
  region["y"] + region["height"],
487
  )
488
  ),
489
- "texts": [region["phrase"]],
 
490
  "source": self.source,
491
- "meta": json.dumps(
492
- meta,
493
- default=json_serializer,
494
- indent=2,
495
- ),
496
  }
497
- for region in row["regions"]
 
 
 
498
  ]
499
- image.close()
500
- return rows
 
 
501
 
502
 
503
  class WITLoader(DatasetsLoader):
@@ -507,32 +509,34 @@ class WITLoader(DatasetsLoader):
507
  config_name=None,
508
  split=split,
509
  batch_size=batch_size,
510
- num_proc=1
511
  )
512
 
513
- def cast_to_pmd_features(self, row: Dict) -> List[Dict[str, Any]]:
514
- meta = {k: v for k, v in row.items() if k not in ["image_url"]}
515
- return [
516
- {
517
- "image_url": row["image_url"],
518
- "image": None,
519
- "texts": [
520
- row[caption_name]
521
- # TODO @thomasw21 figure out which one we should choose
522
- for caption_name in [
523
- "caption_reference_description",
524
- "context_section_description",
525
- "caption_attribution_description",
526
- ]
527
- ],
528
- "source": self.source,
529
- "meta": json.dumps(
530
- meta,
 
531
  default=json_serializer,
532
  indent=2,
533
- ),
534
- }
535
- ]
 
536
 
537
 
538
  class ConceptualCaptions(DatasetsLoader):
@@ -542,24 +546,26 @@ class ConceptualCaptions(DatasetsLoader):
542
  config_name="unlabeled",
543
  split=split,
544
  batch_size=batch_size,
545
- num_proc=1
546
  )
547
 
548
- def cast_to_pmd_features(self, row: Dict) -> List[Dict[str, Any]]:
549
- meta = {k: v for k, v in row.items() if k not in ["image_url", "caption"]}
550
- return [
551
- {
552
- "image_url": row["image_url"],
553
- "image": None,
554
- "texts": [row["caption"]],
555
- "source": self.source,
556
- "meta": json.dumps(
557
- meta,
 
558
  default=json_serializer,
559
  indent=2,
560
- ),
561
- }
562
- ]
 
563
 
564
 
565
  class Conceptual12MLoader(DatasetsLoader):
@@ -569,24 +575,26 @@ class Conceptual12MLoader(DatasetsLoader):
569
  config_name=None,
570
  split=split,
571
  batch_size=batch_size,
572
- num_proc=1
573
  )
574
 
575
- def cast_to_pmd_features(self, row):
576
- meta = {k: v for k, v in row.items() if k not in ["image_url", "caption"]}
577
- return [
578
- {
579
- "image_url": row["image_url"],
580
- "image": None,
581
- "texts": [row["caption"]],
582
- "source": self.source,
583
- "meta": json.dumps(
584
- meta,
 
585
  default=json_serializer,
586
  indent=2,
587
- ),
588
- }
589
- ]
 
590
 
591
 
592
  class RedCapsLoader(DatasetsLoader):
@@ -596,25 +604,28 @@ class RedCapsLoader(DatasetsLoader):
596
  config_name="all",
597
  split=split,
598
  batch_size=batch_size,
599
- num_proc=1
600
  )
601
 
602
- def cast_to_pmd_features(self, row: Dict) -> List[Dict[str, Any]]:
603
- meta = {k: v for k, v in row.items() if k not in ["image_url", "raw_caption"]}
604
- return [
605
- {
606
- "image_url": row["image_url"],
607
- "image": None,
608
- # TODO @thomasw21
609
- "texts": [row["raw_caption"]],
610
- "source": self.source,
611
- "meta": json.dumps(
612
- meta,
 
 
613
  default=json_serializer,
614
  indent=2,
615
- ),
616
- }
617
- ]
 
618
 
619
 
620
  class YFCC100MLoader(BaseLoaderWithDLManager):
@@ -717,7 +728,7 @@ class YFCC100MLoader(BaseLoaderWithDLManager):
717
  break
718
  return record_text
719
 
720
- def _generate_examples_with_kwargs(self, sql_file: str):
721
  # query records command
722
  sql_command = f"select {', '.join(self._COLUMNS)} from yfcc100m_dataset"
723
 
@@ -792,7 +803,8 @@ class PMDConfig(datasets.BuilderConfig):
792
  self.num_proc = num_proc
793
 
794
 
795
- class PMD(datasets.GeneratorBasedBuilder):
 
796
  """Builder for Open Images subset of PMD."""
797
 
798
  BUILDER_CONFIG_CLASS = PMDConfig
@@ -836,7 +848,7 @@ class PMD(datasets.GeneratorBasedBuilder):
836
  VisualGenomeLoader(
837
  split=split_name,
838
  batch_size=self.config.datasets_batch_size,
839
- num_proc=self.config.num_proc
840
  ),
841
  # WITLoader(
842
  # split=split_name,
@@ -861,9 +873,9 @@ class PMD(datasets.GeneratorBasedBuilder):
861
  for split_name in [datasets.Split.TRAIN]
862
  ]
863
 
864
- def _generate_examples(self, loaders: List[BaseLoader]):
865
  idx = 0
866
  for loader in loaders:
867
- for elt in loader._generate_examples():
868
  yield idx, elt
869
  idx += 1
 
12
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
  # See the License for the specific language governing permissions and
14
  # limitations under the License.
 
15
  import json
16
  import re
17
  import sqlite3
 
21
  from multiprocessing import Pool
22
  from pathlib import Path
23
  from typing import Any, Dict, List, Optional
24
+ import pyarrow as pa
25
 
26
  from datetime import datetime
27
  from urllib.parse import unquote_plus
28
 
 
29
  import datasets
30
  from datasets import load_dataset, Dataset
31
  from langdetect import detect
32
 
33
+ # TODO: @thomasw21
34
  _CITATION = """"""
35
 
36
  # TODO: @thomasw21
 
74
  self.split = split
75
 
76
  @abstractmethod
77
+ def _generate_batches(self):
78
  raise NotImplementedError()
79
 
80
 
 
93
  self.dataset_name = dataset_name
94
  self.config_name = config_name
95
  self.num_proc = num_proc
 
96
  # # In order to not have memory explode we define a batch size per proc
97
  # self.batch_size_per_proc = batch_size // self.num_proc
98
  # assert self.batch_size_per_proc >= 1
 
100
  self.batch_size_per_proc = batch_size
101
 
102
  @abstractmethod
103
+ def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
104
  """Return list of caster rows. Casted row are either PMD features"""
105
  raise NotImplementedError()
106
 
107
+ # def convert_batch_to_list_of_rows(self, batch: Dict) -> List[Dict[str, Any]]:
108
+ # # batch_size can be different to self.batch_size, ie due to last batch
109
+ # batch_size = len(next(iter(batch.values())))
110
+ # column_names = list(batch.keys())
111
+ # return [
112
+ # {column_name: batch[column_name][i] for column_name in column_names}
113
+ # for i in range(batch_size)
114
+ # ]
115
 
116
+ def _generate_batch_table(self, batch_start: int, dset: Dataset) -> pa.Table:
117
  dataset_size = len(dset)
118
  batch_end = min(batch_start + self.batch_size_per_proc, dataset_size)
119
  batch = dset[batch_start:batch_end]
120
+ return pa.table(self.cast_to_pmd_features(batch))
121
 
122
+ def _generate_batches(self):
 
 
 
 
 
123
  dataset = load_dataset(self.dataset_name, self.config_name, split=self.split)
124
  dataset_size = len(dataset)
125
 
126
  # load batches and yield individual rows
127
  if self.num_proc == 1:
128
  for batch_start in range(0, dataset_size, self.batch_size_per_proc):
129
+ batch_casted_pmd_features = self._generate_batch_table(
130
+ dset=dataset, batch_start=batch_start
131
+ )
132
+ yield batch_casted_pmd_features
133
 
134
  # Parallel version
135
  else:
136
  assert self.num_proc > 1
137
  with Pool(self.num_proc) as pool:
138
+ # TODO @thomasw21 figure out if we care about imap / imap_unordered
139
+ batch_iterator = pool.imap(
140
+ partial(self._generate_batch_table, dset=dataset),
141
  range(0, dataset_size, self.batch_size_per_proc),
142
  )
143
+ for batch_casted_pmd_features in batch_iterator:
144
+ yield batch_casted_pmd_features
 
 
 
145
 
146
 
147
  class BaseLoaderWithDLManager(BaseLoader):
 
156
  raise NotImplementedError()
157
 
158
  @abstractmethod
159
+ def _generate_examples_with_kwargs(self, **kwargs) -> pa.Table:
160
  raise NotImplementedError()
161
 
162
+ def _generate_batches(self):
163
+ for elt in self._generate_batches_with_kwargs(**self.gen_kwargs):
164
  yield elt
165
 
166
 
 
194
  "base_image_path": image_folder / self._SPLIT_MAP[self.split],
195
  }
196
 
197
+ def _generate_batches_with_kwargs(
198
  self, annotation_file: str, base_image_path: Path
199
+ ) -> pa.Table:
200
  with open(annotation_file, "r", encoding="utf-8") as fi:
201
  annotations = json.load(fi)
202
 
 
213
  image_id = image_metadata["id"]
214
  image_path = base_image_path / f"{image_id:012}.jpg"
215
  for annotation in annotations_per_image_id[image_id]:
216
+ yield pa.table(
217
+ {
218
+ "image_url": None,
219
+ "image": str(image_path.absolute()),
220
+ "texts": [annotation["caption"]],
221
+ "source": self.source,
222
+ "meta": json.dumps(
223
+ {
224
+ "image_metadata": image_metadata,
225
+ "annotation": annotation,
226
+ },
227
+ default=json_serializer,
228
+ indent=2,
229
+ ),
230
+ }
231
+ )
232
 
233
 
234
  class SBULoader(DatasetsLoader):
 
238
  config_name=None,
239
  split=split,
240
  batch_size=batch_size,
241
+ num_proc=1,
242
  )
243
 
244
+ def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
245
+ metas = {k: v for k, v in batch.items() if k not in ["image_url", "caption"]}
246
+ batch_size = len(next(iter(batch.values())))
247
+ return {
248
+ "image_url": batch["image_url"],
249
+ "image": [None] * batch_size,
250
+ "texts": [[caption] for caption in batch["caption"]],
251
+ "source": [self.source] * batch_size,
252
+ "meta": [
253
+ json.dumps(
254
+ {key: value[batch_id] for key, value in metas.items()},
255
  default=json_serializer,
256
  indent=2,
257
+ )
258
+ for batch_id in range(batch_size)
259
+ ],
260
+ }
261
 
262
 
263
  class LocalizedNarrativesOpenImagesLoader(BaseLoaderWithDLManager):
 
278
  annotation_file = dl_manager.download(self._ANNOTATION_URLs[self.split])
279
  return {"annotation_file": annotation_file, "split": self.split}
280
 
281
+ def _generate_batches_with_kwargs(self, annotation_file: str, split: str):
282
  with open(annotation_file, "r", encoding="utf-8") as fi:
283
  for line in fi:
284
  annotation = json.loads(line)
 
323
  "base_image_path": image_folder / self._SPLIT_MAP[self.split],
324
  }
325
 
326
+ def _generate_batches_with_kwargs(
327
  self, annotation_file: str, base_image_path: Path
328
  ):
329
  with open(annotation_file, "r", encoding="utf-8") as fi:
 
385
  dataset can then be loaded using the following command `datasets.load_dataset("pmd", data_dir="<path/to/folder>")`.
386
  """
387
 
388
+ def _generate_batches_with_kwargs(
389
  self, annotation_file: str, base_image_path: Path
390
  ):
391
  with open(annotation_file, "r", encoding="utf-8") as fi:
 
434
  "base_image_path": image_base_dir / self._SPLIT_MAP[self.split],
435
  }
436
 
437
+ def _generate_batches_with_kwargs(
438
  self, annotation_file: str, base_image_path: Path
439
  ):
440
  with open(annotation_file, "r", encoding="utf-8") as fi:
 
462
  config_name="region_descriptions_v1.2.0",
463
  split=split,
464
  batch_size=batch_size,
465
+ num_proc=num_proc,
466
  )
467
 
468
+ def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
469
+ metas = {k: v for k, v in batch.items() if k not in ["image_url", "caption"]}
470
+ input_batch_size = len(next(iter(batch.values())))
471
+ serialized_metas = [
472
+ json.dumps(
473
+ {key: value[batch_id] for key, value in metas.items()},
474
+ default=json_serializer,
475
+ indent=2,
476
+ )
477
+ for batch_id in range(input_batch_size)
478
+ ]
479
+ output_list_rows = [
480
  {
 
 
481
  "image": image.crop(
482
  (
483
  region["x"],
 
486
  region["y"] + region["height"],
487
  )
488
  ),
489
+ "image_url": None,
490
+ "texts": [phrase],
491
  "source": self.source,
492
+ "meta": serialized_meta,
 
 
 
 
493
  }
494
+ for image, regions, phrase, serialized_meta in zip(
495
+ batch["image"], batch["regions"], batch["phrase"], serialized_metas
496
+ )
497
+ for region in regions
498
  ]
499
+ return {
500
+ column_name: [row[column_name] for row in output_list_rows]
501
+ for column_name in ["image_url", "image", "texts", "source", "meta"]
502
+ }
503
 
504
 
505
  class WITLoader(DatasetsLoader):
 
509
  config_name=None,
510
  split=split,
511
  batch_size=batch_size,
512
+ num_proc=1,
513
  )
514
 
515
+ def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
516
+ metas = {k: v for k, v in batch.items() if k not in ["image_url"]}
517
+ batch_size = len(next(iter(batch.values())))
518
+ return {
519
+ "image_url": batch["image_url"],
520
+ "image": [None] * batch_size,
521
+ "texts": [
522
+ texts
523
+ # TODO @thomasw21 figure out which one we should choose
524
+ for texts in zip(
525
+ batch["caption_reference_description"],
526
+ batch["context_section_description"],
527
+ batch["caption_attribution_description"],
528
+ )
529
+ ],
530
+ "source": [self.source] * batch_size,
531
+ "meta": [
532
+ json.dumps(
533
+ {key: value[batch_id] for key, value in metas.items()},
534
  default=json_serializer,
535
  indent=2,
536
+ )
537
+ for batch_id in range(batch_size)
538
+ ],
539
+ }
540
 
541
 
542
  class ConceptualCaptions(DatasetsLoader):
 
546
  config_name="unlabeled",
547
  split=split,
548
  batch_size=batch_size,
549
+ num_proc=1,
550
  )
551
 
552
+ def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
553
+ metas = {k: v for k, v in batch.items() if k not in ["image_url", "caption"]}
554
+ batch_size = len(next(iter(batch.values())))
555
+ return {
556
+ "image_url": batch["image_url"],
557
+ "image": [None] * batch_size,
558
+ "texts": [[caption] for caption in batch["caption"]],
559
+ "source": [self.source] * batch_size,
560
+ "meta": [
561
+ json.dumps(
562
+ {key: value[batch_id] for key, value in metas.items()},
563
  default=json_serializer,
564
  indent=2,
565
+ )
566
+ for batch_id in range(batch_size)
567
+ ],
568
+ }
569
 
570
 
571
  class Conceptual12MLoader(DatasetsLoader):
 
575
  config_name=None,
576
  split=split,
577
  batch_size=batch_size,
578
+ num_proc=1,
579
  )
580
 
581
+ def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
582
+ metas = {k: v for k, v in batch.items() if k not in ["image_url", "caption"]}
583
+ batch_size = len(next(iter(batch.values())))
584
+ return {
585
+ "image_url": batch["image_url"],
586
+ "image": [None] * batch_size,
587
+ "texts": [[caption] for caption in batch["caption"]],
588
+ "source": [self.source] * batch_size,
589
+ "meta": [
590
+ json.dumps(
591
+ {key: value[batch_id] for key, value in metas.items()},
592
  default=json_serializer,
593
  indent=2,
594
+ )
595
+ for batch_id in range(batch_size)
596
+ ],
597
+ }
598
 
599
 
600
  class RedCapsLoader(DatasetsLoader):
 
604
  config_name="all",
605
  split=split,
606
  batch_size=batch_size,
607
+ num_proc=1,
608
  )
609
 
610
+ def cast_to_pmd_features(self, batch: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
611
+ metas = {
612
+ k: v for k, v in batch.items() if k not in ["image_url", "raw_caption"]
613
+ }
614
+ batch_size = len(next(iter(batch.values())))
615
+ return {
616
+ "image_url": batch["image_url"],
617
+ "image": [None] * batch_size,
618
+ "texts": [[caption] for caption in batch["raw_caption"]],
619
+ "source": [self.source] * batch_size,
620
+ "meta": [
621
+ json.dumps(
622
+ {key: value[batch_id] for key, value in metas.items()},
623
  default=json_serializer,
624
  indent=2,
625
+ )
626
+ for batch_id in range(batch_size)
627
+ ],
628
+ }
629
 
630
 
631
  class YFCC100MLoader(BaseLoaderWithDLManager):
 
728
  break
729
  return record_text
730
 
731
+ def _generate_batches_with_kwargs(self, sql_file: str):
732
  # query records command
733
  sql_command = f"select {', '.join(self._COLUMNS)} from yfcc100m_dataset"
734
 
 
803
  self.num_proc = num_proc
804
 
805
 
806
+ # TODO @thomasw21 ArrowBasedBuilder to be able to return batches
807
+ class PMD(datasets.ArrowBasedBuilder):
808
  """Builder for Open Images subset of PMD."""
809
 
810
  BUILDER_CONFIG_CLASS = PMDConfig
 
848
  VisualGenomeLoader(
849
  split=split_name,
850
  batch_size=self.config.datasets_batch_size,
851
+ num_proc=self.config.num_proc,
852
  ),
853
  # WITLoader(
854
  # split=split_name,
 
873
  for split_name in [datasets.Split.TRAIN]
874
  ]
875
 
876
+ def _generate_tables(self, loaders: List[BaseLoader]):
877
  idx = 0
878
  for loader in loaders:
879
+ for elt in loader._generate_batches():
880
  yield idx, elt
881
  idx += 1