|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""EPIC-KITCHENS-100 is a large-scale dataset in first-person (egocentric) vision; multi-faceted, audio-visual, |
|
non-scripted recordings in native environments - i.e. the wearers' homes, capturing all daily activities |
|
in the kitchen over multiple days. Annotations are collected using a novel 'Pause-and-Talk' narration interface. |
|
|
|
EPIC-KITCHENS-100 is an extension of the EPIC-KITCHENS dataset released in 2018, to 100 hours of footage.""" |
|
|
|
import os |
|
import csv |
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@ARTICLE{Damen2021RESCALING, |
|
title={Rescaling Egocentric Vision: Collection, Pipeline and Challenges for EPIC-KITCHENS-100}, |
|
author={Damen, Dima and Doughty, Hazel and Farinella, Giovanni Maria and and Furnari, Antonino |
|
and Ma, Jian and Kazakos, Evangelos and Moltisanti, Davide and Munro, Jonathan |
|
and Perrett, Toby and Price, Will and Wray, Michael}, |
|
journal = {International Journal of Computer Vision (IJCV)}, |
|
year = {2021}, |
|
Url = {https://doi.org/10.1007/s11263-021-01531-2} |
|
} |
|
@INPROCEEDINGS{Damen2018EPICKITCHENS, |
|
title={Scaling Egocentric Vision: The EPIC-KITCHENS Dataset}, |
|
author={Damen, Dima and Doughty, Hazel and Farinella, Giovanni Maria and Fidler, Sanja and |
|
Furnari, Antonino and Kazakos, Evangelos and Moltisanti, Davide and Munro, Jonathan |
|
and Perrett, Toby and Price, Will and Wray, Michael}, |
|
booktitle={European Conference on Computer Vision (ECCV)}, |
|
year={2018} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
EPIC-KITCHENS-100 is a large-scale dataset in first-person (egocentric) vision; multi-faceted, audio-visual, |
|
non-scripted recordings in native environments - i.e. the wearers' homes, capturing all daily activities |
|
in the kitchen over multiple days. Annotations are collected using a novel 'Pause-and-Talk' narration interface. |
|
|
|
EPIC-KITCHENS-100 is an extension of the EPIC-KITCHENS dataset released in 2018, to 100 hours of footage. |
|
""" |
|
|
|
_HOMEPAGE = "https://epic-kitchens.github.io/2022" |
|
|
|
_LICENSE = "CC BY-NC 4.0" |
|
|
|
_URL_BASE = "https://raw.githubusercontent.com/epic-kitchens/epic-kitchens-100-annotations/master/" |
|
|
|
|
|
_VARIANTS = [ |
|
"action_recognition", |
|
"multi_instance_retrieval", |
|
"unsupervised_domain_adaptation", |
|
] |
|
class EpicKitchens100(datasets.GeneratorBasedBuilder): |
|
"""Epic Kitchens""" |
|
|
|
BUILDER_CONFIGS = [datasets.BuilderConfig(name) for name in _VARIANTS] |
|
DEFAULT_CONFIG_NAME = "action_recognition" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features( |
|
{ |
|
"extended": datasets.Value("bool"), |
|
"narration_id": datasets.Value("string"), |
|
"participant_id": datasets.Value("string"), |
|
"video_id": datasets.Value("string"), |
|
"path": datasets.Value("string"), |
|
"narration_timestamp": datasets.Value("string"), |
|
"start_timestamp": datasets.Value("string"), |
|
"stop_timestamp": datasets.Value("string"), |
|
"narration": datasets.Value("string"), |
|
"verb": datasets.Value("string"), |
|
"verb_class": datasets.Value("int32"), |
|
|
|
"noun": datasets.Value("string"), |
|
"noun_class": datasets.Value("string"), |
|
|
|
"all_nouns": datasets.features.Sequence(datasets.Value("string")), |
|
"all_noun_classes": datasets.features.Sequence(datasets.Value("int32")), |
|
} |
|
), |
|
supervised_keys=None, |
|
homepage=_HOMEPAGE, |
|
citation=_CITATION, |
|
license=_LICENSE |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
urls = { |
|
"action_recognition": { |
|
"train": os.path.join(_URL_BASE, "EPIC_100_train.csv"), |
|
"validation": os.path.join(_URL_BASE, "EPIC_100_validation.csv"), |
|
"test": os.path.join(_URL_BASE, "EPIC_100_test_timestamps.csv"), |
|
}, |
|
"multi_instance_retrieval": { |
|
"train": os.path.join(_URL_BASE, "retrieval_annotations/EPIC_100_retrieval_train.csv"), |
|
"test": os.path.join(_URL_BASE, "retrieval_annotations/EPIC_100_retrieval_test.csv") |
|
}, |
|
"unsupervised_domain_adaptation": { |
|
"source_train": os.path.join(_URL_BASE, "UDA_annotations/EPIC_100_uda_source_train.csv"), |
|
"target_train": os.path.join(_URL_BASE, "UDA_annotations/EPIC_100_uda_target_train_timestamps.csv"), |
|
"source_test": os.path.join(_URL_BASE, "UDA_annotations/EPIC_100_uda_source_test_timestamps.csv"), |
|
"target_test": os.path.join(_URL_BASE, "UDA_annotations/EPIC_100_uda_target_test_timestamps.csv"), |
|
"source_val": os.path.join(_URL_BASE, "UDA_annotations/EPIC_100_uda_source_val.csv"), |
|
"target_val": os.path.join(_URL_BASE, "UDA_annotations/EPIC_100_uda_target_val.csv"), |
|
} |
|
} |
|
|
|
files_path = dl_manager.download_and_extract(urls) |
|
|
|
if self.config.name == "unsupervised_domain_adaptation": |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split(n_), |
|
gen_kwargs={ |
|
"annotations": files_path[self.config.name][n_], |
|
"split": n_, |
|
}, |
|
) |
|
for n_ in ["source_train", "target_train", "source_test", "target_test", "source_val", "target_val"] |
|
] |
|
return splits |
|
else: |
|
splits = [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotations": files_path[self.config.name]["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotations": files_path[self.config.name]["test"], |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
if self.config.name == "action_recognition": |
|
splits.append( |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annotations": files_path[self.config.name]["validation"], |
|
"split": "validation", |
|
}, |
|
), |
|
) |
|
return splits |
|
|
|
def _generate_examples(self, annotations, split): |
|
"""This function returns the examples.""" |
|
with open(annotations, encoding="utf-8") as csv_file: |
|
csv_reader = csv.reader(csv_file, delimiter=",") |
|
next(csv_reader) |
|
for idx, row in enumerate(csv_reader): |
|
narration_id, participant_id, video_id, narration_timestamp, start_timestamp, stop_timestamp = row[:6] |
|
if (self.config.name in ["action_recognition", "multi_instance_retrieval"] and split in ["train", "validation"]) or \ |
|
(self.config.name == "unsupervised_domain_adaptation" and split in ["source_train", "source_val", "target_val"]): |
|
|
|
|
|
narration, verb, verb_class, noun, noun_class, all_nouns, all_noun_classes = row[8:15] |
|
all_nouns = eval(all_nouns) |
|
all_noun_classes = eval(all_noun_classes) |
|
else: |
|
narration = verb = noun = "" |
|
verb_class = noun_class = -1 |
|
all_nouns = all_noun_classes = [] |
|
extended = len(narration_id.split("_")[1]) == 3 |
|
if extended: |
|
path = f"EPIC-KITCHENS/{participant_id}/videos/{video_id}.MP4" |
|
else: |
|
path = f"EPIC_KITCHENS_2018/videos/{split}/{participant_id}/{video_id}.MP4" |
|
|
|
yield idx, { |
|
"extended": extended, |
|
"narration_id": narration_id, |
|
"participant_id": participant_id, |
|
"video_id": video_id, |
|
"path": path, |
|
"narration_timestamp": narration_timestamp, |
|
"start_timestamp": start_timestamp, |
|
"stop_timestamp": stop_timestamp, |
|
"narration": narration, |
|
"verb": verb, |
|
"verb_class": verb_class, |
|
"noun": noun, |
|
"noun_class": noun_class, |
|
"all_nouns": all_nouns, |
|
"all_noun_classes": all_noun_classes, |
|
} |
|
|