|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Caltech 101 loading script""" |
|
|
|
|
|
from __future__ import annotations |
|
|
|
from pathlib import Path |
|
|
|
import datasets |
|
import numpy as np |
|
import scipy.io |
|
from datasets.tasks import ImageClassification |
|
|
|
_CITATION = """\ |
|
@article{FeiFei2004LearningGV, |
|
title={Learning Generative Visual Models from Few Training Examples: An Incremental Bayesian Approach Tested on 101 Object Categories}, |
|
author={Li Fei-Fei and Rob Fergus and Pietro Perona}, |
|
journal={Computer Vision and Pattern Recognition Workshop}, |
|
year={2004}, |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
Pictures of objects belonging to 101 categories. |
|
About 40 to 800 images per category. |
|
Most categories have about 50 images. |
|
Collected in September 2003 by Fei-Fei Li, Marco Andreetto, and Marc'Aurelio Ranzato. |
|
The size of each image is roughly 300 x 200 pixels. |
|
""" |
|
|
|
_HOMEPAGE = "https://data.caltech.edu/records/20086" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
_DATA_URL = "caltech-101.zip" |
|
|
|
_NAMES = [ |
|
"accordion", |
|
"airplanes", |
|
"anchor", |
|
"ant", |
|
"background_google", |
|
"barrel", |
|
"bass", |
|
"beaver", |
|
"binocular", |
|
"bonsai", |
|
"brain", |
|
"brontosaurus", |
|
"buddha", |
|
"butterfly", |
|
"camera", |
|
"cannon", |
|
"car_side", |
|
"ceiling_fan", |
|
"cellphone", |
|
"chair", |
|
"chandelier", |
|
"cougar_body", |
|
"cougar_face", |
|
"crab", |
|
"crayfish", |
|
"crocodile", |
|
"crocodile_head", |
|
"cup", |
|
"dalmatian", |
|
"dollar_bill", |
|
"dolphin", |
|
"dragonfly", |
|
"electric_guitar", |
|
"elephant", |
|
"emu", |
|
"euphonium", |
|
"ewer", |
|
"faces", |
|
"faces_easy", |
|
"ferry", |
|
"flamingo", |
|
"flamingo_head", |
|
"garfield", |
|
"gerenuk", |
|
"gramophone", |
|
"grand_piano", |
|
"hawksbill", |
|
"headphone", |
|
"hedgehog", |
|
"helicopter", |
|
"ibis", |
|
"inline_skate", |
|
"joshua_tree", |
|
"kangaroo", |
|
"ketch", |
|
"lamp", |
|
"laptop", |
|
"leopards", |
|
"llama", |
|
"lobster", |
|
"lotus", |
|
"mandolin", |
|
"mayfly", |
|
"menorah", |
|
"metronome", |
|
"minaret", |
|
"motorbikes", |
|
"nautilus", |
|
"octopus", |
|
"okapi", |
|
"pagoda", |
|
"panda", |
|
"pigeon", |
|
"pizza", |
|
"platypus", |
|
"pyramid", |
|
"revolver", |
|
"rhino", |
|
"rooster", |
|
"saxophone", |
|
"schooner", |
|
"scissors", |
|
"scorpion", |
|
"sea_horse", |
|
"snoopy", |
|
"soccer_ball", |
|
"stapler", |
|
"starfish", |
|
"stegosaurus", |
|
"stop_sign", |
|
"strawberry", |
|
"sunflower", |
|
"tick", |
|
"trilobite", |
|
"umbrella", |
|
"watch", |
|
"water_lilly", |
|
"wheelchair", |
|
"wild_cat", |
|
"windsor_chair", |
|
"wrench", |
|
"yin_yang", |
|
] |
|
|
|
|
|
|
|
_ANNOTATION_NAMES_MAP = { |
|
"Faces": "Faces_2", |
|
"Faces_easy": "Faces_3", |
|
"Motorbikes": "Motorbikes_16", |
|
"airplanes": "Airplanes_Side_2", |
|
} |
|
|
|
_TRAIN_POINTS_PER_CLASS = 30 |
|
|
|
|
|
class Caltech101(datasets.GeneratorBasedBuilder): |
|
"""Caltech 101 dataset.""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
_BUILDER_CONFIG_WITH_BACKGROUND = datasets.BuilderConfig( |
|
name="with_background_category", |
|
version=VERSION, |
|
description="Dataset containing the 101 categories and the additonnal background one. " |
|
"No annotations.", |
|
) |
|
_BUILDER_CONFIG_WITHOUT_BACKGROUND = datasets.BuilderConfig( |
|
name="without_background_category", |
|
version=VERSION, |
|
description="Dataset containing only the 101 categories and their annotations " |
|
"(object contours and box position).", |
|
) |
|
|
|
BUILDER_CONFIGS = [ |
|
_BUILDER_CONFIG_WITH_BACKGROUND, |
|
_BUILDER_CONFIG_WITHOUT_BACKGROUND, |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == self._BUILDER_CONFIG_WITHOUT_BACKGROUND.name: |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=_NAMES), |
|
"annotation": { |
|
"obj_contour": datasets.features.Array2D( |
|
shape=(2, None), dtype="float64" |
|
), |
|
"box_coord": datasets.features.Array2D( |
|
shape=(1, 4), dtype="int64" |
|
), |
|
}, |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"label": datasets.features.ClassLabel(names=_NAMES), |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
data_root_dir = dl_manager.download_and_extract(_DATA_URL) |
|
img_folder_compress_path = [ |
|
file |
|
for file in dl_manager.iter_files(data_root_dir) |
|
if Path(file).name == "101_ObjectCategories.tar.gz" |
|
][0] |
|
annotations_folder_compress_path = [ |
|
file |
|
for file in dl_manager.iter_files(data_root_dir) |
|
if Path(file).name == "Annotations.tar" |
|
][0] |
|
img_dir = dl_manager.extract(img_folder_compress_path) |
|
annotation_dir = dl_manager.extract(annotations_folder_compress_path) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"img_dir": Path(img_dir) / "101_ObjectCategories", |
|
"annotation_dir": Path(annotation_dir) / "Annotations", |
|
"split": "train", |
|
"config_name": self.config.name, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"img_dir": Path(img_dir) / "101_ObjectCategories", |
|
"annotation_dir": Path(annotation_dir) / "Annotations", |
|
"split": "test", |
|
"config_name": self.config.name, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, img_dir, annotation_dir, split, config_name): |
|
|
|
|
|
|
|
|
|
is_train_split = split == "train" |
|
|
|
rng = np.random.default_rng(1234) |
|
|
|
for class_dir in img_dir.iterdir(): |
|
class_name = class_dir.name |
|
index_codes = [ |
|
image_path.name.split("_")[1][: -len(".jpg")] |
|
for image_path in class_dir.iterdir() |
|
if image_path.name.endswith(".jpg") |
|
] |
|
|
|
|
|
if _TRAIN_POINTS_PER_CLASS > len(index_codes): |
|
raise ValueError( |
|
f"Fewer than {_TRAIN_POINTS_PER_CLASS} ({len(index_codes)}) points in class {class_dir.name}" |
|
) |
|
train_indices = rng.choice( |
|
index_codes, _TRAIN_POINTS_PER_CLASS, replace=False |
|
) |
|
|
|
test_indices = set(index_codes).difference(train_indices) |
|
|
|
indices_to_emit = train_indices if is_train_split else test_indices |
|
|
|
if ( |
|
class_name == "BACKGROUND_Google" |
|
and config_name == self._BUILDER_CONFIG_WITHOUT_BACKGROUND.name |
|
): |
|
print("skip BACKGROUND_Google") |
|
continue |
|
|
|
for indice in indices_to_emit: |
|
record = { |
|
"image": str(class_dir / f"image_{indice}.jpg"), |
|
"label": class_dir.name.lower(), |
|
} |
|
if config_name == self._BUILDER_CONFIG_WITHOUT_BACKGROUND.name: |
|
if class_name in _ANNOTATION_NAMES_MAP: |
|
annotations_class_name = _ANNOTATION_NAMES_MAP[class_name] |
|
else: |
|
annotations_class_name = class_name |
|
data = scipy.io.loadmat( |
|
str( |
|
annotation_dir |
|
/ annotations_class_name |
|
/ f"annotation_{indice}.mat" |
|
) |
|
) |
|
|
|
record["annotation"] = { |
|
"obj_contour": data["obj_contour"], |
|
"box_coord": data["box_coord"], |
|
} |
|
yield f"{class_dir.name.lower()}/{f'image_{indice}.jpg'}", record |
|
|