Add a new configuration in which all the captions associated with an image are listed in a single example (#1)
Browse files- Added a new configuration in which all the captions associated with an image are listed in a single example (69b2bc7c69c8c030098cd22f66d6abfee7384d94)
COCO.py
CHANGED
@@ -82,6 +82,21 @@ _FEATURES = datasets.Features(
|
|
82 |
}
|
83 |
)
|
84 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
85 |
|
86 |
class COCO(datasets.GeneratorBasedBuilder):
|
87 |
"""COCO"""
|
@@ -89,7 +104,14 @@ class COCO(datasets.GeneratorBasedBuilder):
|
|
89 |
VERSION = datasets.Version("1.0.0")
|
90 |
|
91 |
BUILDER_CONFIGS = [
|
92 |
-
datasets.BuilderConfig(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
93 |
]
|
94 |
|
95 |
DEFAULT_CONFIG_NAME = "2014"
|
@@ -97,7 +119,7 @@ class COCO(datasets.GeneratorBasedBuilder):
|
|
97 |
def _info(self):
|
98 |
return datasets.DatasetInfo(
|
99 |
description=_DESCRIPTION,
|
100 |
-
features=_FEATURES,
|
101 |
homepage=_HOMEPAGE,
|
102 |
license=_LICENSE,
|
103 |
citation=_CITATION,
|
@@ -135,6 +157,49 @@ class COCO(datasets.GeneratorBasedBuilder):
|
|
135 |
]
|
136 |
|
137 |
def _generate_examples(self, annotation_file, image_folders, split_key):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
138 |
counter = 0
|
139 |
with open(annotation_file, "r", encoding="utf-8") as fi:
|
140 |
annotations = json.load(fi)
|
|
|
82 |
}
|
83 |
)
|
84 |
|
85 |
+
_FEATURES_CAPTIONS = datasets.Features(
|
86 |
+
{
|
87 |
+
"image": datasets.Image(),
|
88 |
+
"filepath": datasets.Value("string"),
|
89 |
+
"sentids": [datasets.Value("int32")],
|
90 |
+
"filename": datasets.Value("string"),
|
91 |
+
"imgid": datasets.Value("int32"),
|
92 |
+
"split": datasets.Value("string"),
|
93 |
+
"sentences_tokens": [[datasets.Value("string")]],
|
94 |
+
"sentences_raw": [datasets.Value("string")],
|
95 |
+
"sentences_sentid": [datasets.Value("int32")],
|
96 |
+
"cocoid": datasets.Value("int32"),
|
97 |
+
}
|
98 |
+
)
|
99 |
+
|
100 |
|
101 |
class COCO(datasets.GeneratorBasedBuilder):
|
102 |
"""COCO"""
|
|
|
104 |
VERSION = datasets.Version("1.0.0")
|
105 |
|
106 |
BUILDER_CONFIGS = [
|
107 |
+
datasets.BuilderConfig(
|
108 |
+
name="2014", version=VERSION, description="2014 version of COCO with Karpathy annotations and splits"
|
109 |
+
),
|
110 |
+
datasets.BuilderConfig(
|
111 |
+
name="2014_captions",
|
112 |
+
version=VERSION,
|
113 |
+
description="Same as 2014 but with all captions of one image gathered in a single example",
|
114 |
+
),
|
115 |
]
|
116 |
|
117 |
DEFAULT_CONFIG_NAME = "2014"
|
|
|
119 |
def _info(self):
|
120 |
return datasets.DatasetInfo(
|
121 |
description=_DESCRIPTION,
|
122 |
+
features=_FEATURES if self.config.name == "2014" else _FEATURES_CAPTIONS,
|
123 |
homepage=_HOMEPAGE,
|
124 |
license=_LICENSE,
|
125 |
citation=_CITATION,
|
|
|
157 |
]
|
158 |
|
159 |
def _generate_examples(self, annotation_file, image_folders, split_key):
|
160 |
+
if self.config.name == "2014_captions":
|
161 |
+
return self._generate_examples_2014_captions(annotation_file, image_folders, split_key)
|
162 |
+
elif self.config.name == "2014":
|
163 |
+
return self._generate_examples_2014(annotation_file, image_folders, split_key)
|
164 |
+
|
165 |
+
def _generate_examples_2014_captions(self, annotation_file, image_folders, split_key):
|
166 |
+
with open(annotation_file, "r", encoding="utf-8") as fi:
|
167 |
+
annotations = json.load(fi)
|
168 |
+
|
169 |
+
for image_metadata in annotations["images"]:
|
170 |
+
if split_key == "train":
|
171 |
+
if image_metadata["split"] != "train" and image_metadata["split"] != "restval":
|
172 |
+
continue
|
173 |
+
elif split_key == "validation":
|
174 |
+
if image_metadata["split"] != "val":
|
175 |
+
continue
|
176 |
+
elif split_key == "test":
|
177 |
+
if image_metadata["split"] != "test":
|
178 |
+
continue
|
179 |
+
|
180 |
+
if "val2014" in image_metadata["filename"]:
|
181 |
+
image_path = image_folders["validation"] / _SPLIT_MAP["validation"]
|
182 |
+
else:
|
183 |
+
image_path = image_folders["train"] / _SPLIT_MAP["train"]
|
184 |
+
|
185 |
+
image_path = image_path / image_metadata["filename"]
|
186 |
+
|
187 |
+
record = {
|
188 |
+
"image": str(image_path.absolute()),
|
189 |
+
"filepath": image_metadata["filename"],
|
190 |
+
"sentids": image_metadata["sentids"],
|
191 |
+
"filename": image_metadata["filename"],
|
192 |
+
"imgid": image_metadata["imgid"],
|
193 |
+
"split": image_metadata["split"],
|
194 |
+
"cocoid": image_metadata["cocoid"],
|
195 |
+
"sentences_tokens": [caption["tokens"] for caption in image_metadata["sentences"]],
|
196 |
+
"sentences_raw": [caption["raw"] for caption in image_metadata["sentences"]],
|
197 |
+
"sentences_sentid": [caption["sentid"] for caption in image_metadata["sentences"]],
|
198 |
+
}
|
199 |
+
|
200 |
+
yield record["imgid"], record
|
201 |
+
|
202 |
+
def _generate_examples_2014(self, annotation_file, image_folders, split_key):
|
203 |
counter = 0
|
204 |
with open(annotation_file, "r", encoding="utf-8") as fi:
|
205 |
annotations = json.load(fi)
|