|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""COCO""" |
|
import json |
|
import os |
|
from pathlib import Path |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{DBLP:journals/corr/LinMBHPRDZ14, |
|
author = {Tsung{-}Yi Lin and |
|
Michael Maire and |
|
Serge J. Belongie and |
|
Lubomir D. Bourdev and |
|
Ross B. Girshick and |
|
James Hays and |
|
Pietro Perona and |
|
Deva Ramanan and |
|
Piotr Doll{\'{a}}r and |
|
C. Lawrence Zitnick}, |
|
title = {Microsoft {COCO:} Common Objects in Context}, |
|
journal = {CoRR}, |
|
volume = {abs/1405.0312}, |
|
year = {2014}, |
|
url = {http://arxiv.org/abs/1405.0312}, |
|
eprinttype = {arXiv}, |
|
eprint = {1405.0312}, |
|
timestamp = {Mon, 13 Aug 2018 16:48:13 +0200}, |
|
biburl = {https://dblp.org/rec/journals/corr/LinMBHPRDZ14.bib}, |
|
bibsource = {dblp computer science bibliography, https://dblp.org} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
MS COCO is a large-scale object detection, segmentation, and captioning dataset. |
|
COCO has several features: Object segmentation, Recognition in context, Superpixel stuff segmentation, 330K images (>200K labeled), 1.5 million object instances, 80 object categories, 91 stuff categories, 5 captions per image, 250,000 people with keypoints. |
|
""" |
|
|
|
_HOMEPAGE = "https://cocodataset.org/#home" |
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
|
|
_IMAGES_URLS = { |
|
"train": "http://images.cocodataset.org/zips/train2014.zip", |
|
"validation": "http://images.cocodataset.org/zips/val2014.zip", |
|
} |
|
|
|
_KARPATHY_FILES_URL = "https://cs.stanford.edu/people/karpathy/deepimagesent/caption_datasets.zip" |
|
|
|
_SPLIT_MAP = {"train": "train2014", "validation": "val2014"} |
|
|
|
_FEATURES = datasets.Features( |
|
{ |
|
"image": datasets.Image(), |
|
"filepath": datasets.Value("string"), |
|
"sentids": [datasets.Value("int32")], |
|
"filename": datasets.Value("string"), |
|
"imgid": datasets.Value("int32"), |
|
"split": datasets.Value("string"), |
|
"sentences": { |
|
"tokens": [datasets.Value("string")], |
|
"raw": datasets.Value("string"), |
|
"imgid": datasets.Value("int32"), |
|
"sentid": datasets.Value("int32"), |
|
}, |
|
"cocoid": datasets.Value("int32"), |
|
} |
|
) |
|
|
|
|
|
class COCO(datasets.GeneratorBasedBuilder): |
|
"""COCO""" |
|
|
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="2014", version=VERSION, description="2014 version of COCO with Karpathy annotations and splits"), |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "2014" |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=_FEATURES, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
annotation_file = os.path.join(dl_manager.download_and_extract(_KARPATHY_FILES_URL), "dataset_coco.json") |
|
image_folders = {k: Path(v) for k, v in dl_manager.download_and_extract(_IMAGES_URLS).items()} |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"annotation_file": annotation_file, |
|
"image_folders": image_folders, |
|
"split_key": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"annotation_file": annotation_file, |
|
"image_folders": image_folders, |
|
"split_key": "validation", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"annotation_file": annotation_file, |
|
"image_folders": image_folders, |
|
"split_key": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, annotation_file, image_folders, split_key): |
|
counter = 0 |
|
with open(annotation_file, "r", encoding="utf-8") as fi: |
|
annotations = json.load(fi) |
|
|
|
for image_metadata in annotations["images"]: |
|
if split_key == "train": |
|
if image_metadata["split"] != "train" and image_metadata["split"] != "restval": |
|
continue |
|
elif split_key == "validation": |
|
if image_metadata["split"] != "val": |
|
continue |
|
elif split_key == "test": |
|
if image_metadata["split"] != "test": |
|
continue |
|
|
|
if "val2014" in image_metadata["filename"]: |
|
image_path = image_folders["validation"] / _SPLIT_MAP["validation"] |
|
else: |
|
image_path = image_folders["train"] / _SPLIT_MAP["train"] |
|
|
|
image_path = image_path / image_metadata["filename"] |
|
|
|
for caption in image_metadata["sentences"]: |
|
yield counter, { |
|
"image": str(image_path.absolute()), |
|
"filepath": image_metadata["filename"], |
|
"sentids": image_metadata["sentids"], |
|
"filename": image_metadata["filename"], |
|
"imgid": image_metadata["imgid"], |
|
"split": image_metadata["split"], |
|
"sentences": { |
|
"tokens": caption["tokens"], |
|
"raw": caption["raw"], |
|
"imgid": caption["imgid"], |
|
"sentid": caption["sentid"], |
|
}, |
|
"cocoid": image_metadata["cocoid"], |
|
} |
|
counter += 1 |
|
|