|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
""" Dungeons and Data: A Large-Scale NetHack Dataset. """ |
|
|
|
import h5py |
|
import json |
|
import os |
|
import datasets |
|
|
|
|
|
_CITATION = """\ |
|
@article{hambro2022dungeons, |
|
title={Dungeons and Data: A Large-Scale NetHack Dataset}, |
|
author={Hambro, Eric and Raileanu, Roberta and Rothermel, Danielle and Mella, Vegard and Rockt{\"a}schel, Tim and K{\"u}ttler, Heinrich and Murray, Naila}, |
|
journal={arXiv preprint arXiv:2211.00539}, |
|
year={2022} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
3 billion state-action-score transitions from 100,000 trajectories collected from the symbolic bot winner of the NetHack Challenge 2021. |
|
""" |
|
|
|
_HOMEPAGE = "" |
|
|
|
_LICENSE = "" |
|
|
|
_URLS = { |
|
"data": [f"data/{i}.hdf5" for i in range(1, 6)], |
|
"metadata": [f"metadata/{i}.json" for i in range(1, 6)], |
|
} |
|
|
|
class NleHfDataset(datasets.GeneratorBasedBuilder): |
|
"""Dungeons and Data: A Large-Scale NetHack Dataset.""" |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
datasets.BuilderConfig(name="data", version=VERSION, description="Data for all episodes"), |
|
datasets.BuilderConfig(name="metadata", version=VERSION, description="Metadata for all episodes"), |
|
] |
|
DEFAULT_CONFIG_NAME = "metadata" |
|
|
|
def _info(self): |
|
if self.config.name == "metadata": |
|
features = datasets.Features( |
|
{ |
|
"gameid": datasets.Value("int32"), |
|
"version": datasets.Value("string"), |
|
"points": datasets.Value("int32"), |
|
"deathdnum": datasets.Value("int32"), |
|
"deathlev": datasets.Value("int32"), |
|
"maxlvl": datasets.Value("int32"), |
|
"hp": datasets.Value("int32"), |
|
"maxhp": datasets.Value("int32"), |
|
"deaths": datasets.Value("int32"), |
|
"deathdate": datasets.Value("int32"), |
|
"birthdate": datasets.Value("int32"), |
|
"uid": datasets.Value("int32"), |
|
"role": datasets.Value("string"), |
|
"race": datasets.Value("string"), |
|
"gender": datasets.Value("string"), |
|
"align": datasets.Value("string"), |
|
"name": datasets.Value("string"), |
|
"death": datasets.Value("string"), |
|
"conduct": datasets.Value("string"), |
|
"turns": datasets.Value("int32"), |
|
"achieve": datasets.Value("string"), |
|
"realtime": datasets.Value("int64"), |
|
"starttime": datasets.Value("int64"), |
|
"endtime": datasets.Value("int64"), |
|
"gender0": datasets.Value("string"), |
|
"align0": datasets.Value("string"), |
|
"flags": datasets.Value("string") |
|
} |
|
) |
|
else: |
|
features = datasets.Features( |
|
{ |
|
"tty_chars": datasets.Array3D(shape=(None, 24, 80), dtype="uint8"), |
|
"tty_colors": datasets.Array3D(shape=(None, 24, 80), dtype="int8"), |
|
"tty_cursor": datasets.Array2D(shape=(None, 2), dtype="int16"), |
|
"actions": datasets.Sequence(datasets.Value("int16")), |
|
"rewards": datasets.Sequence(datasets.Value("int32")), |
|
"dones": datasets.Sequence(datasets.Value("bool")), |
|
} |
|
) |
|
|
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.data_files is None: |
|
urls = _URLS[self.config.name] |
|
else: |
|
urls = self.config.data_files["train"] |
|
|
|
|
|
filepaths = [dl_manager.download(url) for url in urls] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, gen_kwargs={"filepaths": filepaths}) |
|
] |
|
|
|
def _generate_examples(self, filepaths): |
|
for i, filepath in enumerate(filepaths): |
|
if self.config.name == "metadata": |
|
with open(filepath, "r") as f: |
|
data = json.load(f) |
|
yield i, data |
|
else: |
|
with h5py.File(filepath, "r") as f: |
|
yield i, { |
|
"tty_chars": f["tty_chars"][()], |
|
"tty_colors": f["tty_colors"][()], |
|
"tty_cursor": f["tty_cursor"][()], |
|
"actions": f["actions"][()], |
|
"rewards": f["rewards"][()], |
|
"dones": f["dones"][()] |
|
} |