Implementation3 / bertic.py
miasambolec's picture
Upload 18 files
9c2a3b5 verified
import torch
import numpy as np
from datasets import load_dataset
from transformers import (
AutoTokenizer,
AutoModelForSequenceClassification,
TrainingArguments,
Trainer,
set_seed,
EarlyStoppingCallback,
)
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
# Set seed for reproducibility
set_seed(42)
# === Load your dataset ===
dataset = load_dataset("csv", delimiter="\t", data_files={
"train": "data/train.tsv",
"test_1": "data/test_1.tsv",
})
test_2 = load_dataset("csv", delimiter="\t", data_files={"test": "data/test_2.tsv"})["test"]
test_3 = load_dataset("csv", delimiter="\t", data_files={"test": "data/test_3.tsv"})["test"]
# === Split train into train/validation ===
full_train = dataset["train"].train_test_split(test_size=0.1, seed=12345)
dataset_train = full_train["train"]
dataset_valid = full_train["test"]
# === Choose your transformer model ===
model_name = "classla/bcms-bertic"
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModelForSequenceClassification.from_pretrained(model_name, num_labels=3)
# === Tokenization function ===
def tokenize(batch):
return tokenizer(batch["Sentence"], padding=True, truncation=True, max_length=128)
# === Tokenize all datasets ===
dataset_train = dataset_train.map(tokenize, batched=True)
dataset_valid = dataset_valid.map(tokenize, batched=True)
dataset["test_1"] = dataset["test_1"].map(tokenize, batched=True)
test_2 = test_2.map(tokenize, batched=True)
test_3 = test_3.map(tokenize, batched=True)
# === Rename label column ===
dataset_train = dataset_train.rename_column("Label", "labels")
dataset_valid = dataset_valid.rename_column("Label", "labels")
dataset["test_1"] = dataset["test_1"].rename_column("Label", "labels")
test_2 = test_2.rename_column("Label", "labels")
test_3 = test_3.rename_column("Label", "labels")
# === Set torch format ===
columns = ["input_ids", "attention_mask", "labels"]
dataset_train.set_format("torch", columns=columns)
dataset_valid.set_format("torch", columns=columns)
dataset["test_1"].set_format("torch", columns=columns)
test_2.set_format("torch", columns=columns)
test_3.set_format("torch", columns=columns)
# === Metrics function ===
def compute_metrics(p):
preds = np.argmax(p.predictions, axis=1)
labels = p.label_ids
acc = accuracy_score(labels, preds)
precision, recall, f1, _ = precision_recall_fscore_support(labels, preds, average='weighted', zero_division=0)
return {"accuracy": acc, "f1": f1, "precision": precision, "recall": recall}
# === Training arguments ===
training_args = TrainingArguments(
output_dir="./bertic-our-group",
evaluation_strategy="steps",
eval_steps=100,
save_strategy="steps",
save_steps=100,
learning_rate=2e-5,
per_device_train_batch_size=16,
per_device_eval_batch_size=16,
num_train_epochs=10,
weight_decay=0.03,
load_best_model_at_end=True,
metric_for_best_model="f1",
greater_is_better=True,
logging_dir="./logs",
logging_steps=50,
save_total_limit=2,
)
# === Trainer and early stopping ===
trainer = Trainer(
model=model,
args=training_args,
train_dataset=dataset_train,
eval_dataset=dataset_valid,
tokenizer=tokenizer,
compute_metrics=compute_metrics,
callbacks=[EarlyStoppingCallback(early_stopping_patience=2)],
)
# === Train the model ===
trainer.train()
# === Evaluation ===
print("\nTraining Evaluation:")
train_metrics = trainer.evaluate(dataset_train)
for k, v in train_metrics.items():
print(f"{k}: {v:.4f}")
print("\nValidation Evaluation:")
val_metrics = trainer.evaluate(dataset_valid)
for k, v in val_metrics.items():
print(f"{k}: {v:.4f}")
print("\nTest Set 1 Evaluation (Group 1):")
test_1_metrics = trainer.evaluate(dataset["test_1"])
for k, v in test_1_metrics.items():
print(f"{k}: {v:.4f}")
print("\nTest Set 2 Evaluation (Group 2):")
test_2_metrics = trainer.evaluate(test_2)
for k, v in test_2_metrics.items():
print(f"{k}: {v:.4f}")
print("\nTest Set 3 Evaluation (Group 3 - Us):")
test_3_metrics = trainer.evaluate(test_3)
for k, v in test_3_metrics.items():
print(f"{k}: {v:.4f}")
# === Save the final model and tokenizer ===
trainer.model.save_pretrained("bertic")
tokenizer.save_pretrained("bertic")