repo
stringlengths
2
99
file
stringlengths
14
239
code
stringlengths
20
3.99M
file_length
int64
20
3.99M
avg_line_length
float64
9.73
128
max_line_length
int64
11
86.4k
extension_type
stringclasses
1 value
PyKrige
PyKrige-main/src/pykrige/kriging_tools.py
""" PyKrige ======= Code by Benjamin S. Murphy and the PyKrige Developers bscott.murphy@gmail.com Summary ------- Methods for reading/writing ASCII grid files. Copyright (c) 2015-2020, PyKrige Developers """ import datetime import io import os import warnings import numpy as np def write_asc_grid(x, y, z, filename="output.asc", no_data=-999.0, style=1): r"""Writes gridded data to ASCII grid file (\*.asc). This is useful for exporting data to a GIS program. Parameters ---------- x : array_like, shape (N,) or (N, 1) X-coordinates of grid points at center of cells. y : array_like, shape (M,) or (M, 1) Y-coordinates of grid points at center of cells. z : array_like, shape (M, N) Gridded data values. May be a masked array. filename : string, optional Name of output \*.asc file. Default name is 'output.asc'. no_data : float, optional no data value to be used style : int, optional Determines how to write the \*.asc file header. Specifying 1 writes out DX, DY, XLLCENTER, YLLCENTER. Specifying 2 writes out CELLSIZE (note DX must be the same as DY), XLLCORNER, YLLCORNER. Default is 1. """ if np.ma.is_masked(z): z = np.array(z.tolist(no_data)) x = np.squeeze(np.array(x)) y = np.squeeze(np.array(y)) z = np.squeeze(np.array(z)) nrows = z.shape[0] ncols = z.shape[1] if z.ndim != 2: raise ValueError("Two-dimensional grid is required to write *.asc grid.") if x.ndim > 1 or y.ndim > 1: raise ValueError( "Dimensions of X and/or Y coordinate arrays are not " "as expected. Could not write *.asc grid." ) if z.shape != (y.size, x.size): warnings.warn( "Grid dimensions are not as expected. " "Incorrect *.asc file generation may result.", RuntimeWarning, ) if np.amin(x) != x[0] or np.amin(y) != y[0]: warnings.warn( "Order of X or Y coordinates is not as expected. " "Incorrect *.asc file generation may result.", RuntimeWarning, ) dx = abs(x[1] - x[0]) dy = abs(y[1] - y[0]) if not np.isclose(abs((x[-1] - x[0]) / (x.shape[0] - 1)), dx) or not np.isclose( abs((y[-1] - y[0]) / (y.shape[0] - 1)), dy ): raise ValueError( "X or Y spacing is not constant; *.asc grid cannot be written." ) cellsize = -1 if style == 2: if dx != dy: raise ValueError( "X and Y spacing is not the same. " "Cannot write *.asc file in the specified format." ) cellsize = dx xllcenter = x[0] yllcenter = y[0] # Note that these values are flagged as -1. If there is a problem in trying # to write out style 2, the -1 value will appear in the output file. xllcorner = -1 yllcorner = -1 if style == 2: xllcorner = xllcenter - dx / 2.0 yllcorner = yllcenter - dy / 2.0 with io.open(filename, "w") as f: if style == 1: f.write("NCOLS " + "{:<10n}".format(ncols) + "\n") f.write("NROWS " + "{:<10n}".format(nrows) + "\n") f.write("XLLCENTER " + "{:<10.2f}".format(xllcenter) + "\n") f.write("YLLCENTER " + "{:<10.2f}".format(yllcenter) + "\n") f.write("DX " + "{:<10.2f}".format(dx) + "\n") f.write("DY " + "{:<10.2f}".format(dy) + "\n") f.write("NODATA_VALUE " + "{:<10.2f}".format(no_data) + "\n") elif style == 2: f.write("NCOLS " + "{:<10n}".format(ncols) + "\n") f.write("NROWS " + "{:<10n}".format(nrows) + "\n") f.write("XLLCORNER " + "{:<10.2f}".format(xllcorner) + "\n") f.write("YLLCORNER " + "{:<10.2f}".format(yllcorner) + "\n") f.write("CELLSIZE " + "{:<10.2f}".format(cellsize) + "\n") f.write("NODATA_VALUE " + "{:<10.2f}".format(no_data) + "\n") else: raise ValueError("style kwarg must be either 1 or 2.") for m in range(z.shape[0] - 1, -1, -1): for n in range(z.shape[1]): f.write("{:<16.2f}".format(z[m, n])) if m != 0: f.write("\n") def read_asc_grid(filename, footer=0): r"""Reads ASCII grid file (\*.asc). Parameters ---------- filename : str Name of \*.asc file. footer : int, optional Number of lines at bottom of \*.asc file to skip. Returns ------- grid_array : numpy array, shape (M, N) (M, N) array of grid values, where M is number of Y-coordinates and N is number of X-coordinates. The array entry corresponding to the lower-left coordinates is at index [M, 0], so that the array is oriented as it would be in X-Y space. x : numpy array, shape (N,) 1D array of N X-coordinates. y : numpy array, shape (M,) 1D array of M Y-coordinates. CELLSIZE : tuple or float Either a two-tuple of (x-cell size, y-cell size), or a float that specifies the uniform cell size. NODATA : float Value that specifies which entries are not actual data. """ ncols = None nrows = None xllcorner = None xllcenter = None yllcorner = None yllcenter = None cellsize = None dx = None dy = None no_data = None header_lines = 0 with io.open(filename, "r") as f: while True: string, value = f.readline().split() header_lines += 1 if string.lower() == "ncols": ncols = int(value) elif string.lower() == "nrows": nrows = int(value) elif string.lower() == "xllcorner": xllcorner = float(value) elif string.lower() == "xllcenter": xllcenter = float(value) elif string.lower() == "yllcorner": yllcorner = float(value) elif string.lower() == "yllcenter": yllcenter = float(value) elif string.lower() == "cellsize": cellsize = float(value) elif string.lower() == "cell_size": cellsize = float(value) elif string.lower() == "dx": dx = float(value) elif string.lower() == "dy": dy = float(value) elif string.lower() == "nodata_value": no_data = float(value) elif string.lower() == "nodatavalue": no_data = float(value) else: raise IOError("could not read *.asc file. Error in header.") if ( (ncols is not None) and (nrows is not None) and ( ((xllcorner is not None) and (yllcorner is not None)) or ((xllcenter is not None) and (yllcenter is not None)) ) and ((cellsize is not None) or ((dx is not None) and (dy is not None))) and (no_data is not None) ): break raw_grid_array = np.genfromtxt( filename, skip_header=header_lines, skip_footer=footer ) grid_array = np.flipud(raw_grid_array) if nrows != grid_array.shape[0] or ncols != grid_array.shape[1]: raise IOError( "Error reading *.asc file. Encountered problem " "with header: NCOLS and/or NROWS does not match " "number of columns/rows in data file body." ) if xllcorner is not None and yllcorner is not None: if dx is not None and dy is not None: xllcenter = xllcorner + dx / 2.0 yllcenter = yllcorner + dy / 2.0 else: xllcenter = xllcorner + cellsize / 2.0 yllcenter = yllcorner + cellsize / 2.0 if dx is not None and dy is not None: x = np.arange(xllcenter, xllcenter + ncols * dx, dx) y = np.arange(yllcenter, yllcenter + nrows * dy, dy) else: x = np.arange(xllcenter, xllcenter + ncols * cellsize, cellsize) y = np.arange(yllcenter, yllcenter + nrows * cellsize, cellsize) # Sometimes x and y and can be an entry too long due to imprecision # in calculating the upper cutoff for np.arange(); this bit takes care of # that potential problem. if x.size == ncols + 1: x = x[:-1] if y.size == nrows + 1: y = y[:-1] if cellsize is None: cellsize = (dx, dy) return grid_array, x, y, cellsize, no_data def write_zmap_grid( x, y, z, filename="output.zmap", no_data=-999.0, coord_sys="<null>" ): r"""Writes gridded data to ASCII grid file in zmap format (\*.zmap). This is useful for exporting data to a GIS program, or Petrel https://gdal.org/drivers/raster/zmap.html Parameters ---------- x : array_like, shape (N,) or (N, 1) X-coordinates of grid points at center of cells. y : array_like, shape (M,) or (M, 1) Y-coordinates of grid points at center of cells. z : array_like, shape (M, N) Gridded data values. May be a masked array. filename : string, optional Name of output \*.zmap file. Default name is 'output.zmap'. no_data : float, optional no data value to be used coord_sys : String, optional coordinate sytem description """ nodes_per_line = 5 field_width = 15 if np.ma.is_masked(z): z = np.array(z.tolist(no_data)) x = np.squeeze(np.array(x)) y = np.squeeze(np.array(y)) z = np.squeeze(np.array(z)) nx = len(x) ny = len(y) dx = abs(x[1] - x[0]) dy = abs(y[1] - y[0]) if not np.isclose(abs((x[-1] - x[0]) / (x.shape[0] - 1)), dx) or not np.isclose( abs((y[-1] - y[0]) / (y.shape[0] - 1)), dy ): raise ValueError( "X or Y spacing is not constant; *.asc grid cannot be written." ) xllcenter = x[0] yllcenter = y[0] hix = xllcenter + (nx - 1) * dx hiy = yllcenter + (ny - 1) * dy now = datetime.datetime.now() with io.open(filename, "w") as f: f.write("!" + "\n") f.write("! ZIMS FILE NAME : " + os.path.basename(filename) + "\n") f.write( "! FORMATTED FILE CREATION DATE: " + now.strftime("%d/%m/%Y") + "\n" ) f.write( "! FORMATTED FILE CREATION TIME: " + now.strftime("%H:%M:%S") + "\n" ) f.write("! COORDINATE REFERENCE SYSTEM: " + coord_sys + "\n") f.write("!" + "\n") f.write("@Grid HEADER, GRID, " + str(nodes_per_line) + "\n") f.write(" " + str(field_width) + ", " + str(no_data) + ", , 1 , 1" + "\n") f.write( " " + str(ny) + ", " + str(nx) + ", " + str(xllcenter) + ", " + str(hix) + ", " + str(yllcenter) + ", " + str(hiy) + "\n" ) f.write(" " + str(dx) + ", 0.0, 0.0 " + "\n") f.write("@" + "\n") for n in range(z.shape[1]): count = 0 for m in range(z.shape[0] - 1, -1, -1): count += 1 if np.isnan(z[m, n]): f.write(space_back_to_front(format(no_data, "13.7E") + " ")) else: if abs(z[m, n]) >= 1e100: # one tailing space less f.write(space_back_to_front(format(z[m, n], "13.7E") + " ")) elif abs(z[m, n]) >= 1e6: f.write(space_back_to_front(format(z[m, n], "13.7E") + " ")) else: f.write(space_back_to_front("{:<13.4f}".format(z[m, n]) + " ")) if count % nodes_per_line == 0 or m == 0: f.write("\n") def read_zmap_grid(filename): r"""Reads ASCII grid file in zmap format (\*.zmap). https://gdal.org/drivers/raster/zmap.html Parameters ---------- filename : str Name of \*.zmap file. Returns ------- grid_array : numpy array, shape (M, N) (M, N) array of grid values, where M is number of Y-coordinates and N is number of X-coordinates. The array entry corresponding to the lower-left coordinates is at index [M, 0], so that the array is oriented as it would be in X-Y space. x : numpy array, shape (N,) 1D array of N X-coordinates. y : numpy array, shape (M,) 1D array of M Y-coordinates. cellsize : tuple or float Either a two-tuple of (x-cell size, y-cell size), or a float that specifies the uniform cell size. no_data_value : float Value that specifies which entries are not actual data. coord_sys : String Coordinate system name """ no_data_value, nx, ny, originx, originy, maxx, maxy, dx, dy = ( 0, 0, 0, 0, 0, 0, 0, 0, 0, ) data_values = np.empty(1) coord_sys = "<null>" i_header_line, i_value = 0, 0 with io.open(filename, "r") as f: while True: line = f.readline() if line.startswith("!"): line_strings = line.split(":") if line_strings[0].__contains__("COORDINATE REFERENCE SYSTEM"): coord_sys = line_strings[1].replace("\n", "") else: line_strings = line.split() line_strings = [string.replace(",", "") for string in line_strings] if len(line_strings) == 0: break if i_header_line == -1 and not line_strings[0].startswith("!"): for i_string in range(len(line_strings)): data_values[i_value] = float(line_strings[i_string]) i_value += 1 if line_strings[0].startswith("@"): if i_header_line == 0: i_header_line += 1 else: i_header_line = -1 if i_header_line > 0: if i_header_line == 2: no_data_value = float(line_strings[1]) elif i_header_line == 3: ny = int(line_strings[0]) nx = int(line_strings[1]) originx = float(line_strings[2]) maxx = float(line_strings[3]) originy = float(line_strings[4]) maxy = float(line_strings[5]) data_values = np.empty(ny * nx) i_header_line += 1 if nx * ny != len(data_values): raise IOError( "Error reading *.zmap file. Encountered problem " "with header: (nx * ny) does not match with the " "number items in data file body." ) z = np.empty([ny, nx]) i_value = 0 for n in range(z.shape[1]): for m in range(z.shape[0] - 1, -1, -1): z[m, n] = data_values[i_value] i_value += 1 dx = (maxx - originx) / (nx - 1) dy = (maxy - originy) / (ny - 1) gridx = np.arange(originx, originx + nx * dx, dx) gridy = np.arange(originy, originy + ny * dy, dy) cellsize = (dx, dy) return z, gridx, gridy, cellsize, no_data_value, coord_sys def space_back_to_front(string): net = string.replace(" ", "") return "".join(string.rsplit(net)) + net
15,629
32.612903
88
py
PyKrige
PyKrige-main/docs/source/sphinxext/github_link.py
# Adapted from scikit learn import inspect import os import subprocess import sys from functools import partial from operator import attrgetter REVISION_CMD = "git rev-parse --short HEAD" def _get_git_revision(): try: revision = subprocess.check_output(REVISION_CMD.split()).strip() except (subprocess.CalledProcessError, OSError): print("Failed to execute git to get revision") return None return revision.decode("utf-8") def _linkcode_resolve(domain, info, package, url_fmt, revision): """Determine a link to online source for a class/method/function This is called by sphinx.ext.linkcode An example with a long-untouched module that everyone has >>> _linkcode_resolve('py', {'module': 'tty', ... 'fullname': 'setraw'}, ... package='tty', ... url_fmt='http://hg.python.org/cpython/file/' ... '{revision}/Lib/{package}/{path}#L{lineno}', ... revision='xxxx') 'http://hg.python.org/cpython/file/xxxx/Lib/tty/tty.py#L18' """ if revision is None: return if domain not in ("py", "pyx"): return if not info.get("module") or not info.get("fullname"): return class_name = info["fullname"].split(".")[0] if type(class_name) != str: # Python 2 only class_name = class_name.encode("utf-8") module = __import__(info["module"], fromlist=[class_name]) obj = attrgetter(info["fullname"])(module) try: fn = inspect.getsourcefile(obj) except Exception: fn = None if not fn: try: fn = inspect.getsourcefile(sys.modules[obj.__module__]) except Exception: fn = None if not fn: return fn = os.path.relpath(fn, start=os.path.dirname(__import__(package).__file__)) try: lineno = inspect.getsourcelines(obj)[1] except Exception: lineno = "" return url_fmt.format(revision=revision, package=package, path=fn, lineno=lineno) def make_linkcode_resolve(package, url_fmt): """Returns a linkcode_resolve function for the given URL format revision is a git commit reference (hash or name) package is the name of the root module of the package url_fmt is along the lines of ('https://github.com/USER/PROJECT/' 'blob/{revision}/{package}/' '{path}#L{lineno}') """ revision = _get_git_revision() return partial( _linkcode_resolve, revision=revision, package=package, url_fmt=url_fmt )
2,645
29.767442
85
py
optisplit
optisplit-main/mean.py
import pandas as pd import os import numpy as np from pdb import set_trace as bp import sys from pathlib import Path """Calculate means of result files.""" def sort_dfs(dfs): res = [] for df in dfs: start = df.iloc[:4,:].sort_values(by=[' method'], ascending=False) end = df.iloc[4:,:].sort_values(by=[' method'], ascending=False) df_new = pd.concat([start, end]) df_new.set_index(np.arange(len(df)), inplace=True) res.append(df_new) return res if __name__ == '__main__': name = sys.argv[1] output_dir = sys.argv[2] if name not in ['small', 'go', 'xml']: print('invalid dataset name') sys.exit(1) dfs = [pd.read_csv(Path(output_dir, fname), index_col=False) for fname in os.listdir(output_dir) if 'csv' in fname and name in fname and 'mean' not in fname] print(len(dfs)) if name == 'xml': dfs = sort_dfs(dfs) df = pd.concat(dfs).groupby(level=0).mean() df.insert(0, 'method', dfs[0].values[:,1]) df.insert(0, 'dataset', dfs[0].values[:,0]) df.to_csv(Path(output_dir, f'mean_scores_{name}.csv'), index=False, float_format='%.4f') # df.to_csv(Path(path, f'mean_scores_{name}.csv'), index=False)
1,226
26.266667
161
py
optisplit
optisplit-main/evaluation_metric_experiment.py
import numpy as np import joblib import matplotlib.pyplot as plt import scipy.sparse as sp import warnings from copy import deepcopy from pdb import set_trace as bp from textwrap import wrap import cv_balance np.set_printoptions(formatter={'float': lambda x: "{0:0.5f}".format(x)}) warnings.filterwarnings('ignore', message='Comparing a sparse matrix with 0 using == is inefficient') def equal(y, ones, n_folds): """Equally distributed folds""" for j, yy in enumerate(y): for i in range(yy.shape[1]): yy[:ones[i]//n_folds, i] = 1 targets = np.row_stack(y) return sp.csr_matrix(targets) def classes_missing_from_1_fold(y, ones, n_folds): for j, yy in enumerate(y): if j == 0: continue else: for i in range(yy.shape[1]): yy[:ones[i]//(n_folds-1), i] = 1 targets = np.row_stack(y).astype(np.int) return sp.csr_matrix(targets) def difference(y, ones, n_folds): """Small difference between folds""" diff = 0.2 for j, yy in enumerate(y): if j == 0: for i in range(yy.shape[1]): yy[:ones[i]//n_folds+(diff*(ones[i]//n_folds)).astype(np.int), i] = 1 elif j== 1: for i in range(yy.shape[1]): yy[:ones[i]//n_folds-(diff*(ones[i]//n_folds)).astype(np.int), i] = 1 else: for i in range(yy.shape[1]): yy[:ones[i]//n_folds, i] = 1 targets = sp.csr_matrix(np.row_stack(y)) return targets def mk_y(size, n_folds): """Generate the synthetic data""" y = np.split(np.zeros(size), n_folds) folds = np.split(np.arange(size[0]), n_folds) folds = [(np.setdiff1d(np.arange(size[0]), f), f) for f in folds] ones = np.linspace(start=2*n_folds, stop=size[0]//2, num=100).astype(np.int) res = {} res['Equal'] = folds, equal(deepcopy(y), ones, n_folds) res['Difference'] = folds, difference(deepcopy(y), ones, n_folds) res['One missing'] = folds, classes_missing_from_1_fold(deepcopy(y), ones, n_folds) joblib.dump(res, 'results/res.joblib') def calculate_scores(target_fold_ratio, actual_fold_ratio): """Return LD and rLD scores for the given ratios""" #Notation like in Section 3. D = 1 # data size Di = np.linspace(0.01*D, 0.99*D, 100) # number of positives in each class Sj = D*actual_fold_ratio Sij = Di*target_fold_ratio d = Di / D p = Sij / Sj rld = np.abs((d-p)/d) ld = np.abs(p/(1-p) - d/(1-d)) return ld, rld def plot_measures(): """Plot LD and rLD scores of folds with given error""" # get scores ratios = [(0.2, 0.25), (0.2, 0.3), (0.2, 0.4), (0.2, 0.5)][::-1] scores = [calculate_scores(*r) for r in ratios] ld_scores = [s[0] for s in scores] rld_scores = [s[1] for s in scores] # plot results # Score comparison plt.figure(figsize=(11, 3.8)) plt.subplots_adjust(wspace=0.3, top=0.90, bottom=0.15, right=0.82, left=0.10) Di = np.linspace(0.01, 0.99, 100) plt.subplot(1,2,1,) plt.yscale('log') plt.plot(Di, np.array(ld_scores).T) plt.xlabel('$D_i$', fontsize=13) plt.title('A', fontsize=16) plt.ylabel('LD', fontsize=13, rotation=0, labelpad=15) plt.xticks(fontsize=13) plt.yticks(fontsize=13) plt.subplot(1,2,2,) plt.plot(Di, np.array(rld_scores).T) plt.title('B', fontsize=16) plt.ylabel('rLD', fontsize=13, rotation=0, labelpad=15) plt.xlabel('$D_i$', fontsize=13) plt.xticks(fontsize=13) plt.yticks(fontsize=13) title = 'Ratio of positive data points in the fold' title = '\n'.join(wrap(title, 20)) lg = plt.legend([r[1] for r in ratios], bbox_to_anchor=(1.03, 0.8), loc="upper left", fontsize=13, title=title) title = lg.get_title() title.set_fontsize(13) plt.savefig(f'results/ld_vs_rld.pdf') # Difference comparison # calculate pairwise differences between scores ld_differences = np.array([x - y for i,x in enumerate(ld_scores[::-1]) for j,y in enumerate(ld_scores[::-1]) if i > j]).T rld_differences = np.array([x - y for i,x in enumerate(rld_scores[::-1]) for j,y in enumerate(rld_scores[::-1]) if i > j]).T labels = np.array([f'{ratios[i][1]}-{ratios[j][1]}' for i,x in enumerate(ld_scores[::-1]) for j,y in enumerate(ld_scores[::-1]) if i > j]).T plt.clf() plt.figure(figsize=(11, 3.8)) plt.subplots_adjust(wspace=0.3, top=0.90, bottom=0.15, right=0.82, left=0.10) Di = np.linspace(0.01, 0.99, 100) plt.subplot(1,2,1,) plt.yscale('log') plt.plot(Di, ld_differences) plt.xlabel('$D_i$', fontsize=13) plt.title('C', fontsize=16) plt.ylabel('$\Delta LD$', fontsize=13, rotation=0, labelpad=15) plt.xticks(fontsize=13) plt.yticks(fontsize=13) plt.subplot(1,2,2,) plt.plot(Di, rld_differences) plt.title('D', fontsize=16) plt.xlabel('$D_i$', fontsize=13) plt.ylabel('$\Delta rLD$', fontsize=13, rotation=0, labelpad=15) plt.xticks(fontsize=13) plt.yticks(fontsize=13) plt.legend(labels, bbox_to_anchor=(1.02, 0.8), loc="upper left", fontsize=13) plt.savefig(f'results/ld_vs_rld_differences.pdf') def synthetic_data_experiment(): datas = joblib.load('results/res.joblib') methods = ['rld', 'ld', 'dcp'] for i, name in enumerate(datas): plt.clf() data = datas[name] rld = np.array(cv_balance.rld(data[0], data[1])).ravel() ld = cv_balance.ld(data[0], data[1]) dcp = cv_balance.cv_evaluate(data[0], data[1], np.array(data[1].sum(axis=0)).ravel(), method='dcp') res_all = np.column_stack((ld, rld, dcp)) sizes = np.array(data[1].sum(axis=0)).ravel() if i == 2: plt.figure(figsize=(6.6, 3.8)) else: plt.figure(figsize=(5.4, 3.8)) for j, m in enumerate(['.', '+', '2']): plt.plot(sizes, res_all[:,j], ms=11, marker=m, markevery=0.04, alpha=0.9, linestyle='None') plt.xscale('symlog', linthreshx=0.000001) plt.yscale('symlog', linthreshy=0.000001) plt.ylim(-0.000001, np.max(res_all)+3) plt.xlabel('Class size', fontsize=16) plt.ylabel('Score', fontsize=16) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.title(name, x=0.5, y=0.89, fontsize=16) if i == 2: lg = plt.legend(['LD', 'rLD', 'DCP'], bbox_to_anchor=(1.05, 0.5), loc="upper left", fontsize=14, title='Measure') title = lg.get_title() title.set_fontsize(14) plt.tight_layout() plt.savefig(f'results/{name}.pdf') if __name__ == '__main__': mk_y((100000,100), 10) synthetic_data_experiment() plot_measures()
6,729
29.87156
144
py
optisplit
optisplit-main/cv_comparison_experiment.py
import argparse import sys import time import arff import joblib import numpy as np import scipy.sparse as sp from copy import deepcopy from datetime import timedelta from joblib import Parallel, delayed from pdb import set_trace as bp from skmultilearn.model_selection import IterativeStratification from cv_balance import optisplit, random_cv, cv_evaluate, check_folds, rld, ld sys.path.append('stratified_sampling_for_XML/stratify_function/') from stratify import stratified_train_test_split import warnings warnings.filterwarnings('ignore', message='Comparing a sparse matrix with 0 using == is inefficient') def load_datasets(dataset_type): datasets = {} if dataset_type == 'small': for dataset in [('mediamill', 101), ('bibtex', 159), ('delicious', 983)]: print(f'loading {dataset[0]}') with open(f'data/{dataset[0]}.arff') as f: data = arff.load(f) data = np.array(data['data']) datasets[dataset[0]] = sp.csr_matrix(data[:,-dataset[1]:].astype(np.int)) elif dataset_type == 'go': for dataset in ['CC', 'MF']: print(f'loading {dataset}') data =sp.load_npz(f'data/{dataset}_targets.npz') class_sizes = data.sum(axis=0) if np.any(class_sizes == data.shape[0]): data = data[:, np.array(class_sizes) < data.shape[0]] datasets[dataset] = data elif dataset_type == 'xml': for dataset in ['BP_targets.npz', 'wiki10_31k.npz']: print(f'loading {dataset}') data =sp.load_npz(f'data/{dataset}') class_sizes = data.sum(axis=0) if np.any(class_sizes == 0): data = data[:, (np.array(class_sizes) > 0).ravel()] if np.any(class_sizes == data.shape[0]): data = data[:, np.array(class_sizes) < data.shape[0]] datasets[dataset] = data else: raise NotImplementedError('unknown datasets') return datasets def iterstrat(n_folds, targets, random_state=42): """Iterative stratification""" X = np.zeros((targets.shape[0], 1)) k_fold = IterativeStratification(n_splits=n_folds, random_state=random_state).split(X,targets) return list(k_fold) def sois(n_folds, targets, random_state=42): """Second order iterative stratification""" X = np.zeros((targets.shape[0], 1)) k_fold = IterativeStratification(n_splits=n_folds, random_state=random_state, order=2).split(X,targets) return list(k_fold) def stratified(n_folds, targets, random_state=42): """Stratified sampling""" res = [] remaining = np.arange(targets.shape[0]) m = targets.shape[0]//n_folds for i in range(n_folds): if len(remaining) > m and i < n_folds-1: s = m/len(remaining) else: s = len(remaining) tt = list(targets[remaining,:].tolil().rows) X = list(np.zeros((targets.shape[0], 1))[remaining]) split = stratified_train_test_split(X, tt, target_test_size=s, random_state=random_state) remaining2 = remove(remaining, split[1]) res.append((None, remaining[split[1]])) remaining = remaining2 res = [(np.setdiff1d(np.arange(targets.shape[0]), f[1]), f[1]) for f in res] return res def partitioning_cv(n_folds, targets, random_state=42): """Partitioning method based on stratified random sampling""" np.random.seed(random_state) frequencies = np.array(np.mean(targets, axis=0)).ravel() index = list(targets.tolil().rows) tt = [frequencies[index[i]] for i in range(len(index))] D = np.array([np.product(t) for t in tt]) index = np.argsort(D) stratas = np.array_split(index, n_folds) for i in range(len(stratas)): np.random.shuffle(stratas[i]) substratas = [np.array_split(s, n_folds) for s in stratas] folds = [] for j in range(n_folds): res = [] for i in range(n_folds): res.append(substratas[i][j]) folds.append((None, np.concatenate(res).ravel())) folds = [(np.setdiff1d(np.arange(targets.shape[0]), f[1]), f[1]) for f in folds] return folds def remove(remaining, split): remaining2 = np.setdiff1d(remaining, remaining[split]) return remaining2 def improve_split(dataset_type, random_state=42, output_dir='results'): """Use optisplit to improve an existing split""" np.random.seed(random_state) folds = joblib.load(f'{output_dir}/folds_{dataset_type}_{random_state}.joblib') res = {} for dataset in folds.keys(): res[dataset] = {} for method in folds[dataset].keys(): data = folds[dataset][method] folds0 = [(np.setdiff1d(np.arange(data[1].shape[0]), f[1]), f[1]) for f in data[0]] if not check_folds(folds0, data[1]): bp() check_folds(folds0, data[1]) print(f'{method}') start = time.time() result = optisplit(n_splits=len(data[0]), targets=data[1], seed=random_state,initial_folds=folds0) elapsed = time.time()-start runtime = f'Time: {str(timedelta(seconds=elapsed))}' res[dataset][method] = result, data[1], elapsed print(runtime) joblib.dump(res, f'{output_dir}/folds_{dataset_type}_{random_state}_IMPROVED.joblib') def create_folds(dataset_type, n_folds=5, random_state=42, output_dir='results'): own_dcp = lambda n_splits, targets, random_seed: optisplit(n_splits, targets, method='dcp', seed=random_seed) own_rld = lambda n_splits, targets, random_seed: optisplit(n_splits, targets, method='rld', seed=random_seed) own_ld = lambda n_splits, targets, random_seed: optisplit(n_splits, targets, method='ld', seed=random_seed) datasets = load_datasets(dataset_type) if dataset_type in ['small', 'go']: methods = {'SS':stratified, 'PMBSRS':partitioning_cv, 'IS':iterstrat, 'SOIS':sois, 'own_ld':own_ld, 'own_dcp':own_dcp, 'own_rld':own_rld, 'random':random_cv} else: methods = {'own_ld':own_ld, 'own_dcp':own_dcp, 'own_rld':own_rld, 'PMBSRS':partitioning_cv, 'random':random_cv, 'SS':stratified} res = {} for dataset in datasets.keys(): print(f'{dataset}') res[dataset] = {} for method in methods.keys(): print(f'{method}') start = time.time() targets = datasets[dataset] try: result = methods[method](n_folds, deepcopy(targets), random_state) elapsed = time.time()-start runtime = f'Time: {str(timedelta(seconds=elapsed))}' res[dataset][method] = result, targets, elapsed print(runtime) except: print(f'Error in {method} on {dataset} - skipped') joblib.dump(res, f'{output_dir}/folds_{dataset_type}_{random_state}.joblib') def example_distribution(folds, targets): k = len(folds) res = 0 for j in range(k): Sj = len(folds[j][1]) cj = targets.shape[0]*(1/k) res += np.abs(Sj - cj) return (1/k)*res def evaluate_folds(dataset_type, random_state, output_dir): folds = joblib.load(f'{output_dir}/folds_{dataset_type}_{random_state}.joblib') res = {} for dataset in folds.keys(): res[dataset] = {} for method in folds[dataset].keys(): data = folds[dataset][method] targets = data[1] class_sizes = np.array(targets.sum(axis=0)).ravel() # remove empty classes if they exists targets = targets[:, np.where(class_sizes > 0)[0]] class_sizes = np.array(targets.sum(axis=0)).ravel() dcp = cv_evaluate(data[0], targets, class_sizes, method='dcp') ED = example_distribution(data[0], targets) LD = np.mean(ld(data[0], targets)) rld_score = np.mean(rld(data[0], targets)) dcp_score = np.mean(dcp) runtime = data[2] res[dataset][method] = {'ED':ED, 'LD':LD, 'dcp':dcp_score, 'rld':rld_score, 'runtime':runtime} tostr = lambda x: str(x).replace('[','').replace(']','').replace('\'', '') with open(f'{output_dir}/scores_{dataset_type}_{random_state}.csv', 'w') as f: fields = 'dataset, method, ED, LD, dcp, rld, runtime\n' f.write(fields) for dataset, results in res.items(): for method, scores in results.items(): score_str = tostr([v for v in list(scores.values())]) f.write(f'{dataset},{method},{score_str}\n') if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('dataset_type', type=str, help='small, go or xml') parser.add_argument('random_state', type=int) parser.add_argument('output_dir', type=str) parser.add_argument('-e', '--evaluation', action='store_true', help='run evaluations') parser.add_argument('-i', '--improve', action='store_true', help='improve existing folds') parser.add_argument('-c', '--create', action='store_true', help='create folds') args = parser.parse_args() if args.create: create_folds(dataset_type=args.dataset_type, random_state=args.random_state, output_dir=args.output_dir) if args.evaluation: evaluate_folds(dataset_type=args.dataset_type, random_state=args.random_state, output_dir=args.output_dir) if args.improve: improve_split(dataset_type=args.dataset_type, random_state=args.random_state, output_dir=args.output_dir)
9,525
37.723577
166
py
optisplit
optisplit-main/cv_balance.py
import time import numpy as np import scipy.sparse as sp from copy import deepcopy from datetime import timedelta from pdb import set_trace as bp def rld(folds, targets): tt = deepcopy(targets) res = [] di = np.array(tt.sum(axis=0)).ravel() / tt.shape[0] for f in folds: pij = np.array(tt[f[1]].sum(axis=0)).ravel() / len(f[1]) res.append((abs((di - pij)/di))) res = np.stack(res) return res.mean(axis=0) def dcp(folds, targets): tt = deepcopy(targets) res = [] Si = np.array(tt.sum(axis=0)).ravel() for f in folds: Sji = np.array(tt[f[1]].sum(axis=0)).ravel() res.append(Sji) res = np.stack(res) return (res / Si).max(axis=0) - 1/len(folds) def ld(folds, targets): tt = deepcopy(targets) res = [] di = np.array(tt.sum(axis=0)).ravel() / tt.shape[0] di = np.where(di == 1, (tt.shape[0]-1)/tt.shape[0], di) # avoid division by zero for f in folds: pij = np.array(tt[f[1]].sum(axis=0)).ravel() / len(f[1]) pij = np.where(pij == 1, (len(f[1])-1)/len(f[1]), pij) res.append(abs((pij/(1-pij) - di/(1-di)))) res = np.stack(res) return res.mean(axis=0) def cv_evaluate(folds, targets, method='original'): """Return X, Y evaluation metrics for a cv""" if method == 'dcp': res = np.array(dcp(folds, targets)).ravel() elif method == 'rld': res = np.array(rld(folds, targets)).ravel() elif method == 'ld': res = np.array(ld(folds, targets)).ravel() else: raise NotImplementedError('invalid method') return np.array(res).ravel() def transfer_sequences(class_index, arr0, arr1, n_transfer, A, targets, sequences=None): """Transfer contents of class_index array from arr0 to arr1""" arr0_index = np.intersect1d(class_index, arr0).astype(np.int) # select sequences with smallest number of other features tt = np.array(targets[arr0_index, :].sum(axis=1)).ravel() if sequences is not None: # use precomputed transfer index transfer_index = sequences else: # select sequences with fewest other classes to be transferred transfer_index = arr0_index[tt.argsort()[:n_transfer]] # move arr0 to arr1 arr1 = np.concatenate((arr1, transfer_index)).astype(np.int) arr0 = np.setdiff1d(arr0, transfer_index).astype(np.int) return arr0, arr1, transfer_index def balance(targets, A, folds, n_splits): n_transfer = calc_transfer(targets, A, folds, n_splits) class_index = np.where(targets[:,A].toarray().ravel() > 0)[0] excess = np.array([]) # process folds with too many test cases for i, n in enumerate(n_transfer): if n_transfer[i] < 0: tr_index = folds[i][0] test_index = folds[i][1] test_index, tr_index, transfer_index = transfer_sequences(class_index, test_index, tr_index, abs(n_transfer[i]), A, targets) excess = np.concatenate((excess, transfer_index)) folds[i] = tr_index, test_index #? else: continue # process folds with too few test cases for i, n in enumerate(n_transfer): if n_transfer[i] > 0: tr_index = folds[i][0] test_index = folds[i][1] sequences = excess[:abs(n_transfer[i])] excess = np.setdiff1d(excess, sequences) tr_index, test_index, transfer_index = transfer_sequences(class_index, tr_index, test_index, n_transfer[i], A, targets, sequences=sequences) folds[i] = tr_index, test_index #? else: continue assert len(excess) == 0,'Failed to distribute all sequences' return folds, n_transfer def check_folds(folds, targets): all_sequences_in_test = sum([len(np.unique(f[1])) for f in folds]) == targets.shape[0] separate_training_test = all([len(np.intersect1d(f[0], f[1])) == 0 for f in folds]) data_shape = all([len(f[0]) + len(f[1]) == targets.shape[0] for f in folds]) no_overlapping_test_sets = len(np.unique(np.concatenate([np.unique(f[1]) for f in folds]))) == len(np.concatenate([f[1] for f in folds])) return all_sequences_in_test and no_overlapping_test_sets and separate_training_test and data_shape def random_cv(n_splits, targets, seed=42): np.random.seed(seed) t = np.arange(targets.shape[0]) np.random.shuffle(t) folds = np.array_split(t, n_splits) folds = [(np.setdiff1d(t,f), f) for f in folds] return folds def calc_transfer(targets, A, folds, n_splits): # calculate the amount of balancing needed tt = np.array([targets[f[1], A].sum() for f in folds]) n_transfer = np.array([tt.sum()//n_splits - t for t in tt]) if sum(n_transfer) < 0: aa = np.zeros(len(n_transfer)).astype(np.int) aa[:abs(sum(n_transfer))] = 1 n_transfer = n_transfer + aa assert sum(n_transfer) == 0, 'Balancing failed' return n_transfer def optisplit(n_splits, targets, method='rld', max_epochs=3, seed=42, initial_folds=None): """Run Optisplit. Parameters ---------- n_splits : int Number of cross validation folds targets : scipy csr matrix Target matrix method : str (rld or dcp), default=rld Optimisation method max_epochs: int, defauld=3 Number of times to run optisplit over the data seed: int, default=42 Random seed initial_folds: list, default=None List of numpy arrays containing cross validation fold indices. These are used as the initial folds. Returns ------- list list of n_split tuples containing numpy arrays containing training and test fold indices. """ np.random.seed(seed) targets = sp.csr_matrix(targets) class_sizes = targets.sum(axis=0) # if > 50% of the examples are positive, optimize the negative distribution pos_index = np.where(class_sizes > 0.5*targets.shape[0])[0] targets[:,pos_index] = (targets[:,pos_index] == 0).astype(np.int) class_sizes = targets.sum(axis=0) if initial_folds is None: folds0 = random_cv(n_splits, targets) else: folds0 = initial_folds res0 = cv_evaluate(folds0, targets, method=method) score0 = np.sum(res0) start = time.time() for jjj in range(max_epochs): max_offset = 0 print(f'round {jjj}') if jjj == 0: print(score0) for iii in range(targets.shape[1]): folds = deepcopy(folds0) A = np.argsort(np.array(res0).ravel())[::-1][max_offset] folds, n_transfer = balance(targets, A, folds, n_splits) res1 = cv_evaluate(folds, targets, method=method) if np.sum(res0) <= np.sum(res1) or np.all(n_transfer == 0): #balancing unbalanced some other classes max_offset += 1 continue score1 = np.sum(res1) folds0 = folds res0 = res1 print(score1) if np.isclose(score0, score1, atol=0.1): break assert check_folds(folds, targets), 'Invalid CV folds created' print(f'Time: {str(timedelta(seconds=time.time()-start))}') print(f'Ignored {max_offset} classes') return folds0 def main(): pass if __name__ == '__main__': main()
7,298
31.29646
152
py
optisplit
optisplit-main/stratified_sampling_for_XML/stratify_function/stratify.py
import random import numpy as np from datetime import datetime import helper_funcs def stratified_train_test_split(X, y, target_test_size, random_state=None, epochs=50, swap_probability=0.1, threshold_proportion=0.1, decay=0.1): if random_state != None: random.seed(random_state) # To keep track of how long the initialization takes start_time = datetime.now() # Keep track how how many instances have been swapped to train or test swap_counter = { 'to_train': 0, 'to_test': 0, } # 1. Create instances_dict to keep track of instance information: # labels: array of labels, [] # train_or_test: string, 'train' or 'test' # instance_score: float, adjusted sum of label scores instances_dict = helper_funcs.create_instances_dict(X, y, target_test_size) # 1.5 Get average number of labels per instance labels_per_instance = [] for instance_id, instance_dict in instances_dict.items(): labels_count = len(instance_dict['labels']) labels_per_instance.append(labels_count) average_labels_per_instance = sum(labels_per_instance) / len(labels_per_instance) # 2. Create labels_dict to keep track of label information: # train: int, number of times label appears in train set # test: int, number of times label appears in test set # label_score: float, label score labels_dict = helper_funcs.create_labels_dict(instances_dict) # 3. Calculate the label score for each label in labels_dict # Positive score if too much of the label is in the test set # Negative score if too much of the label is in the train set helper_funcs.score_labels(labels_dict, target_test_size, average_labels_per_instance) # 4. Calculate the instance score for each instance in instances_dict # A high score means the instance is a good candidate for swapping helper_funcs.score_instances(instances_dict, labels_dict) # 5. Calculate the total score # The higher the score, the more 'imbalanced' the distribution of labels between train and test sets total_score = helper_funcs.calculate_total_score(instances_dict) print(f'Starting score: {round(total_score)}. Calculated in {str(datetime.now() - start_time).split(".")[0]}') # Main loop to create stratified train-test split for epoch in range(epochs): # To keep track of how long each itteration takes itteration_start_time = datetime.now() # 6. Calculate the threshold score for swapping threshold_score = helper_funcs.calculte_threshold_score(instances_dict, average_labels_per_instance, epoch, threshold_proportion, decay) # 7. Swap the instances with instance_score that is greater than the threshold score # Probability of swapping an instance is swap_probability helper_funcs.swap_instances(instances_dict, threshold_score, swap_counter, average_labels_per_instance, epoch, swap_probability, decay) # 2. Recreate labels_dict with updated train-test split labels_dict = helper_funcs.create_labels_dict(instances_dict) # from pdb import set_trace as bp # bp() # 3. Recalculate the label score for each label in labels_dict helper_funcs.score_labels(labels_dict, target_test_size, average_labels_per_instance) # 4. Recalculate the instance score for each instance in instances_dict helper_funcs.score_instances(instances_dict, labels_dict) # 5. Recalculate the total score total_score = helper_funcs.calculate_total_score(instances_dict) print(f'Epoch {epoch + 1}/{epochs} score: {round(total_score)}. Calculated in {str(datetime.now() - itteration_start_time).split(".")[0]}') # Prepare X_train, X_test, y_train, y_test X_train = [] X_test = [] y_train = [] y_test = [] train_index = [] test_index = [] for instance_id, instance_dict in instances_dict.items(): if instance_dict['train_or_test'] == 'train': X_train.append(X[instance_id]) y_train.append(y[instance_id]) train_index.append(instance_id) elif instance_dict['train_or_test'] == 'test': X_test.append(X[instance_id]) y_test.append(y[instance_id]) test_index.append(instance_id) else: print(f'Something went wrong: {instance_id}') # # Print some statistics # actual_test_size = len(X_test) / (len(X_train) + len(X_test)) # print(f'To train: {swap_counter["to_train"]}') # print(f'To test: {swap_counter["to_test"]}') # print(f'Target test size: {target_test_size}') # print(f'Actual test size: {actual_test_size}') return np.array(train_index), np.array(test_index)
4,788
40.284483
147
py
optisplit
optisplit-main/stratified_sampling_for_XML/stratify_function/helper_funcs.py
import random import numpy as np # 1. Create instances_dict to keep track of instance information: # labels: array of labels, [] # train_or_test: string, 'train' or 'test' # instance_score: float, adjusted sum of label scores def create_instances_dict(X, y, target_test_size): instances_dict = {} instance_id = 0 for _ in X: train_or_test = 'train' if random.uniform(0, 1) <= target_test_size: train_or_test = 'test' instances_dict[instance_id] = { 'labels': y[instance_id], 'train_or_test': train_or_test, 'instance_score': 0, } instance_id += 1 return instances_dict # 2. Create labels_dict to keep track of label information: # train: int, number of times label appears in train set # test: int, number of times label appears in test set # label_score: float, label score def create_labels_dict(instances_dict): labels_dict = {} for _, instance_dict in instances_dict.items(): train_or_test = instance_dict['train_or_test'] for label in instance_dict['labels']: try: if train_or_test == 'train': labels_dict[label]['train'] += 1 else: labels_dict[label]['test'] += 1 except: if train_or_test == 'train': labels_dict[label] = { 'train': 1, 'test': 0, 'label_score': 0 } else: labels_dict[label] = { 'train': 0, 'test': 1, 'label_score': 0 } return labels_dict # 3. Calculate the label score for each label in labels_dict # Positive score if too much of the label is in the test set # Negative score if too much of the label is in the train set def score_labels( labels_dict, target_test_size, average_labels_per_instance): for label, label_dict in labels_dict.items(): label_score = 0 label_count = label_dict['train'] + label_dict['test'] if label_count > 1: actual_test_proportion = label_dict['test'] / label_count if actual_test_proportion >= target_test_size: # Too much of the label is in the test set label_score = (actual_test_proportion - target_test_size) / (1 - target_test_size) if actual_test_proportion > 0.999: label_score += average_labels_per_instance else: # Too much of the label is in the train set label_score = (actual_test_proportion - target_test_size) / target_test_size if actual_test_proportion < 0.001: label_score -= average_labels_per_instance labels_dict[label]['label_score'] = label_score # 4. Calculate the instance score for each instance in instances_dict # A high score means the instance is a good candidate for swapping def score_instances(instances_dict, labels_dict): for instance_id, instance_dict in instances_dict.items(): instance_score = 0 train_or_test = instance_dict['train_or_test'] for label in instance_dict['labels']: label_score = labels_dict[label]['label_score'] if label_score > 0: # If too much of the label is in the test set if train_or_test == 'test': instance_score += label_score # If instance in test, increase score elif train_or_test == 'train': instance_score -= label_score # If instance in train, decrease score else: print(f'Something went wrong: {instance_id}') elif label_score < 0: # If too much of the label is in the train set if train_or_test == 'train': instance_score -= label_score # If instance in train, increase score elif train_or_test == 'test': instance_score += label_score # If instance in test, decrease score else: print(f'Something went wrong: {instance_id}') instances_dict[instance_id]['instance_score'] = instance_score # 5. Calculate the total score # The higher the score, the more 'imbalanced' the distribution of labels between train and test sets def calculate_total_score(instances_dict): total_score = 0 for _, instance_dict in instances_dict.items(): total_score += instance_dict['instance_score'] return total_score # 6. Calculate the threshold score for swapping def calculte_threshold_score(instances_dict, average_labels_per_instance, epoch, threshold_proportion, decay): instance_scores = [] for _, instance_dict in instances_dict.items(): if instance_dict['instance_score'] < average_labels_per_instance: instance_scores.append(instance_dict['instance_score']) threshold_score = np.quantile(instance_scores, (1 - (threshold_proportion / ((1 + decay) ** epoch)))) if threshold_score < 0: threshold_score = 0 return threshold_score # 7. Swap the instances with instance_score that is greater than the threshold score # Probability of swapping an instance is swap_probability def swap_instances(instances_dict, threshold_score, swap_counter, average_labels_per_instance, epoch, swap_probability, decay): for instance_id, instance_dict in instances_dict.items(): instance_score = instance_dict['instance_score'] if instance_score >= average_labels_per_instance: if random.uniform(0, 1) <= 0.25 / (1.05 ** epoch): current_group = instance_dict['train_or_test'] if current_group == 'train': instances_dict[instance_id]['train_or_test'] = 'test' swap_counter['to_test'] += 1 elif current_group == 'test': instances_dict[instance_id]['train_or_test'] = 'train' swap_counter['to_train'] += 1 elif instance_score > threshold_score and random.uniform(0, 1) <= swap_probability / ((1 + decay) ** epoch): current_group = instance_dict['train_or_test'] if current_group == 'train': instances_dict[instance_id]['train_or_test'] = 'test' swap_counter['to_test'] += 1 elif current_group == 'test': instances_dict[instance_id]['train_or_test'] = 'train' swap_counter['to_train'] += 1
6,577
47.014599
127
py
PC-JeDi
PC-JeDi-main/src/plotting.py
from copy import deepcopy from functools import partial from pathlib import Path from typing import Optional, Union import matplotlib.pyplot as plt import numpy as np import PIL import wandb from jetnet.utils import efps def plot_multi_hists( data_list: Union[list, np.ndarray], data_labels: Union[list, str], col_labels: Union[list, str], path: Optional[Union[Path, str]] = None, scale_factors: Optional[list] = None, do_err: bool = False, do_norm: bool = False, bins: Union[list, str, partial] = "auto", logy: bool = False, y_label: Optional[str] = None, ylim: Optional[list] = None, rat_ylim: tuple = (0, 2), rat_label: Optional[str] = None, scale: int = 5, do_legend: bool = True, hist_kwargs: Optional[list] = None, err_kwargs: Optional[list] = None, legend_kwargs: Optional[dict] = None, incl_overflow: bool = True, incl_underflow: bool = True, do_ratio_to_first: bool = False, return_fig: bool = False, return_img: bool = False, ) -> Union[plt.Figure, None]: """Plot multiple histograms given a list of 2D tensors/arrays. - Performs the histogramming here - Each column the arrays will be a seperate axis - Matching columns in each array will be superimposed on the same axis - If the tensor being passed is 3D it will average them and combine the uncertainty args: data_list: A list of tensors or numpy arrays, each col will be a seperate axis data_labels: A list of labels for each tensor in data_list col_labels: A list of labels for each column/axis path: The save location of the plots (include img type) scale_factors: List of scalars to be applied to each histogram do_err: If the statistical errors should be included as shaded regions do_norm: If the histograms are to be a density plot bins: List of bins to use for each axis, can use numpy's strings logy: If we should use the log in the y-axis y_label: Label for the y axis of the plots ylim: The y limits for all plots rat_ylim: The y limits of the ratio plots rat_label: The label for the ratio plot scale: The size in inches for each subplot do_legend: If the legend should be plotted hist_kwargs: Additional keyword arguments for the line for each histogram legend_kwargs: Extra keyword arguments to pass to the legend constructor incl_overflow: Have the final bin include the overflow incl_underflow: Have the first bin include the underflow do_ratio_to_first: Include a ratio plot to the first histogram in the list as_pdf: Also save an additional image in pdf format return_fig: Return the figure (DOES NOT CLOSE IT!) return_img: Return a PIL image (will close the figure) """ # Make the arguments lists for generality if not isinstance(data_list, list): data_list = [data_list] if isinstance(data_labels, str): data_labels = [data_labels] if isinstance(col_labels, str): col_labels = [col_labels] if not isinstance(bins, list): bins = data_list[0].shape[-1] * [bins] if not isinstance(scale_factors, list): scale_factors = len(data_list) * [scale_factors] if not isinstance(hist_kwargs, list): hist_kwargs = len(data_list) * [hist_kwargs] if not isinstance(err_kwargs, list): err_kwargs = len(data_list) * [err_kwargs] # Cycle through the datalist and ensure that they are 2D, as each column is an axis for data_idx in range(len(data_list)): if data_list[data_idx].ndim < 2: data_list[data_idx] = data_list[data_idx].unsqueeze(-1) # Check the number of histograms to plot n_data = len(data_list) n_axis = data_list[0].shape[-1] # Make sure that all the list lengths are consistant assert len(data_labels) == n_data assert len(col_labels) == n_axis assert len(bins) == n_axis # Make sure the there are not too many subplots if n_axis > 20: raise RuntimeError("You are asking to create more than 20 subplots!") # Create the figure and axes lists dims = np.array([1, n_axis]) # Subplot is (n_rows, n_columns) size = np.array([n_axis, 1.0]) # Size is (width, height) if do_ratio_to_first: dims *= np.array([2, 1]) # Double the number of rows size *= np.array([1, 1.2]) # Increase the height fig, axes = plt.subplots( *dims, figsize=tuple(scale * size), gridspec_kw={"height_ratios": [3, 1] if do_ratio_to_first else {1}}, squeeze=False, ) # Cycle through each axis and determine the bins that should be used # Automatic/Interger bins are replaced using the first item in the data list for ax_idx in range(n_axis): ax_bins = bins[ax_idx] if isinstance(ax_bins, partial): ax_bins = ax_bins() # If the axis bins was specified to be 'auto' or another numpy string if isinstance(ax_bins, str): unq = np.unique(data_list[0][:, ax_idx]) n_unique = len(unq) # If the number of datapoints is less than 10 then use even spacing if 1 < n_unique < 10: ax_bins = (unq[1:] + unq[:-1]) / 2 # Use midpoints, add final, initial ax_bins = np.append(ax_bins, unq.max() + unq.max() - ax_bins[-1]) ax_bins = np.insert(ax_bins, 0, unq.min() + unq.min() - ax_bins[0]) # Numpy function to get the bin edges, catches all other cases (int, etc) ax_bins = np.histogram_bin_edges(data_list[0][:, ax_idx], bins=ax_bins) # Replace the element in the array with the edges bins[ax_idx] = ax_bins # Cycle through each of the axes for ax_idx in range(n_axis): # Get the bins for this axis ax_bins = bins[ax_idx] # Cycle through each of the data arrays for data_idx in range(n_data): # Apply overflow and underflow (make a copy) data = np.copy(data_list[data_idx][..., ax_idx]).squeeze() if incl_overflow: data = np.minimum(data, ax_bins[-1]) if incl_underflow: data = np.maximum(data, ax_bins[0]) # If the data is still a 2D tensor treat it as a collection of histograms if data.ndim > 1: h = [] for dim in range(data.shape[-1]): h.append(np.histogram(data[:, dim], ax_bins, density=do_norm)[0]) # Nominal and err is based on chi2 of same value, mult measurements hist = 1 / np.mean(1 / np.array(h), axis=0) hist_err = np.sqrt(1 / np.sum(1 / np.array(h), axis=0)) # Otherwise just calculate a single histogram else: hist, _ = np.histogram(data, ax_bins, density=do_norm) hist_err = np.sqrt(hist) # Apply the scale factors if scale_factors[data_idx] is not None: hist *= scale_factors hist_err *= scale_factors # Save the first histogram for the ratio plots if data_idx == 0: denom_hist = hist denom_err = hist_err # Get the additional keyword arguments for the histograms and errors if hist_kwargs[data_idx] is not None and bool(hist_kwargs[data_idx]): h_kwargs = deepcopy(hist_kwargs[data_idx]) else: h_kwargs = {} # Use the stair function to plot the histograms line = axes[0, ax_idx].stairs( hist, ax_bins, label=data_labels[data_idx], **h_kwargs ) if err_kwargs[data_idx] is not None and bool(err_kwargs[data_idx]): e_kwargs = deepcopy(err_kwargs[data_idx]) else: e_kwargs = {"color": line._edgecolor, "alpha": 0.2, "fill": True} # Include the uncertainty in the plots as a shaded region if do_err: axes[0, ax_idx].stairs( hist + hist_err, ax_bins, baseline=hist - hist_err, **e_kwargs, ) # Add a ratio plot if do_ratio_to_first: if hist_kwargs[data_idx] is not None and bool(hist_kwargs[data_idx]): ratio_kwargs = deepcopy(hist_kwargs[data_idx]) else: ratio_kwargs = { "color": line._edgecolor, "linestyle": line._linestyle, } ratio_kwargs["fill"] = False # Never fill a ratio plot # Calculate the new ratio values with their errors rat_hist = hist / denom_hist rat_err = rat_hist * np.sqrt( (hist_err / hist) ** 2 + (denom_err / denom_hist) ** 2 ) # Plot the ratios axes[1, ax_idx].stairs( rat_hist, ax_bins, **ratio_kwargs, ) # Use a standard shaded region for the errors if do_err: axes[1, ax_idx].stairs( rat_hist + rat_err, ax_bins, baseline=rat_hist - rat_err, **e_kwargs, ) # Cycle again through each axis and apply editing for ax_idx in range(n_axis): ax_bins = bins[ax_idx] # X axis axes[0, ax_idx].set_xlim(ax_bins[0], ax_bins[-1]) if do_ratio_to_first: axes[0, ax_idx].set_xticklabels([]) axes[1, ax_idx].set_xlabel(col_labels[ax_idx]) axes[1, ax_idx].set_xlim(ax_bins[0], ax_bins[-1]) else: axes[0, ax_idx].set_xlabel(col_labels[ax_idx]) # Y axis if logy: axes[0, ax_idx].set_yscale("log") if ylim is not None: axes[0, ax_idx].set_ylim(*ylim) else: _, ylim2 = axes[0, ax_idx].get_ylim() if logy: axes[0, ax_idx].set_ylim(top=10 ** (np.log10(ylim2) * 1.40)) else: axes[0, ax_idx].set_ylim(top=ylim2 * 1.35) if y_label is not None: axes[0, ax_idx].set_ylabel(y_label) elif do_norm: axes[0, ax_idx].set_ylabel("Normalised Entries") else: axes[0, ax_idx].set_ylabel("Entries") # Ratio Y axis if do_ratio_to_first: axes[1, ax_idx].set_ylim(rat_ylim) if rat_label is not None: axes[1, ax_idx].set_ylabel(rat_label) else: axes[1, ax_idx].set_ylabel(f"Ratio to {data_labels[0]}") # Legend if do_legend: legend_kwargs = legend_kwargs or {} axes[0, ax_idx].legend(**legend_kwargs) # Final figure layout fig.tight_layout() if do_ratio_to_first: fig.subplots_adjust(hspace=0.08) # For ratio plots minimise the h_space # Save the file if path is not None: fig.savefig(path) # Return a rendered image, or the matplotlib figure, or close if return_img: img = PIL.Image.frombytes( "RGB", fig.canvas.get_width_height(), fig.canvas.tostring_rgb() ) plt.close(fig) return img if return_fig: return fig plt.close(fig) def locals_to_rel_mass_and_efp(csts: np.ndarray, mask: np.ndarray) -> np.ndarray: """Convert the values of a set of constituents to the relative mass and EFP values of the jet they belong to. Args: csts: A numpy array of shape (batch_size, n_csts, 3) containing the (eta, phi, pt) values of the constituents. mask: A numpy array of shape (batch_size, n_csts) containing a mask for the constituents, used to sum only over the valid constituents. Returns: A numpy array of shape (batch_size, 2) containing the relative mass and EFP values of the jet. """ # Calculate the constituent pt, eta and phi eta = csts[..., 0] phi = csts[..., 1] pt = csts[..., 2] # Calculate the total jet values in cartensian coordinates, include mask for sum jet_px = (pt * np.cos(phi) * mask).sum(axis=-1) jet_py = (pt * np.sin(phi) * mask).sum(axis=-1) jet_pz = (pt * np.sinh(eta) * mask).sum(axis=-1) jet_e = (pt * np.cosh(eta) * mask).sum(axis=-1) # Get the derived jet values, the clamps ensure NaNs dont occur jet_m = np.sqrt( np.clip(jet_e**2 - jet_px**2 - jet_py**2 - jet_pz**2, 0, None) ) # Get the efp values jet_efps = efps(csts, efp_jobs=1).mean(axis=-1) return np.vstack([jet_m, jet_efps]).T def plot_mpgan_marginals( outputs: np.ndarray, nodes: np.ndarray, mask: np.ndarray, current_epoch: int, ) -> None: # Clip the outputs for the marginals to match expected jet spread outputs[..., 0] = np.clip(outputs[..., 0], -0.5, 0.5) outputs[..., 1] = np.clip(outputs[..., 1], -0.5, 0.5) outputs[..., 2] = np.clip(outputs[..., 2], 0, 1) # Plot histograms for the constituent marginals Path("./plots/").mkdir(parents=False, exist_ok=True) cst_img = plot_multi_hists( data_list=[nodes[mask], outputs[mask]], data_labels=["Original", "Generated"], col_labels=[r"$\Delta \eta$", r"$\Delta \phi$", r"$\frac{p_T}{Jet_{p_T}}$"], do_norm=True, return_img=True, path=f"./plots/csts_{current_epoch}", logy=True, ) # Convert to total jet mass and pt, do some clamping to make everyone happy pred_jets = locals_to_rel_mass_and_efp(outputs, mask) pred_jets[:, 0] = np.clip(pred_jets[:, 0], 0, 0.4) pred_jets[:, 1] = np.clip(pred_jets[:, 1], 0, 4e-3) pred_jets = np.nan_to_num(pred_jets) real_jets = locals_to_rel_mass_and_efp(nodes, mask) real_jets[:, 0] = np.clip(real_jets[:, 0], 0, 0.4) real_jets[:, 1] = np.clip(real_jets[:, 1], 0, 4e-3) real_jets = np.nan_to_num(real_jets) # Image for the total jet variables jet_img = plot_multi_hists( data_list=[real_jets, pred_jets], data_labels=["Original", "Generated"], col_labels=["Relative Jet Mass", "Jet EFP"], do_norm=True, return_img=True, path=f"./plots/jets_{current_epoch}", ) # Create the wandb table and add the data if wandb.run is not None: gen_table = wandb.Table(columns=["constituents", "jets"]) gen_table.add_data(wandb.Image(cst_img), wandb.Image(jet_img)) wandb.run.log({"generated": gen_table}, commit=False)
14,847
36.589873
87
py
PC-JeDi
PC-JeDi-main/src/physics.py
# import jetnet import numpy as np import pytorch_lightning as pl import torch as T # FIX RANDOM SEED FOR REPRODUCIBILITY pl.seed_everything(0, workers=True) def locals_to_mass_and_pt(csts: T.Tensor, mask: T.BoolTensor) -> T.Tensor: """Calculate the overall jet pt and mass from the constituents. The constituents are expected to be expressed as: - del_eta - del_phi - log_pt """ # Calculate the constituent pt, eta and phi eta = csts[..., 0] phi = csts[..., 1] pt = csts[..., 2].exp() # Calculate the total jet values in cartensian coordinates, include mask for sum jet_px = (pt * T.cos(phi) * mask).sum(axis=-1) jet_py = (pt * T.sin(phi) * mask).sum(axis=-1) jet_pz = (pt * T.sinh(eta) * mask).sum(axis=-1) jet_e = (pt * T.cosh(eta) * mask).sum(axis=-1) # Get the derived jet values, the clamps ensure NaNs dont occur jet_pt = T.clamp_min(jet_px**2 + jet_py**2, 0).sqrt() jet_m = T.clamp_min(jet_e**2 - jet_px**2 - jet_py**2 - jet_pz**2, 0).sqrt() return T.vstack([jet_pt, jet_m]).T def numpy_locals_to_mass_and_pt( csts: np.ndarray, mask: np.ndarray, pt_logged=False, ) -> np.ndarray: """Calculate the overall jet pt and mass from the constituents. The constituents are expected to be expressed as: - del_eta - del_phi - log_pt or just pt depending on pt_logged """ # Calculate the constituent pt, eta and phi eta = csts[..., 0] phi = csts[..., 1] pt = np.exp(csts[..., 2]) * mask if pt_logged else csts[..., 2] # Calculate the total jet values in cartensian coordinates, include mask for sum jet_px = (pt * np.cos(phi) * mask).sum(axis=-1) jet_py = (pt * np.sin(phi) * mask).sum(axis=-1) jet_pz = (pt * np.sinh(eta) * mask).sum(axis=-1) jet_e = (pt * np.cosh(eta) * mask).sum(axis=-1) # Get the derived jet values, the clamps ensure NaNs dont occur jet_pt = np.sqrt(np.clip(jet_px**2 + jet_py**2, 0, None)) jet_m = np.sqrt( np.clip(jet_e**2 - jet_px**2 - jet_py**2 - jet_pz**2, 0, None) ) return np.vstack([jet_pt, jet_m]).T
2,120
30.191176
84
py
PC-JeDi
PC-JeDi-main/src/numpy_utils.py
import numpy as np def undo_log_squash(data: np.ndarray) -> np.ndarray: """Undo the log squash function above.""" return np.sign(data) * (np.exp(np.abs(data)) - 1) def log_squash(data: np.ndarray) -> np.ndarray: """Apply a log squashing function for distributions with high tails.""" return np.sign(data) * np.log(np.abs(data) + 1)
352
28.416667
75
py
PC-JeDi
PC-JeDi-main/src/torch_utils.py
from typing import Union import numpy as np import torch as T import torch.nn as nn def get_loss_fn(name: str, **kwargs) -> nn.Module: """Return a pytorch loss function given a name.""" if name == "none": return None # Regression losses if name == "huber": return nn.HuberLoss(reduction="none") if name == "mse": return nn.MSELoss(reduction="none") if name == "mae": return nn.L1Loss(reduction="none") def to_np(inpt: Union[T.Tensor, tuple]) -> np.ndarray: """More consicse way of doing all the necc steps to convert a pytorch tensor to numpy array. - Includes gradient deletion, and device migration """ if isinstance(inpt, (tuple, list)): return type(inpt)(to_np(x) for x in inpt) if inpt.dtype == T.bfloat16: # Numpy conversions don't support bfloat16s inpt = inpt.half() return inpt.detach().cpu().numpy()
918
26.848485
77
py
PC-JeDi
PC-JeDi-main/src/hydra_utils.py
"""A collection of misculaneous functions usefull for the lighting/hydra template.""" import logging import os from pathlib import Path from typing import Any, List, Sequence import hydra import rich import rich.syntax import rich.tree import wandb from omegaconf import DictConfig, OmegaConf from pytorch_lightning import LightningModule, Trainer from pytorch_lightning.utilities.rank_zero import rank_zero_only log = logging.getLogger(__name__) @rank_zero_only def reload_original_config(cfg: OmegaConf, get_best: bool = False) -> OmegaConf: """Replaces the cfg with the one stored at the checkpoint location. Will also set the chkpt_dir to the latest version of the last or best checkpoint """ # Load the original config found in the the file directory orig_cfg = OmegaConf.load(Path("full_config.yaml")) # Get the latest updated checkpoint with the prefix last or best flag = "best" if get_best else "last" orig_cfg.ckpt_path = str( sorted(Path.cwd().glob(f"checkpoints/{flag}*.ckpt"), key=os.path.getmtime)[-1] ) # Set the wandb logger to attempt to resume the job if hasattr(orig_cfg, "loggers"): if hasattr(orig_cfg.loggers, "wandb"): orig_cfg.loggers.wandb.resume = True return orig_cfg @rank_zero_only def print_config( cfg: DictConfig, print_order: Sequence[str] = ( "datamodule", "model", "callbacks", "loggers", "trainer", "paths", ), resolve: bool = True, ) -> None: """Prints content of DictConfig using Rich library and its tree structure. Args: cfg: Configuration composed by Hydra. print_order: Determines in what order config components are printed. resolve: Whether to resolve reference fields of DictConfig. save_to_file: Whether to export config to the hydra output folder. """ style = "dim" tree = rich.tree.Tree("CONFIG", style=style, guide_style=style) queue = [] # add fields from `print_order` to queue for field in print_order: queue.append(field) if field in cfg else log.warning( f"Field '{field}' not found in config. Skipping '{field}' printing..." ) # add all the other fields to queue (not specified in `print_order`) for field in cfg: if field not in queue: queue.insert(0, field) # generate config tree from queue for field in queue: branch = tree.add(field, style=style, guide_style=style) config_group = cfg[field] if isinstance(config_group, DictConfig): branch_content = OmegaConf.to_yaml(config_group, resolve=resolve) else: branch_content = str(config_group) branch.add(rich.syntax.Syntax(branch_content, "yaml")) # print config tree rich.print(tree) def save_config(cfg: OmegaConf) -> None: """Saves the config to the output directory. This is necc ontop of hydra's default conf.yaml as it will resolve the entries allowing one to resume jobs identically with elements such as ${now:%H-%M-%S}. Furthermore, hydra does not allow resuming a previous job from the same dir. The work around is reload_original_config but that will fail as hydra overwites the default config.yaml file on startup, so this backup is needed for resuming. """ # In order to be able to resume the wandb logger session, save the run id if hasattr(cfg, "loggers"): if hasattr(cfg.loggers, "wandb"): if wandb.run is not None: cfg.loggers.wandb.id = wandb.run.id # save config tree to file OmegaConf.save(cfg, Path(cfg.paths.full_path, "full_config.yaml"), resolve=True) @rank_zero_only def log_hyperparameters( cfg: DictConfig, model: LightningModule, trainer: Trainer ) -> None: """Passes the config dict to the trainer's logger, also calculates # params.""" # Convert the config object to a hyperparameter dict hparams = OmegaConf.to_container(cfg, resolve=True) # calculate the number of trainable parameters in the model and add it hparams["model/params/total"] = sum(p.numel() for p in model.parameters()) hparams["model/params/trainable"] = sum( p.numel() for p in model.parameters() if p.requires_grad ) hparams["model/params/non_trainable"] = sum( p.numel() for p in model.parameters() if not p.requires_grad ) trainer.logger.log_hyperparams(hparams) def instantiate_collection(cfg_coll: DictConfig) -> List[Any]: """Uses hydra to instantiate a collection of classes and return a list.""" objs = [] if not cfg_coll: log.warning("List of configs is empty") return objs if not isinstance(cfg_coll, DictConfig): raise TypeError("List of configs must be a DictConfig!") for _, cb_conf in cfg_coll.items(): if isinstance(cb_conf, DictConfig) and "_target_" in cb_conf: log.info(f"Instantiating <{cb_conf._target_}>") objs.append(hydra.utils.instantiate(cb_conf)) return objs
5,097
30.8625
86
py
PC-JeDi
PC-JeDi-main/src/datamodules/jetnet.py
from copy import deepcopy from typing import Mapping import numpy as np from jetnet.datasets import JetNet from pytorch_lightning import LightningDataModule from torch.utils.data import DataLoader, Dataset from src.numpy_utils import log_squash from src.physics import numpy_locals_to_mass_and_pt class JetNetData(Dataset): """Wrapper for the JetNet dataset so it works with our models with different inputs.""" def __init__(self, **kwargs) -> None: # Extra arguments used here self.log_squash_pt = kwargs.pop("log_squash_pt", False) self.high_as_context = kwargs.pop("high_as_context", True) self.recalc_high = kwargs.pop("recalculate_jet_from_pc", True) self.n_jets = kwargs.pop("n_jets", None) # All other arguments passed to the jetnet dataset constructor self.csts, self.high = JetNet.getData(**kwargs) self.csts = self.csts.astype(np.float32) self.high = self.high.astype(np.float32) # Trim the data based on the requested number of jets (None does nothing) self.csts = self.csts[: self.n_jets].astype(np.float32) self.high = self.high[: self.n_jets].astype(np.float32) # Manually calculate the mask by looking for zero padding self.mask = ~np.all(self.csts == 0, axis=-1) # Change the constituent information from pt-fraction to pure pt csts = self.csts.copy() csts[..., -1] = csts[..., -1] * self.high[..., 0:1] # Recalculate the jet mass and pt using the point cloud if self.recalc_high: self.high = numpy_locals_to_mass_and_pt(csts, self.mask) # Change the pt fraction to log_squash(pt) if self.log_squash_pt: self.csts[..., -1] = log_squash(csts[..., -1]) * self.mask def __getitem__(self, idx) -> tuple: csts = self.csts[idx] high = self.high[idx] if self.high_as_context else np.empty(0, dtype="f") mask = self.mask[idx] return csts, mask, high def __len__(self) -> int: return len(self.high) class JetNetDataModule(LightningDataModule): def __init__( self, *, data_conf: Mapping, loader_kwargs: Mapping, ) -> None: super().__init__() self.save_hyperparameters(logger=False) # Get the dimensions of the data from the config file self.dim = len(data_conf["particle_features"]) self.n_nodes = data_conf["num_particles"] if data_conf["high_as_context"]: self.ctxt_dim = len(data_conf["jet_features"]) else: self.ctxt_dim = 0 def setup(self, stage: str) -> None: """Sets up the relevant datasets.""" if stage == "fit": self.train_set = JetNetData(**self.hparams.data_conf, split="train") self.valid_set = JetNetData(**self.hparams.data_conf, split="test") if stage == "test": self.test_set = JetNetData(**self.hparams.data_conf, split="test") def train_dataloader(self) -> DataLoader: return DataLoader(self.train_set, **self.hparams.loader_kwargs, shuffle=True) def val_dataloader(self) -> DataLoader: return DataLoader(self.valid_set, **self.hparams.loader_kwargs, shuffle=False) def test_dataloader(self) -> DataLoader: test_kwargs = deepcopy(self.hparams.loader_kwargs) test_kwargs["drop_last"] = False return DataLoader(self.test_set, **test_kwargs, shuffle=False)
3,490
34.989691
86
py
PC-JeDi
PC-JeDi-main/src/models/diffusion.py
import math from typing import Optional, Tuple import torch as T from tqdm import tqdm class VPDiffusionSchedule: def __init__(self, max_sr: float = 1, min_sr: float = 1e-2) -> None: self.max_sr = max_sr self.min_sr = min_sr def __call__(self, time: T.Tensor) -> T.Tensor: return cosine_diffusion_shedule(time, self.max_sr, self.min_sr) def get_betas(self, time: T.Tensor) -> T.Tensor: return cosine_beta_shedule(time, self.max_sr, self.min_sr) def cosine_diffusion_shedule( diff_time: T.Tensor, max_sr: float = 1, min_sr: float = 1e-2 ) -> Tuple[T.Tensor, T.Tensor]: """Calculates the signal and noise rate for any point in the diffusion processes. Using continuous diffusion times between 0 and 1 which make switching between different numbers of diffusion steps between training and testing much easier. Returns only the values needed for the jump forward diffusion step and the reverse DDIM step. These are sqrt(alpha_bar) and sqrt(1-alphabar) which are called the signal_rate and noise_rate respectively. The jump forward diffusion process is simply a weighted sum of: input * signal_rate + eps * noise_rate Uses a cosine annealing schedule as proposed in Proposed in https://arxiv.org/abs/2102.09672 Args: diff_time: The time used to sample the diffusion scheduler Output will match the shape Must be between 0 and 1 max_sr: The initial rate at the first step min_sr: How much signal is preserved at end of diffusion (can't be zero due to log) """ # Use cosine annealing, which requires switching from times -> angles start_angle = math.acos(max_sr) end_angle = math.acos(min_sr) diffusion_angles = start_angle + diff_time * (end_angle - start_angle) signal_rates = T.cos(diffusion_angles) noise_rates = T.sin(diffusion_angles) return signal_rates, noise_rates def cosine_beta_shedule( diff_time: T.Tensor, max_sr: float = 1, min_sr: float = 1e-2 ) -> T.Tensor: """Returns the beta values for the continuous flows using the above cosine scheduler.""" start_angle = math.acos(max_sr) end_angle = math.acos(min_sr) diffusion_angles = start_angle + diff_time * (end_angle - start_angle) return 2 * (end_angle - start_angle) * T.tan(diffusion_angles) def ddim_predict( noisy_data: T.Tensor, pred_noises: T.Tensor, signal_rates: T.Tensor, noise_rates: T.Tensor, ) -> T.Tensor: """Use a single ddim step to predict the final image from anywhere in the diffusion process.""" return (noisy_data - noise_rates * pred_noises) / signal_rates @T.no_grad() def ddim_sampler( model, diff_sched: VPDiffusionSchedule, initial_noise: T.Tensor, n_steps: int = 50, keep_all: bool = False, mask: Optional[T.Tensor] = None, ctxt: Optional[T.BoolTensor] = None, clip_predictions: Optional[tuple] = None, ) -> Tuple[T.Tensor, list]: """Apply the DDIM sampling process to generate a batch of samples from noise. Args: model: A denoising diffusion model Requires: inpt_dim, device, forward() method that outputs pred noise diif_sched: A diffusion schedule object to calculate signal and noise rates initial_noise: The initial noise to pass through the process If none it will be generated here n_steps: The number of iterations to generate the samples keep_all: Return all stages of diffusion process Can be memory heavy for large batches num_samples: How many samples to generate Ignored if initial_noise is provided mask: The mask for the output point clouds ctxt: The context tensor for the output point clouds clip_predictions: Can stabalise generation by clipping the outputs """ # Get the initial noise for generation and the number of sammples num_samples = initial_noise.shape[0] # The shape needed for expanding the time encodings expanded_shape = [-1] + [1] * (initial_noise.dim() - 1) # Check the input argument for the n_steps, must be less than what was trained all_stages = [] step_size = 1 / n_steps # The initial variables needed for the loop noisy_data = initial_noise diff_times = T.ones(num_samples, device=model.device) next_signal_rates, next_noise_rates = diff_sched(diff_times.view(expanded_shape)) for step in tqdm(range(n_steps), "DDIM-sampling", leave=False): # Update with the previous 'next' step signal_rates = next_signal_rates noise_rates = next_noise_rates # Keep track of the diffusion evolution if keep_all: all_stages.append(noisy_data) # Apply the denoise step to get X_0 and expected noise pred_noises = model(noisy_data, diff_times, mask, ctxt) pred_data = ddim_predict(noisy_data, pred_noises, signal_rates, noise_rates) # Get the next predicted components using the next signal and noise rates diff_times = diff_times - step_size next_signal_rates, next_noise_rates = diff_sched( diff_times.view(expanded_shape) ) # Clamp the predicted X_0 for stability if clip_predictions is not None: pred_data.clamp_(*clip_predictions) # Remix the predicted components to go from estimated X_0 -> X_{t-1} noisy_data = next_signal_rates * pred_data + next_noise_rates * pred_noises return pred_data, all_stages @T.no_grad() def euler_maruyama_sampler( model, diff_sched: VPDiffusionSchedule, initial_noise: T.Tensor, n_steps: int = 50, keep_all: bool = False, mask: Optional[T.Tensor] = None, ctxt: Optional[T.BoolTensor] = None, clip_predictions: Optional[tuple] = None, ) -> Tuple[T.Tensor, list]: """Apply the full reverse process to noise to generate a batch of samples.""" # Get the initial noise for generation and the number of sammples num_samples = initial_noise.shape[0] # The shape needed for expanding the time encodings expanded_shape = [-1] + [1] * (initial_noise.dim() - 1) # Check the input argument for the n_steps, must be less than what was trained all_stages = [] delta_t = 1 / n_steps # The initial variables needed for the loop x_t = initial_noise t = T.ones(num_samples, device=model.device) for step in tqdm(range(n_steps), "Euler-Maruyama-sampling", leave=False): # Use the model to get the expected noise pred_noises = model(x_t, t, mask, ctxt) # Use to get s_theta _, noise_rates = diff_sched(t.view(expanded_shape)) s = -pred_noises / noise_rates # Take one step using the em method betas = diff_sched.get_betas(t.view(expanded_shape)) x_t += 0.5 * betas * (x_t + 2 * s) * delta_t x_t += (betas * delta_t).sqrt() * T.randn_like(x_t) t -= delta_t # Keep track of the diffusion evolution if keep_all: all_stages.append(x_t) # Clamp the denoised data for stability if clip_predictions is not None: x_t.clamp_(*clip_predictions) return x_t, all_stages @T.no_grad() def euler_sampler( model, diff_sched: VPDiffusionSchedule, initial_noise: T.Tensor, n_steps: int = 50, keep_all: bool = False, mask: Optional[T.Tensor] = None, ctxt: Optional[T.BoolTensor] = None, clip_predictions: Optional[tuple] = None, ) -> Tuple[T.Tensor, list]: """Apply the full reverse process to noise to generate a batch of samples.""" # Get the initial noise for generation and the number of sammples num_samples = initial_noise.shape[0] # The shape needed for expanding the time encodings expanded_shape = [-1] + [1] * (initial_noise.dim() - 1) # Check the input argument for the n_steps, must be less than what was trained all_stages = [] delta_t = 1 / n_steps # The initial variables needed for the loop t = T.ones(num_samples, device=model.device) signal_rates, noise_rates = diff_sched(t.view(expanded_shape)) x_t = initial_noise * (signal_rates + noise_rates) for step in tqdm(range(n_steps), "Euler-sampling", leave=False): # Take a step using the euler method and the gradient calculated by the ode x_t += get_ode_gradient(model, diff_sched, x_t, t, mask, ctxt) * delta_t t -= delta_t # Keep track of the diffusion evolution if keep_all: all_stages.append(x_t) # Clamp the denoised data for stability if clip_predictions is not None: x_t.clamp_(*clip_predictions) return x_t, all_stages @T.no_grad() def runge_kutta_sampler( model, diff_sched: VPDiffusionSchedule, initial_noise: T.Tensor, n_steps: int = 50, keep_all: bool = False, mask: Optional[T.Tensor] = None, ctxt: Optional[T.BoolTensor] = None, clip_predictions: Optional[tuple] = None, ) -> Tuple[T.Tensor, list]: """Apply the full reverse process to noise to generate a batch of samples.""" # Get the initial noise for generation and the number of sammples num_samples = initial_noise.shape[0] # Check the input argument for the n_steps, must be less than what was trained all_stages = [] delta_t = 1 / n_steps # Wrap the ode gradient in a lambda function depending only on xt and t ode_grad = lambda t, x_t: get_ode_gradient(model, diff_sched, x_t, t, mask, ctxt) # The initial variables needed for the loop x_t = initial_noise t = T.ones(num_samples, device=model.device) for step in tqdm(range(n_steps), "Runge-Kutta-sampling", leave=False): k1 = delta_t * (ode_grad(t, x_t)) k2 = delta_t * (ode_grad((t - delta_t / 2), (x_t + k1 / 2))) k3 = delta_t * (ode_grad((t - delta_t / 2), (x_t + k2 / 2))) k4 = delta_t * (ode_grad((T.clamp_min(t - delta_t, 0)), (x_t + k3))) k = (k1 + 2 * k2 + 2 * k3 + k4) / 6 x_t += k t -= delta_t # Keep track of the diffusion evolution if keep_all: all_stages.append(x_t) # Clamp the denoised data for stability if clip_predictions is not None: x_t.clamp_(*clip_predictions) return x_t, all_stages def get_ode_gradient( model, diff_sched: VPDiffusionSchedule, x_t: T.Tensor, t: T.Tensor, mask: Optional[T.BoolTensor] = None, ctxt: Optional[T.Tensor] = None, ) -> T.Tensor: expanded_shape = [-1] + [1] * (x_t.dim() - 1) _, noise_rates = diff_sched(t.view(expanded_shape)) betas = diff_sched.get_betas(t.view(expanded_shape)) return 0.5 * betas * (x_t - model(x_t, t, mask, ctxt) / noise_rates) def run_sampler(sampler: str, *args, **kwargs) -> Tuple[T.Tensor, list]: if sampler == "em": return euler_maruyama_sampler(*args, **kwargs) if sampler == "euler": return euler_sampler(*args, **kwargs) if sampler == "rk": return runge_kutta_sampler(*args, **kwargs) if sampler == "ddim": return ddim_sampler(*args, **kwargs) raise RuntimeError(f"Unknown sampler: {sampler}")
11,263
33.873065
86
py
PC-JeDi
PC-JeDi-main/src/models/transformers.py
"""Some classes to describe transformer architectures.""" import math from typing import Mapping, Optional, Union import torch as T import torch.nn as nn from torch.nn.functional import dropout, softmax from .modules import DenseNetwork def merge_masks( q_mask: Union[T.BoolTensor, None], kv_mask: Union[T.BoolTensor, None], attn_mask: Union[T.BoolTensor, None], q_shape: T.Size, k_shape: T.Size, device: T.device, ) -> Union[None, T.BoolTensor]: """Create a full attention mask which incoporates the padding information.""" # Create the full mask which combines the attention and padding masks merged_mask = None # If either pad mask exists, create if q_mask is not None or kv_mask is not None: if q_mask is None: q_mask = T.full(q_shape[:-1], True, device=device) if kv_mask is None: kv_mask = T.full(k_shape[:-1], True, device=device) merged_mask = q_mask.unsqueeze(-1) & kv_mask.unsqueeze(-2) # If attention mask exists, create if attn_mask is not None: merged_mask = attn_mask if merged_mask is None else attn_mask & merged_mask return merged_mask def attention( query: T.Tensor, key: T.Tensor, value: T.Tensor, dim_key: int, attn_mask: Optional[T.BoolTensor] = None, attn_bias: Optional[T.Tensor] = None, drp: float = 0.0, training: bool = True, ) -> T.Tensor: """Apply the attention using the scaled dot product between the key query and key tensors, then matrix multiplied by the value. Note that the attention scores are ordered in recv x send, which is the opposite to how I usually do it for the graph network, which is send x recv We use masked fill -T.inf as this kills the padded key/values elements but introduces nans for padded query elements. We could used a very small number like -1e9 but this would need to scale with if we are using half precision. Args: query: Batched query sequence of tensors (b, h, s, f) key: Batched key sequence of tensors (b, h, s, f) value: Batched value sequence of tensors (b, h, s, f) dim_key: The dimension of the key features, used to scale the dot product attn_mask: The attention mask, used to blind certain combinations of k,q pairs attn_bias: Extra weights to combine with attention weights drp: Dropout probability training: If the model is in training mode, effects the dropout applied """ # Perform the matrix multiplication scores = T.matmul(query, key.transpose(-2, -1)) / math.sqrt(dim_key) # Add the bias terms if present if attn_bias is not None: # Move the head dimension to the first scores = scores + attn_bias.permute(0, 3, 1, 2) # Mask away the scores between invalid elements in sequence if attn_mask is not None: scores = scores.masked_fill(~attn_mask.unsqueeze(-3), -T.inf) # Apply the softmax function per head feature scores = softmax(scores, dim=-1) # Kill the nans introduced by the padded query elements scores = T.nan_to_num(scores, 0) # Apply dropout to the attention scores scores = dropout(scores, p=drp, training=training) # Finally multiply these scores by the output scores = T.matmul(scores, value) return scores class MultiHeadedAttentionBlock(nn.Module): """Generic Multiheaded Attention. Takes in three sequences with dim: (batch, sqeuence, features) - q: The primary sequence queries (determines output sequence length) - k: The attending sequence keys (determines incoming information) - v: The attending sequence values In a message passing sense you can think of q as your receiver nodes, v and k are the information coming from the sender nodes. When q == k(and v) this is a SELF attention operation When q != k(and v) this is a CROSS attention operation === Block operations: 1) Uses three linear layers to project the sequences. - q = q_linear * q - k = k_linear * k - v = v_linear * v 2) Outputs are reshaped to add a head dimension, and transposed for matmul. - features = model_dim = head_dim * num_heads - dim becomes: batch, num_heads, sequence, head_dim 3) Passes these through to the attention module (message passing) - In standard transformers this is the scaled dot product attention - Also takes additional dropout layer to mask the attention 4) Flatten out the head dimension and pass through final linear layer - results are same as if attention was done seperately for each head and concat - dim: batch, q_seq, head_dim * num_heads """ def __init__( self, model_dim: int, num_heads: int = 1, drp: float = 0, ) -> None: """ Args: model_dim: The dimension of the model num_heads: The number of different attention heads to process in parallel - Must allow interger division into model_dim drp: The dropout probability used in the MHA operation """ super().__init__() # Define model base attributes self.model_dim = model_dim self.num_heads = num_heads self.head_dim = model_dim // num_heads # Check that the dimension of each head makes internal sense if self.head_dim * num_heads != model_dim: raise ValueError("Model dimension must be divisible by number of heads!") # Initialise the weight matrices self.q_linear = nn.Linear(model_dim, model_dim) self.k_linear = nn.Linear(model_dim, model_dim) self.v_linear = nn.Linear(model_dim, model_dim) self.out_linear = nn.Linear(model_dim, model_dim) self.drp = drp def forward( self, q: T.Tensor, k: Optional[T.Tensor] = None, v: Optional[T.Tensor] = None, q_mask: Optional[T.BoolTensor] = None, kv_mask: Optional[T.BoolTensor] = None, attn_mask: Optional[T.BoolTensor] = None, attn_bias: Optional[T.Tensor] = None, ) -> T.Tensor: """ Args: q: The main sequence queries (determines the output length) k: The incoming information keys v: The incoming information values q_mask: Shows which elements of the main sequence are real kv_mask: Shows which elements of the attn sequence are real attn_mask: Extra mask for the attention matrix (eg: look ahead) attn_bias: Extra bias term for the attention matrix (eg: edge features) """ # If only q and q_mask are provided then we automatically apply self attention if k is None: k = q if kv_mask is None: kv_mask = q_mask v = v if v is not None else k # Store the batch size, useful for reshaping b_size, seq, feat = q.shape # Work out the masking situation, with padding, no peaking etc attn_mask = merge_masks(q_mask, kv_mask, attn_mask, q.shape, k.shape, q.device) # Generate the q, k, v projections, break final head dimension in 2 shape = (b_size, -1, self.num_heads, self.head_dim) q = self.q_linear(q).view(shape) k = self.k_linear(k).view(shape) v = self.v_linear(v).view(shape) # Transpose to get dimensions: B,H,Seq,HD (required for matmul) q = q.transpose(1, 2) k = k.transpose(1, 2) v = v.transpose(1, 2) # Calculate the new sequence values, for memory reasons overwrite q q = attention( q, k, v, self.head_dim, attn_mask=attn_mask, attn_bias=attn_bias, drp=self.drp, training=self.training, ) # Returned shape is B,H,Q_seq,HD # Concatenate the all of the heads together to get shape: B,Seq,F q = q.transpose(1, 2).contiguous().view(b_size, -1, self.model_dim) # Pass through final linear layer q = self.out_linear(q) return q class TransformerEncoderLayer(nn.Module): """A transformer encoder layer based on the GPT-2+Normformer style arcitecture. We choose Normformer as it has often proved to be the most stable to train https://arxiv.org/abs/2210.06423 https://arxiv.org/abs/2110.09456 It contains: - Multihead(self)Attention block - A dense network Layernorm is applied before each operation Residual connections are used to bypass each operation """ def __init__( self, model_dim: int, mha_config: Optional[Mapping] = None, dense_config: Optional[Mapping] = None, ctxt_dim: int = 0, ) -> None: """ Args: model_dim: The embedding dimensio of the transformer block mha_config: Keyword arguments for multiheaded-attention block dense_config: Keyword arguments for feed forward network ctxt_dim: Context dimension, """ super().__init__() mha_config = mha_config or {} dense_config = dense_config or {} self.model_dim = model_dim self.ctxt_dim = ctxt_dim # The basic blocks self.self_attn = MultiHeadedAttentionBlock(model_dim, **mha_config) self.dense = DenseNetwork( model_dim, outp_dim=model_dim, ctxt_dim=ctxt_dim, **dense_config ) # The normalisation layers (lots from NormFormer) self.norm1 = nn.LayerNorm(model_dim) self.norm2 = nn.LayerNorm(model_dim) self.norm3 = nn.LayerNorm(model_dim) def forward( self, x: T.Tensor, mask: Optional[T.BoolTensor] = None, ctxt: Optional[T.Tensor] = None, attn_bias: Optional[T.Tensor] = None, attn_mask: Optional[T.BoolTensor] = None, ) -> T.Tensor: "Pass through the layer using residual connections and layer normalisation" x = x + self.norm2( self.self_attn( self.norm1(x), q_mask=mask, attn_mask=attn_mask, attn_bias=attn_bias ) ) x = x + self.dense(self.norm3(x), ctxt) return x class TransformerEncoder(nn.Module): """A stack of N transformer encoder layers followed by a final normalisation step. Sequence -> Sequence """ def __init__( self, model_dim: int = 64, num_layers: int = 3, mha_config: Optional[Mapping] = None, dense_config: Optional[Mapping] = None, ctxt_dim: int = 0, ) -> None: """ Args: model_dim: Feature sieze for input, output, and all intermediate layers num_layers: Number of encoder layers used mha_config: Keyword arguments for the mha block dense_config: Keyword arguments for the dense network in each layer ctxt_dim: Dimension of the context inputs """ super().__init__() self.model_dim = model_dim self.num_layers = num_layers self.layers = nn.ModuleList( [ TransformerEncoderLayer(model_dim, mha_config, dense_config, ctxt_dim) for _ in range(num_layers) ] ) self.final_norm = nn.LayerNorm(model_dim) def forward(self, x: T.Tensor, **kwargs) -> T.Tensor: """Pass the input through all layers sequentially.""" for layer in self.layers: x = layer(x, **kwargs) return self.final_norm(x) class FullTransformerEncoder(nn.Module): """A transformer encoder with added input and output embedding networks. Sequence -> Sequence """ def __init__( self, inpt_dim: int, outp_dim: int, edge_dim: int = 0, ctxt_dim: int = 0, te_config: Optional[Mapping] = None, node_embd_config: Optional[Mapping] = None, outp_embd_config: Optional[Mapping] = None, edge_embd_config: Optional[Mapping] = None, ctxt_embd_config: Optional[Mapping] = None, ) -> None: """ Args: inpt_dim: Dim. of each element of the sequence outp_dim: Dim. of of the final output vector edge_dim: Dim. of the input edge features ctxt_dim: Dim. of the context vector to pass to the embedding nets te_config: Keyword arguments to pass to the TVE constructor node_embd_config: Keyword arguments for node dense embedder outp_embd_config: Keyword arguments for output dense embedder edge_embd_config: Keyword arguments for edge dense embedder ctxt_embd_config: Keyword arguments for context dense embedder """ super().__init__() self.inpt_dim = inpt_dim self.outp_dim = outp_dim self.ctxt_dim = ctxt_dim self.edge_dim = edge_dim te_config = te_config or {} node_embd_config = node_embd_config or {} outp_embd_config = outp_embd_config or {} edge_embd_config = edge_embd_config or {} # Initialise the context embedding network (optional) if self.ctxt_dim: self.ctxt_emdb = DenseNetwork( inpt_dim=self.ctxt_dim, **ctxt_embd_config, ) self.ctxt_out = self.ctxt_emdb.outp_dim else: self.ctxt_out = 0 # Initialise the TVE, the main part of this network self.te = TransformerEncoder(**te_config, ctxt_dim=self.ctxt_out) self.model_dim = self.te.model_dim # Initialise all embedding networks self.node_embd = DenseNetwork( inpt_dim=self.inpt_dim, outp_dim=self.model_dim, ctxt_dim=self.ctxt_out, **node_embd_config, ) self.outp_embd = DenseNetwork( inpt_dim=self.model_dim, outp_dim=self.outp_dim, ctxt_dim=self.ctxt_out, **outp_embd_config, ) # Initialise the edge embedding network (optional) if self.edge_dim: self.edge_embd = DenseNetwork( inpt_dim=self.edge_dim, outp_dim=self.te.layers[0].self_attn.num_heads, ctxt_dim=self.ctxt_out, **edge_embd_config, ) def forward( self, x: T.Tensor, mask: Optional[T.BoolTensor] = None, ctxt: Optional[T.Tensor] = None, attn_bias: Optional[T.Tensor] = None, attn_mask: Optional[T.BoolTensor] = None, ) -> T.Tensor: """Pass the input through all layers sequentially.""" if self.ctxt_dim: ctxt = self.ctxt_emdb(ctxt) if self.edge_dim: attn_bias = self.edge_embd(attn_bias, ctxt) x = self.node_embd(x, ctxt) x = self.te(x, mask=mask, ctxt=ctxt, attn_bias=attn_bias, attn_mask=attn_mask) x = self.outp_embd(x, ctxt) return x
15,049
33.837963
87
py
PC-JeDi
PC-JeDi-main/src/models/schedulers.py
from torch.optim import Optimizer from torch.optim.lr_scheduler import _LRScheduler class WarmupToConstant(_LRScheduler): """Gradually warm-up learning rate in optimizer to a constant value.""" def __init__(self, optimizer: Optimizer, num_steps: int = 100) -> None: """ args: optimizer (Optimizer): Wrapped optimizer. num_steps: target learning rate is reached at num_steps. """ self.num_steps = num_steps self.finished = False super().__init__(optimizer) def get_lr(self) -> list[float]: if self.last_epoch > self.num_steps: return [base_lr for base_lr in self.base_lrs] return [ (base_lr / self.num_steps) * self.last_epoch for base_lr in self.base_lrs ]
793
32.083333
85
py
PC-JeDi
PC-JeDi-main/src/models/modules.py
"""Collection of pytorch modules that make up the networks.""" import math from typing import Optional, Union import torch as T import torch.nn as nn def get_act(name: str) -> nn.Module: """Return a pytorch activation function given a name.""" if name == "relu": return nn.ReLU() if name == "lrlu": return nn.LeakyReLU(0.1) if name == "silu" or name == "swish": return nn.SiLU() if name == "selu": return nn.SELU() if name == "softmax": return nn.Softmax() if name == "gelu": return nn.GELU() if name == "tanh": return nn.Tanh() if name == "softmax": return nn.Softmax() if name == "sigmoid": return nn.Sigmoid() raise ValueError("No activation function with name: ", name) def get_nrm(name: str, outp_dim: int) -> nn.Module: """Return a 1D pytorch normalisation layer given a name and a output size Returns None object if name is none.""" if name == "batch": return nn.BatchNorm1d(outp_dim) if name == "layer": return nn.LayerNorm(outp_dim) if name == "none": return None else: raise ValueError("No normalistation with name: ", name) class MLPBlock(nn.Module): """A simple MLP block that makes up a dense network. Made up of several layers containing: - linear map - activation function [Optional] - layer normalisation [Optional] - dropout [Optional] Only the input of the block is concatentated with context information. For residual blocks, the input is added to the output of the final layer. """ def __init__( self, inpt_dim: int, outp_dim: int, ctxt_dim: int = 0, n_layers: int = 1, act: str = "lrlu", nrm: str = "none", drp: float = 0, do_res: bool = False, ) -> None: """Init method for MLPBlock. Parameters ---------- inpt_dim : int The number of features for the input layer outp_dim : int The number of output features ctxt_dim : int, optional The number of contextual features to concat to the inputs, by default 0 n_layers : int, optional1 A string indicating the name of the activation function, by default 1 act : str, optional A string indicating the name of the normalisation, by default "lrlu" nrm : str, optional The dropout probability, 0 implies no dropout, by default "none" drp : float, optional Add to previous output, only if dim does not change, by default 0 do_res : bool, optional The number of transform layers in this block, by default False """ super().__init__() # Save the input and output dimensions of the module self.inpt_dim = inpt_dim self.outp_dim = outp_dim self.ctxt_dim = ctxt_dim # If this layer includes an additive residual connection self.do_res = do_res and (inpt_dim == outp_dim) # Initialise the block layers as a module list self.block = nn.ModuleList() for n in range(n_layers): # Increase the input dimension of the first layer to include context lyr_in = inpt_dim + ctxt_dim if n == 0 else outp_dim # Linear transform, activation, normalisation, dropout self.block.append(nn.Linear(lyr_in, outp_dim)) if act != "none": self.block.append(get_act(act)) if nrm != "none": self.block.append(get_nrm(nrm, outp_dim)) if drp > 0: self.block.append(nn.Dropout(drp)) def forward(self, inpt: T.Tensor, ctxt: Optional[T.Tensor] = None) -> T.Tensor: """ args: tensor: Pytorch tensor to pass through the network ctxt: The conditioning tensor, can be ignored """ # Concatenate the context information to the input of the block if self.ctxt_dim and ctxt is None: raise ValueError( "Was expecting contextual information but none has been provided!" ) temp = T.cat([inpt, ctxt], dim=-1) if self.ctxt_dim else inpt # Pass through each transform in the block for layer in self.block: temp = layer(temp) # Add the original inputs again for the residual connection if self.do_res: temp = temp + inpt return temp def __repr__(self) -> str: """Generate a one line string summing up the components of the block.""" string = str(self.inpt_dim) if self.ctxt_dim: string += f"({self.ctxt_dim})" string += "->" string += "->".join([str(b).split("(", 1)[0] for b in self.block]) string += "->" + str(self.outp_dim) if self.do_res: string += "(add)" return string class DenseNetwork(nn.Module): """A dense neural network made from a series of consecutive MLP blocks and context injection layers.""" def __init__( self, inpt_dim: int, outp_dim: int = 0, ctxt_dim: int = 0, hddn_dim: Union[int, list] = 32, num_blocks: int = 1, n_lyr_pbk: int = 1, act_h: str = "lrlu", act_o: str = "none", do_out: bool = True, nrm: str = "none", drp: float = 0, do_res: bool = False, ctxt_in_inpt: bool = True, ctxt_in_hddn: bool = False, ) -> None: """Initialise the DenseNetwork. Parameters ---------- inpt_dim : int The number of input neurons outp_dim : int, optional The number of output neurons. If none it will take from inpt or hddn, by default 0 ctxt_dim : int, optional The number of context features. The context feature use is determined by ctxt_type, by default 0 hddn_dim : Union[int, list], optional The width of each hidden block. If a list it overides depth, by default 32 num_blocks : int, optional The number of hidden blocks, can be overwritten by hddn_dim, by default 1 n_lyr_pbk : int, optional The number of transform layers per hidden block, by default 1 act_h : str, optional The name of the activation function to apply in the hidden blocks, by default "lrlu" act_o : str, optional The name of the activation function to apply to the outputs, by default "none" do_out : bool, optional If the network has a dedicated output block, by default True nrm : str, optional Type of normalisation (layer or batch) in each hidden block, by default "none" drp : float, optional Dropout probability for hidden layers (0 means no dropout), by default 0 do_res : bool, optional Use resisdual-connections between hidden blocks (only if same size), by default False ctxt_in_inpt : bool, optional Include the ctxt tensor in the input block, by default True ctxt_in_hddn : bool, optional Include the ctxt tensor in the hidden blocks, by default False Raises ------ ValueError If the network was given a context input but both ctxt_in_inpt and ctxt_in_hddn were False """ super().__init__() # Check that the context is used somewhere if ctxt_dim: if not ctxt_in_hddn and not ctxt_in_inpt: raise ValueError("Network has context inputs but nowhere to use them!") # We store the input, hddn (list), output, and ctxt dims to query them later self.inpt_dim = inpt_dim if not isinstance(hddn_dim, int): self.hddn_dim = hddn_dim else: self.hddn_dim = num_blocks * [hddn_dim] self.outp_dim = outp_dim or inpt_dim if do_out else self.hddn_dim[-1] self.num_blocks = len(self.hddn_dim) self.ctxt_dim = ctxt_dim self.do_out = do_out # Necc for this module to work with the nflows package self.hidden_features = self.hddn_dim[-1] # Input MLP block self.input_block = MLPBlock( inpt_dim=self.inpt_dim, outp_dim=self.hddn_dim[0], ctxt_dim=self.ctxt_dim if ctxt_in_inpt else 0, act=act_h, nrm=nrm, drp=drp, ) # All hidden blocks as a single module list self.hidden_blocks = [] if self.num_blocks > 1: self.hidden_blocks = nn.ModuleList() for h_1, h_2 in zip(self.hddn_dim[:-1], self.hddn_dim[1:]): self.hidden_blocks.append( MLPBlock( inpt_dim=h_1, outp_dim=h_2, ctxt_dim=self.ctxt_dim if ctxt_in_hddn else 0, n_layers=n_lyr_pbk, act=act_h, nrm=nrm, drp=drp, do_res=do_res, ) ) # Output block (optional and there is no normalisation, dropout or context) if do_out: self.output_block = MLPBlock( inpt_dim=self.hddn_dim[-1], outp_dim=self.outp_dim, act=act_o, ) def forward(self, inputs: T.Tensor, ctxt: Optional[T.Tensor] = None) -> T.Tensor: """Pass through all layers of the dense network.""" # Reshape the context if it is available if ctxt is not None: dim_diff = inputs.dim() - ctxt.dim() if dim_diff > 0: ctxt = ctxt.view(ctxt.shape[0], *dim_diff * (1,), *ctxt.shape[1:]) ctxt = ctxt.expand(*inputs.shape[:-1], -1) # Pass through the input block inputs = self.input_block(inputs, ctxt) # Pass through each hidden block for h_block in self.hidden_blocks: # Context tensor will only be used if inputs = h_block(inputs, ctxt) # block was initialised with a ctxt dim # Pass through the output block if self.do_out: inputs = self.output_block(inputs) return inputs def __repr__(self): string = "" string += "\n (inp): " + repr(self.input_block) + "\n" for i, h_block in enumerate(self.hidden_blocks): string += f" (h-{i+1}): " + repr(h_block) + "\n" if self.do_out: string += " (out): " + repr(self.output_block) return string def one_line_string(self): """Return a one line string that sums up the network structure.""" string = str(self.inpt_dim) if self.ctxt_dim: string += f"({self.ctxt_dim})" string += ">" string += str(self.input_block.outp_dim) + ">" if self.num_blocks > 1: string += ">".join( [ str(layer.out_features) for hidden in self.hidden_blocks for layer in hidden.block if isinstance(layer, nn.Linear) ] ) string += ">" if self.do_out: string += str(self.outp_dim) return string class IterativeNormLayer(nn.Module): """A basic normalisation layer so it can be part of the model. Note! If a mask is provided in the forward pass, then this must be the dimension to apply over the masked inputs! For example: Graph nodes are usually batch x n_nodes x features so to normalise over the features one would typically give extra_dims as (0,) But nodes are always passed with the mask which flattens it to batch x features. Batch dimension is done automatically, so we dont pass any extra_dims!!! """ def __init__( self, inpt_dim: Union[T.Tensor, tuple, int], means: Optional[T.Tensor] = None, vars: Optional[T.Tensor] = None, n: int = 0, max_n: int = 5_00_000, extra_dims: Union[tuple, int] = (), ) -> None: """Init method for Normalisatiion module. Args: inpt_dim: Shape of the input tensor, required for reloading means: Calculated means for the mapping. Defaults to None. vars: Calculated variances for the mapping. Defaults to None. n: Number of samples used to make the mapping. Defaults to None. max_n: Maximum number of iterations before the means and vars are frozen extra_dims: The extra dimension(s) over which to calculate the stats Will always calculate over the batch dimension """ super().__init__() # Fail if only one of means or vars is provided if (means is None) ^ (vars is None): # XOR raise ValueError( """Only one of 'means' and 'vars' is defined. Either both or neither must be defined""" ) # Allow interger inpt_dim and n arguments if isinstance(inpt_dim, int): inpt_dim = (inpt_dim,) if isinstance(n, int): n = T.tensor(n) # The dimensions over which to apply the normalisation, make positive! if isinstance(extra_dims, int): # Ensure it is a list extra_dims = [extra_dims] else: extra_dims = list(extra_dims) if any([abs(e) > len(inpt_dim) for e in extra_dims]): # Check size raise ValueError("extra_dims argument lists dimensions outside input range") for d in range(len(extra_dims)): if extra_dims[d] < 0: # make positive extra_dims[d] = len(inpt_dim) + extra_dims[d] extra_dims[d] += 1 # Add one because we are inserting a batch dimension self.extra_dims = extra_dims # Calculate the input and output shapes self.max_n = max_n self.inpt_dim = list(inpt_dim) self.stat_dim = [1] + list(inpt_dim) # Add batch dimension for d in range(len(self.stat_dim)): if d in self.extra_dims: self.stat_dim[d] = 1 # Buffers arenneeded for saving/loading the layer self.register_buffer( "means", T.zeros(self.stat_dim) if means is None else means ) self.register_buffer("vars", T.ones(self.stat_dim) if vars is None else vars) self.register_buffer("n", n) # For the welford algorithm it is useful to have another variable m2 self.register_buffer("m2", T.ones(self.stat_dim) if vars is None else vars) # If the means are set here then the model is "frozen" and not updated self.frozen = means is not None def _mask(self, inpt: T.Tensor, mask: Optional[T.BoolTensor] = None) -> T.Tensor: if mask is None: return inpt return inpt[mask] def _check_attributes(self) -> None: if self.means is None or self.vars is None: raise ValueError( "Stats for have not been initialised or fit() has not been run!" ) def fit( self, inpt: T.Tensor, mask: Optional[T.BoolTensor] = None, freeze: bool = True ) -> None: """Set the stats given a population of data.""" inpt = self._mask(inpt, mask) self.vars, self.means = T.var_mean( inpt, dim=(0, *self.extra_dims), keepdim=True ) self.n = T.tensor(len(inpt), device=self.means.device) self.m2 = self.vars * self.n self.frozen = freeze def forward(self, inpt: T.Tensor, mask: Optional[T.BoolTensor] = None) -> T.Tensor: """Applies the standardisation to a batch of inputs, also uses the inputs to update the running stats if in training mode.""" with T.no_grad(): sel_inpt = self._mask(inpt, mask) if not self.frozen and self.training: self.update(sel_inpt) # Apply the mapping normed_inpt = (sel_inpt - self.means) / (self.vars.sqrt() + 1e-8) # Undo the masking if mask is not None: inpt = inpt.clone() # prevents inplace operation, bad for autograd inpt[mask] = normed_inpt return inpt return normed_inpt def reverse(self, inpt: T.Tensor, mask: Optional[T.BoolTensor] = None) -> T.Tensor: """Unnormalises the inputs given the recorded stats.""" sel_inpt = self._mask(inpt, mask) unnormed_inpt = sel_inpt * self.vars.sqrt() + self.means # Undo the masking if mask is not None: inpt = inpt.clone() # prevents inplace operation, bad for autograd inpt[mask] = unnormed_inpt return inpt return unnormed_inpt def update(self, inpt: T.Tensor, mask: Optional[T.BoolTensor] = None) -> None: """Update the running stats using a batch of data.""" inpt = self._mask(inpt, mask) # For first iteration if self.n == 0: self.fit(inpt, freeze=False) return # later iterations based on batched welford algorithm with T.no_grad(): self.n += len(inpt) delta = inpt - self.means self.means += (delta / self.n).mean( dim=(0, *self.extra_dims), keepdim=True ) * len(inpt) delta2 = inpt - self.means self.m2 += (delta * delta2).mean( dim=(0, *self.extra_dims), keepdim=True ) * len(inpt) self.vars = self.m2 / self.n # Freeze the model if we exceed the requested stats self.frozen = self.n >= self.max_n class CosineEncoding: def __init__( self, outp_dim: int = 32, min_value: float = 0.0, max_value: float = 1.0, frequency_scaling: str = "exponential", ) -> None: self.outp_dim = outp_dim self.min_value = min_value self.max_value = max_value self.frequency_scaling = frequency_scaling def __call__(self, inpt: T.Tensor) -> T.Tensor: return cosine_encoding( inpt, self.outp_dim, self.min_value, self.max_value, self.frequency_scaling ) def cosine_encoding( x: T.Tensor, outp_dim: int = 32, min_value: float = 0.0, max_value: float = 1.0, frequency_scaling: str = "exponential", ) -> T.Tensor: """Computes a positional cosine encodings with an increasing series of frequencies. The frequencies either increase linearly or exponentially (default). The latter is good for when max_value is large and extremely high sensitivity to the input is required. If inputs greater than the max value are provided, the outputs become degenerate. If inputs smaller than the min value are provided, the inputs the the cosine will be both positive and negative, which may lead degenerate outputs. Always make sure that the min and max bounds are not exceeded! Args: x: The input, the final dimension is encoded. If 1D then it will be unqueezed out_dim: The dimension of the output encoding min_value: Added to x (and max) as cosine embedding works with positive inputs max_value: The maximum expected value, sets the scale of the lowest frequency frequency_scaling: Either 'linear' or 'exponential' Returns: The cosine embeddings of the input using (out_dim) many frequencies """ # Unsqueeze if final dimension is flat if x.shape[-1] != 1 or x.dim() == 1: x = x.unsqueeze(-1) # Check the the bounds are obeyed if T.any(x > max_value): print("Warning! Passing values to cosine_encoding encoding that exceed max!") if T.any(x < min_value): print("Warning! Passing values to cosine_encoding encoding below min!") # Calculate the various frequencies if frequency_scaling == "exponential": freqs = T.arange(outp_dim, device=x.device).exp() elif frequency_scaling == "linear": freqs = T.arange(1, outp_dim + 1, device=x.device) else: raise RuntimeError(f"Unrecognised frequency scaling: {frequency_scaling}") return T.cos((x + min_value) * freqs * math.pi / (max_value + min_value))
20,518
35.575758
90
py
PC-JeDi
PC-JeDi-main/src/models/pc_jedi.py
import copy from functools import partial from typing import Mapping, Optional, Tuple import numpy as np import pytorch_lightning as pl import torch as T import wandb from jetnet.evaluation import w1efp, w1m, w1p from src.models.diffusion import VPDiffusionSchedule, run_sampler from src.models.modules import CosineEncoding, IterativeNormLayer from src.models.schedulers import WarmupToConstant from src.models.transformers import FullTransformerEncoder from src.numpy_utils import undo_log_squash from src.plotting import plot_mpgan_marginals from src.torch_utils import get_loss_fn, to_np class TransformerDiffusionGenerator(pl.LightningModule): """A generative model which uses the diffusion process on a point cloud.""" def __init__( self, *, pc_dim: list, ctxt_dim: int, n_nodes: int, cosine_config: Mapping, diff_config: Mapping, normaliser_config: Mapping, trans_enc_config: Mapping, optimizer: partial, loss_name: str = "mse", mle_loss_weight: float = 0.0, ema_sync: float = 0.999, sampler_name: str = "em", sampler_steps: int = 100, ) -> None: """ Args: pc_dim: The dimension of the point cloud ctxt_dim: The size of the context vector for the point cloud n_nodes: Max number of nodes used to train this model cosine_config: For defining the cosine embedding arguments normaliser_config: For defining the iterative normalisation layer diff_shedule: The diffusion scheduler, defines the signal and noise rates trans_enc_config: Keyword arguments for the TransformerEncoder network optimizer: Partially initialised optimizer sched_config: The config for how to apply the scheduler ema_sync: How fast the ema network syncs with the given one loss_name: Name of the loss function to use for noise estimation mle_loss_weight: Relative weight of the Maximum-Liklihood loss term sampler_name: Name of O/SDE solver, does not effect training. sampler_steps: Steps used in generation, does not effect training. """ super().__init__() self.save_hyperparameters(logger=False) # Class attributes self.pc_dim = pc_dim self.ctxt_dim = ctxt_dim self.n_nodes = n_nodes self.loss_fn = get_loss_fn(loss_name) self.mle_loss_weight = mle_loss_weight self.ema_sync = ema_sync # The encoder and scheduler needed for diffusion self.diff_sched = VPDiffusionSchedule(**diff_config) self.time_encoder = CosineEncoding(**cosine_config) # The layer which normalises the input point cloud data self.normaliser = IterativeNormLayer((pc_dim,), **normaliser_config) if self.ctxt_dim: self.ctxt_normaliser = IterativeNormLayer((ctxt_dim,), **normaliser_config) # The denoising transformer self.net = FullTransformerEncoder( inpt_dim=pc_dim, outp_dim=pc_dim, ctxt_dim=ctxt_dim + self.time_encoder.outp_dim, **trans_enc_config, ) # A copy of the network which will sync with an exponential moving average self.ema_net = copy.deepcopy(self.net) # Sampler to run in the validation/testing loop self.sampler_name = sampler_name self.sampler_steps = sampler_steps # Record of the outputs of the validation step self.val_outs = [] def forward( self, noisy_data: T.Tensor, diffusion_times: T.Tensor, mask: T.BoolTensor, ctxt: Optional[T.Tensor] = None, ) -> T.Tensor: """Pass through the model and get an estimate of the noise added to the input.""" # Use the appropriate network for training or validation if self.training: network = self.net else: network = self.ema_net # Encode the times and combine with existing context info context = self.time_encoder(diffusion_times) if self.ctxt_dim: context = T.cat([context, ctxt], dim=-1) # Use the selected network to esitmate the noise present in the data return network(noisy_data, mask=mask, ctxt=context) def _shared_step(self, sample: tuple) -> Tuple[T.Tensor, T.Tensor]: """Shared step used in both training and validaiton.""" # Unpack the sample tuple nodes, mask, ctxt = sample # Pass through the normalisers nodes = self.normaliser(nodes, mask) if self.ctxt_dim: ctxt = self.ctxt_normaliser(ctxt) # Sample from the gaussian latent space to perturb the point clouds noises = T.randn_like(nodes) * mask.unsqueeze(-1) # Sample uniform random diffusion times and get the rates diffusion_times = T.rand(size=(len(nodes), 1), device=self.device) signal_rates, noise_rates = self.diff_sched(diffusion_times.view(-1, 1, 1)) # Mix the signal and noise according to the diffusion equation noisy_nodes = signal_rates * nodes + noise_rates * noises # Predict the noise using the network pred_noises = self.forward(noisy_nodes, diffusion_times, mask, ctxt) # Simple noise loss is for "perceptual quality" simple_loss = self.loss_fn(noises[mask], pred_noises[mask]) # MLE loss is for maximum liklihood training if self.mle_loss_weight: betas = self.diff_sched.get_betas(diffusion_times.view(-1, 1, 1)) mle_weights = betas / noise_rates mle_loss = mle_weights * simple_loss else: mle_loss = T.zeros_like(simple_loss) return simple_loss.mean(), mle_loss.mean() def training_step(self, sample: tuple, _batch_idx: int) -> T.Tensor: simple_loss, mle_loss = self._shared_step(sample) total_loss = simple_loss + self.mle_loss_weight * mle_loss self.log("train/simple_loss", simple_loss) self.log("train/mle_loss", mle_loss) self.log("train/total_loss", total_loss) self._sync_ema_network() return total_loss def validation_step(self, sample: tuple, batch_idx: int) -> None: simple_loss, mle_loss = self._shared_step(sample) total_loss = simple_loss + self.mle_loss_weight * mle_loss self.log("valid/simple_loss", simple_loss) self.log("valid/mle_loss", mle_loss) self.log("valid/total_loss", total_loss) # Run the full generation of the sample during a validation step outputs = self.full_generation( self.sampler_name, self.sampler_steps, mask=sample[1], ctxt=sample[2], ) # Add to the collection of the validaiton outputs self.val_outs.append((to_np(outputs), to_np(sample))) def on_validation_epoch_end(self) -> None: """At the end of the validation epoch, calculate and log the metrics and plot the histograms. This function right now only works with MPGAN configs """ # Combine all outputs gen_nodes = np.vstack([v[0] for v in self.val_outs]) real_nodes = np.vstack([v[1][0] for v in self.val_outs]) mask = np.vstack([v[1][1] for v in self.val_outs]) high = np.vstack([v[1][2] for v in self.val_outs]) # Change the data from log(pt+1) into pt fraction (needed for metrics) if self.trainer.datamodule.hparams.data_conf.log_squash_pt: gen_nodes[..., -1] = undo_log_squash(gen_nodes[..., -1]) / high[..., 0:1] real_nodes[..., -1] = undo_log_squash(real_nodes[..., -1]) / high[..., 0:1] # Apply clipping gen_nodes = np.nan_to_num(gen_nodes) gen_nodes[..., 0] = np.clip(gen_nodes[..., 0], -0.5, 0.5) gen_nodes[..., 1] = np.clip(gen_nodes[..., 1], -0.5, 0.5) gen_nodes[..., 2] = np.clip(gen_nodes[..., 2], 0, 1) real_nodes = np.nan_to_num(real_nodes) real_nodes[..., 0] = np.clip(real_nodes[..., 0], -0.5, 0.5) real_nodes[..., 1] = np.clip(real_nodes[..., 1], -0.5, 0.5) real_nodes[..., 2] = np.clip(real_nodes[..., 2], 0, 1) # Calculate and log the Wasserstein discriminants bootstrap = { "num_eval_samples": 10000, "num_batches": 10, } w1m_val, w1m_err = w1m(real_nodes, gen_nodes, **bootstrap) w1p_val, w1p_err = w1p(real_nodes, gen_nodes, **bootstrap) w1efp_val, w1efp_err = w1efp(real_nodes, gen_nodes, efp_jobs=1, **bootstrap) self.log("valid/w1m", w1m_val) self.log("valid/w1m_err", w1m_err) self.log("valid/w1p", w1p_val.mean()) self.log("valid/w1p_err", w1p_err.mean()) self.log("valid/w1efp", w1efp_val.mean()) self.log("valid/w1efp_err", w1efp_err.mean()) # Plot the MPGAN-like marginals plot_mpgan_marginals(gen_nodes, real_nodes, mask, self.trainer.current_epoch) self.val_outs.clear() def _sync_ema_network(self) -> None: """Updates the Exponential Moving Average Network.""" with T.no_grad(): for params, ema_params in zip( self.net.parameters(), self.ema_net.parameters() ): ema_params.data.copy_( self.ema_sync * ema_params.data + (1.0 - self.ema_sync) * params.data ) def on_fit_start(self, *_args) -> None: """Function to run at the start of training.""" # Define the metrics for wandb (otherwise the min wont be stored!) if wandb.run is not None: wandb.define_metric("train/simple_loss", summary="min") wandb.define_metric("train/mle_loss", summary="min") wandb.define_metric("train/total_loss", summary="min") wandb.define_metric("valid/simple_loss", summary="min") wandb.define_metric("valid/mle_loss", summary="min") wandb.define_metric("valid/total_loss", summary="min") wandb.define_metric("valid/w1m", summary="min") wandb.define_metric("valid/w1p", summary="min") wandb.define_metric("valid/w1efp", summary="min") def set_sampler( self, sampler_name: Optional[str] = None, sampler_steps: Optional[int] = None ) -> None: """Replaces the sampler list with a new one.""" if sampler_name is not None: self.sampler_name = sampler_name if sampler_steps is not None: self.sampler_steps = sampler_steps def full_generation( self, sampler: str, steps: int, mask: Optional[T.BoolTensor] = None, ctxt: Optional[T.Tensor] = None, initial_noise: Optional[T.Tensor] = None, ) -> T.Tensor: """Fully generate a batch of data from noise, given context information and a mask.""" # Either a mask or initial noise must be defined or we dont know how # many samples to generate and with what cardinality if mask is None and initial_noise is None: raise ValueError("Please provide either a mask or noise to generate from") if mask is None: mask = T.full(initial_noise.shape[:-1], True, device=self.device) if initial_noise is None: initial_noise = T.randn((*mask.shape, self.pc_dim), device=self.device) # Normalise the context if self.ctxt_dim: ctxt = self.ctxt_normaliser(ctxt) assert len(ctxt) == len(initial_noise) # Run the sampling method outputs, _ = run_sampler( sampler, self, self.diff_sched, initial_noise=initial_noise * mask.unsqueeze(-1), n_steps=steps, mask=mask, ctxt=ctxt, clip_predictions=(-25, 25), ) # Ensure that the output adheres to the mask outputs[~mask] = 0 # Return the normalisation of the generated point cloud return self.normaliser.reverse(outputs, mask=mask) def configure_optimizers(self) -> dict: """Configure the optimisers and learning rate sheduler for this model.""" # Finish initialising the optimiser and create the scheduler opt = self.hparams.optimizer(params=self.parameters()) sched = WarmupToConstant(opt, num_steps=10_000) # Return the dict for the lightning trainer return { "optimizer": opt, "lr_scheduler": { "scheduler": sched, "interval": "step", "frequency": 1, }, }
12,805
38.403077
87
py
PC-JeDi
PC-JeDi-main/scripts/train.py
import pyrootutils root = pyrootutils.setup_root(search_from=__file__, pythonpath=True) import logging import hydra import pytorch_lightning as pl from omegaconf import DictConfig from src.hydra_utils import ( instantiate_collection, log_hyperparameters, print_config, reload_original_config, save_config, ) log = logging.getLogger(__name__) @hydra.main( version_base=None, config_path=str(root / "configs"), config_name="train.yaml" ) def main(cfg: DictConfig) -> None: log.info("Setting up full job config") if cfg.full_resume: cfg = reload_original_config(cfg) print_config(cfg) if cfg.seed: log.info(f"Setting seed to: {cfg.seed}") pl.seed_everything(cfg.seed, workers=True) log.info("Instantiating the data module") datamodule = hydra.utils.instantiate(cfg.datamodule) log.info("Instantiating the model") model = hydra.utils.instantiate( cfg.model, pc_dim=datamodule.dim, n_nodes=datamodule.n_nodes, ctxt_dim=datamodule.ctxt_dim, ) log.info(model) log.info("Instantiating all callbacks") callbacks = instantiate_collection(cfg.callbacks) log.info("Instantiating the loggers") loggers = instantiate_collection(cfg.loggers) log.info("Instantiating the trainer") trainer = hydra.utils.instantiate(cfg.trainer, callbacks=callbacks, logger=loggers) if loggers: log.info("Logging all hyperparameters") log_hyperparameters(cfg, model, trainer) log.info("Saving config so job can be resumed") save_config(cfg) log.info("Starting training!") trainer.fit(model, datamodule, ckpt_path=cfg.ckpt_path) if __name__ == "__main__": main()
1,731
23.742857
87
py
trees_from_transformers
trees_from_transformers-master/run.py
import argparse import datetime import logging import os import pickle from tqdm import tqdm import torch from transformers import * from data.dataset import Dataset from utils.measure import Measure from utils.parser import not_coo_parser, parser from utils.tools import set_seed, select_indices, group_indices from utils.yk import get_actions, get_nonbinary_spans MODELS = [(BertModel, BertTokenizer, BertConfig, 'bert-base-cased'), (BertModel, BertTokenizer, BertConfig, 'bert-large-cased'), (GPT2Model, GPT2Tokenizer, GPT2Config, 'gpt2'), (GPT2Model, GPT2Tokenizer, GPT2Config, 'gpt2-medium'), (RobertaModel, RobertaTokenizer, RobertaConfig, 'roberta-base'), (RobertaModel, RobertaTokenizer, RobertaConfig, 'roberta-large'), (XLNetModel, XLNetTokenizer, XLNetConfig, 'xlnet-base-cased'), (XLNetModel, XLNetTokenizer, XLNetConfig, 'xlnet-large-cased')] def evaluate(args): scores = dict() for model_class, tokenizer_class, model_config, pretrained_weights in MODELS: tokenizer = tokenizer_class.from_pretrained( pretrained_weights, cache_dir=args.lm_cache_path) if args.from_scratch: config = model_config.from_pretrained(pretrained_weights) config.output_hidden_states = True config.output_attentions = True model = model_class(config).to(args.device) else: model = model_class.from_pretrained( pretrained_weights, cache_dir=args.lm_cache_path, output_hidden_states=True, output_attentions=True).to(args.device) with torch.no_grad(): test_sent = tokenizer.encode('test', add_special_tokens=False) token_ids = torch.tensor([test_sent]).to(args.device) all_hidden, all_att = model(token_ids)[-2:] n_layers = len(all_att) n_att = all_att[0].size(1) n_hidden = all_hidden[0].size(-1) measure = Measure(n_layers, n_att) data = Dataset(path=args.data_path, tokenizer=tokenizer) for idx, s in tqdm(enumerate(data.sents), total=len(data.sents), desc=pretrained_weights, ncols=70): raw_tokens = data.raw_tokens[idx] tokens = data.tokens[idx] if len(raw_tokens) < 2: data.cnt -= 1 continue token_ids = tokenizer.encode(s, add_special_tokens=False) token_ids_tensor = torch.tensor([token_ids]).to(args.device) with torch.no_grad(): all_hidden, all_att = model(token_ids_tensor)[-2:] all_hidden, all_att = list(all_hidden[1:]), list(all_att) # (n_layers, seq_len, hidden_dim) all_hidden = torch.cat([all_hidden[n] for n in range(n_layers)], dim=0) # (n_layers, n_att, seq_len, seq_len) all_att = torch.cat([all_att[n] for n in range(n_layers)], dim=0) if len(tokens) > len(raw_tokens): th = args.token_heuristic if th == 'first' or th == 'last': mask = select_indices(tokens, raw_tokens, pretrained_weights, th) assert len(mask) == len(raw_tokens) all_hidden = all_hidden[:, mask] all_att = all_att[:, :, mask, :] all_att = all_att[:, :, :, mask] else: # mask = torch.tensor(data.masks[idx]) mask = group_indices(tokens, raw_tokens, pretrained_weights) raw_seq_len = len(raw_tokens) all_hidden = torch.stack( [all_hidden[:, mask == i].mean(dim=1) for i in range(raw_seq_len)], dim=1) all_att = torch.stack( [all_att[:, :, :, mask == i].sum(dim=3) for i in range(raw_seq_len)], dim=3) all_att = torch.stack( [all_att[:, :, mask == i].mean(dim=2) for i in range(raw_seq_len)], dim=2) l_hidden, r_hidden = all_hidden[:, :-1], all_hidden[:, 1:] l_att, r_att = all_att[:, :, :-1], all_att[:, :, 1:] syn_dists = measure.derive_dists(l_hidden, r_hidden, l_att, r_att) gold_spans = data.gold_spans[idx] gold_tags = data.gold_tags[idx] assert len(gold_spans) == len(gold_tags) for m, d in syn_dists.items(): pred_spans = [] for i in range(measure.scores[m].n): dist = syn_dists[m][i].tolist() if len(dist) > 1: bias_base = (sum(dist) / len(dist)) * args.bias bias = [bias_base * (1 - (1 / (len(dist) - 1)) * x) for x in range(len(dist))] dist = [dist[i] + bias[i] for i in range(len(dist))] if args.use_not_coo_parser: pred_tree = not_coo_parser(dist, raw_tokens) else: pred_tree = parser(dist, raw_tokens) ps = get_nonbinary_spans(get_actions(pred_tree))[0] pred_spans.append(ps) measure.scores[m].update(pred_spans, gold_spans, gold_tags) measure.derive_final_score() scores[pretrained_weights] = measure.scores if not os.path.exists(args.result_path): os.makedirs(args.result_path) with open(f'{args.result_path}/{pretrained_weights}.txt', 'w') as f: print('Model name:', pretrained_weights, file=f) print('Experiment time:', args.time, file=f) print('# of layers:', n_layers, file=f) print('# of attentions:', n_att, file=f) print('# of hidden dimensions:', n_hidden, file=f) print('# of processed sents:', data.cnt, file=f) max_corpus_f1, max_sent_f1 = 0, 0 for n in range(n_layers): print(f'[Layer {n + 1}]', file=f) print('-' * (119 + measure.max_m_len), file=f) for m, s in measure.scores.items(): if m in measure.h_measures + measure.a_avg_measures: print( f'| {m.upper()} {" " * (measure.max_m_len - len(m))} ' f'| Corpus F1: {s.corpus_f1[n] * 100:.2f} ' f'| Sent F1: {s.sent_f1[n] * 100:.2f} ', end='', file=f) for z in range(len(s.label_recalls[0])): print( f'| {s.labels[z]}: ' f'{s.label_recalls[n][z] * 100:.2f} ', end='', file=f) print('|', file=f) if s.sent_f1[n] > max_sent_f1: max_corpus_f1 = s.corpus_f1[n] max_sent_f1 = s.sent_f1[n] max_measure = m max_layer = n + 1 else: for i in range(n_att): m_att = str(i) if i > 9 else '0' + str(i) m_att = m + m_att + " " * ( measure.max_m_len - len(m)) i_att = n_att * n + i print( f'| {m_att.upper()}' f'| Corpus F1: {s.corpus_f1[i_att] * 100:.2f} ' f'| Sent F1: {s.sent_f1[i_att] * 100:.2f} ', end='', file=f) for z in range(len(s.label_recalls[0])): print(f'| {s.labels[z]}: ' f'{s.label_recalls[i_att][z] * 100:.2f} ', end='', file=f) print('|', file=f) if s.sent_f1[i_att] > max_sent_f1: max_corpus_f1 = s.corpus_f1[i_att] max_sent_f1 = s.sent_f1[i_att] max_measure = m_att max_layer = n + 1 print('-' * (119 + measure.max_m_len), file=f) print(f'[MAX]: | Layer: {max_layer} ' f'| {max_measure.upper()} ' f'| Corpus F1: {max_corpus_f1 * 100:.2f} ' f'| Sent F1: {max_sent_f1 * 100:.2f} |') print(f'[MAX]: | Layer: {max_layer} ' f'| {max_measure.upper()} ' f'| Corpus F1: {max_corpus_f1 * 100:.2f} ' f'| Sent F1: {max_sent_f1 * 100:.2f} |', file=f) return scores def main(): parser = argparse.ArgumentParser() parser.add_argument('--data-path', default='.data/PTB/ptb-test.txt', type=str) parser.add_argument('--result-path', default='outputs', type=str) parser.add_argument('--lm-cache-path', default='/data/transformers', type=str) parser.add_argument('--from-scratch', default=False, action='store_true') parser.add_argument('--gpu', default=0, type=int) parser.add_argument('--bias', default=0.0, type=float, help='the right-branching bias hyperparameter lambda') parser.add_argument('--seed', default=1234, type=int) parser.add_argument('--token-heuristic', default='mean', type=str, help='Available options: mean, first, last') parser.add_argument('--use-not-coo-parser', default=False, action='store_true', help='Turning on this option will allow you to exploit ' 'the NOT-COO parser (named by Dyer et al. 2019), ' 'which has been broadly adopted by recent methods ' 'for unsupervised parsing. As this parser utilizes' ' the right-branching bias in its inner workings, ' 'it may give rise to some unexpected gains or ' 'latent issues for the resulting trees. For more ' 'details, see https://arxiv.org/abs/1909.09428.') args = parser.parse_args() setattr(args, 'device', f'cuda:{args.gpu}' if torch.cuda.is_available() and args.gpu >= 0 else 'cpu') setattr(args, 'time', datetime.datetime.now().strftime('%Y%m%d-%H:%M:%S')) dataset_name = args.data_path.split('/')[-1].split('.')[0] parser = '-w-not-coo-parser' if args.use_not_coo_parser else '' pretrained = 'scratch' if args.from_scratch else 'pretrained' result_path = f'{args.result_path}/{dataset_name}-{args.token_heuristic}' result_path += f'-{pretrained}-{args.bias}{parser}' setattr(args, 'result_path', result_path) set_seed(args.seed) logging.disable(logging.WARNING) print('[List of arguments]') for a in args.__dict__: print(f'{a}: {args.__dict__[a]}') scores = evaluate(args) with open(f'{args.result_path}/scores.pickle', 'wb') as f: pickle.dump(scores, f) if __name__ == '__main__': main()
11,441
45.893443
85
py
trees_from_transformers
trees_from_transformers-master/utils/yk.py
""" The functions in this file are originated from the code for Compound Probabilistic Context-Free Grammars for Grammar Induction, Y. Kim et al., ACL 2019. For more details, visit https://github.com/harvardnlp/compound-pcfg. """ import re def clean_number(w): new_w = re.sub('[0-9]{1,}([,.]?[0-9]*)*', 'N', w) return new_w def get_stats(span1, span2): tp = 0 fp = 0 fn = 0 for span in span1: if span in span2: tp += 1 else: fp += 1 for span in span2: if span not in span1: fn += 1 return tp, fp, fn def get_nonbinary_spans(actions, SHIFT=0, REDUCE=1): spans = [] tags = [] stack = [] pointer = 0 binary_actions = [] nonbinary_actions = [] num_shift = 0 num_reduce = 0 for action in actions: # print(action, stack) if action == "SHIFT": nonbinary_actions.append(SHIFT) stack.append((pointer, pointer)) pointer += 1 binary_actions.append(SHIFT) num_shift += 1 elif action[:3] == 'NT(': # stack.append('(') stack.append(action[3:-1].split('-')[0]) elif action == "REDUCE": nonbinary_actions.append(REDUCE) right = stack.pop() left = right n = 1 # while stack[-1] is not '(': while type(stack[-1]) is tuple: left = stack.pop() n += 1 span = (left[0], right[1]) tag = stack.pop() if left[0] != right[1]: spans.append(span) tags.append(tag) stack.append(span) while n > 1: n -= 1 binary_actions.append(REDUCE) num_reduce += 1 else: assert False assert (len(stack) == 1) assert (num_shift == num_reduce + 1) return spans, tags, binary_actions, nonbinary_actions def get_actions(line): output_actions = [] line_strip = line.rstrip() i = 0 max_idx = (len(line_strip) - 1) while i <= max_idx: assert line_strip[i] == '(' or line_strip[i] == ')' if line_strip[i] == '(': if is_next_open_bracket(line_strip, i): # open non-terminal curr_NT = get_nonterminal(line_strip, i) output_actions.append('NT(' + curr_NT + ')') i += 1 # get the next open bracket, # which may be a terminal or another non-terminal while line_strip[i] != '(': i += 1 else: # it's a terminal symbol output_actions.append('SHIFT') while line_strip[i] != ')': i += 1 i += 1 while line_strip[i] != ')' and line_strip[i] != '(': i += 1 else: output_actions.append('REDUCE') if i == max_idx: break i += 1 while line_strip[i] != ')' and line_strip[i] != '(': i += 1 assert i == max_idx return output_actions def is_next_open_bracket(line, start_idx): for char in line[(start_idx + 1):]: if char == '(': return True elif char == ')': return False raise IndexError('Bracket possibly not balanced, ' 'open bracket not followed by closed bracket') def get_nonterminal(line, start_idx): assert line[start_idx] == '(' # make sure it's an open bracket output = [] for char in line[(start_idx + 1):]: if char == ' ': break assert not (char == '(') and not (char == ')') output.append(char) return ''.join(output) def get_tags_tokens_lowercase(line): output = [] line_strip = line.rstrip() for i in range(len(line_strip)): if i == 0: assert line_strip[i] == '(' # fulfilling this condition means this is a terminal symbol if line_strip[i] == '(' and not (is_next_open_bracket(line_strip, i)): output.append(get_between_brackets(line_strip, i)) # print 'output:',output output_tags = [] output_tokens = [] output_lowercase = [] for terminal in output: terminal_split = terminal.split() # print(terminal, terminal_split) assert len( terminal_split) == 2 # each terminal contains a POS tag and word output_tags.append(terminal_split[0]) output_tokens.append(terminal_split[1]) output_lowercase.append(terminal_split[1].lower()) return [output_tags, output_tokens, output_lowercase] def get_between_brackets(line, start_idx): output = [] for char in line[(start_idx + 1):]: if char == ')': break assert not (char == '(') output.append(char) return ''.join(output)
4,935
29.097561
78
py
trees_from_transformers
trees_from_transformers-master/utils/parser.py
import numpy as np def not_coo_parser(score, sent): assert len(score) == len(sent) - 1 if len(score) == 0: parse_tree = f'(T {sent[0]} )' elif len(score) == 1: parse_tree = f'(T (T {sent[0]} ) (T {sent[1]} ) )' else: idx_max = np.argmax(score) l_len = len(sent[:idx_max + 1]) r_len = len(sent[idx_max + 2:]) if l_len > 0 and r_len > 0: l_tree = not_coo_parser(score[:idx_max], sent[:idx_max + 1]) r_tree = not_coo_parser(score[idx_max + 2:], sent[idx_max + 2:]) r_tree = f'(T (T {sent[idx_max +1]} ) {r_tree} )' parse_tree = f'(T {l_tree} {r_tree} )' else: if l_len == 0: r_tree = not_coo_parser(score[idx_max + 2:], sent[idx_max + 2:]) r_tree = f'(T (T {sent[idx_max +1]} ) {r_tree} )' parse_tree = r_tree else: l_tree = not_coo_parser(score[:idx_max], sent[:idx_max + 1]) parse_tree = f'(T {l_tree} (T {sent[idx_max + 1]} ) )' return parse_tree def parser(score, sent): assert len(score) == len(sent) - 1 if len(score) == 0: parse_tree = f'(T {sent[0]} )' elif len(score) == 1: parse_tree = f'(T (T {sent[0]} ) (T {sent[1]} ) )' else: idx_max = np.argmax(score) l_len = len(sent[:idx_max + 1]) r_len = len(sent[idx_max + 1:]) if l_len > 0 and r_len > 0: l_tree = parser(score[:idx_max], sent[:idx_max + 1]) r_tree = parser(score[idx_max + 1:], sent[idx_max + 1:]) parse_tree = f'(T {l_tree} {r_tree} )' else: if l_len == 0: r_tree = parser(score[idx_max + 1:], sent[idx_max + 1:]) parse_tree = r_tree else: l_tree = parser(score[:idx_max], sent[:idx_max + 1]) parse_tree = l_tree return parse_tree
1,936
33.589286
80
py
trees_from_transformers
trees_from_transformers-master/utils/score.py
import numpy as np import torch from utils.yk import get_stats class Score(object): def __init__(self, n): self.corpus_f1 = torch.zeros(n, 3, dtype=torch.float) self.sent_f1 = torch.zeros(n, dtype=torch.float) self.n = n self.cnt = 0 self.labels = ['SBAR', 'NP', 'VP', 'PP', 'ADJP', 'ADVP'] self.label_recalls = np.zeros((n, 6), dtype=float) self.label_cnts = np.zeros(6, dtype=float) def update(self, pred_spans, gold_spans, gold_tags): pred_sets = [set(ps[:-1]) for ps in pred_spans] gold_set = set(gold_spans[:-1]) self.update_corpus_f1(pred_sets, gold_set) self.update_sentence_f1(pred_sets, gold_set) self.update_label_recalls(pred_spans, gold_spans, gold_tags) self.cnt += 1 def update_label_recalls(self, pred, gold, tags): for i, tag in enumerate(tags): if tag not in self.labels: continue tag_idx = self.labels.index(tag) self.label_cnts[tag_idx] += 1 for z in range(len(pred)): if gold[i] in pred[z]: self.label_recalls[z][tag_idx] += 1 def update_corpus_f1(self, pred, gold): stats = torch.tensor([get_stats(pred[i], gold) for i in range(self.n)], dtype=torch.float) self.corpus_f1 += stats def update_sentence_f1(self, pred, gold): # sent-level F1 is based on L83-89 from for i in range(self.n): model_out, std_out = pred[i], gold overlap = model_out.intersection(std_out) prec = float(len(overlap)) / (len(model_out) + 1e-8) reca = float(len(overlap)) / (len(std_out) + 1e-8) if len(std_out) == 0: reca = 1. if len(model_out) == 0: prec = 1. f1 = 2 * prec * reca / (prec + reca + 1e-8) self.sent_f1[i] += f1 def derive_final_score(self): tp = self.corpus_f1[:, 0] fp = self.corpus_f1[:, 1] fn = self.corpus_f1[:, 2] prec = tp / (tp + fp) recall = tp / (tp + fn) epsilon = 1e-8 self.corpus_f1 = 2 * prec * recall / (prec + recall + epsilon) self.sent_f1 /= self.cnt for i in range(len(self.label_recalls)): for j in range(len(self.label_recalls[0])): self.label_recalls[i][j] /= self.label_cnts[j]
2,521
35.550725
79
py
trees_from_transformers
trees_from_transformers-master/utils/tools.py
import logging import random import torch specials = {'bert': '#', 'gpt2': 'Ġ', 'xlnet': '▁', 'roberta': 'Ġ'} def set_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed(seed) random.seed(seed) def select_indices(tokens, raw_tokens, model, mode): mask = [] raw_i = 0 collapsed = '' model = model.split('-')[0] special = specials[model] for i in range(len(tokens)): token = tokens[i] while len(token) > 0 and token[0] == special: token = token[1:] if collapsed == '' and len(token) > 0: start_idx = i collapsed += token if collapsed == raw_tokens[raw_i]: if mode == 'first': mask.append(start_idx) elif mode == 'last': mask.append(i) else: raise NotImplementedError raw_i += 1 collapsed = '' if raw_i != len(raw_tokens): raise Exception(f'Token mismatch: \n{tokens}\n{raw_tokens}') return mask def group_indices(tokens, raw_tokens, model): mask = [] raw_i = 0 collapsed = '' model = model.split('-')[0] special = specials[model] for i in range(len(tokens)): token = tokens[i] while len(token) > 0 and token[0] == special: token = token[1:] collapsed += token mask.append(raw_i) if collapsed == raw_tokens[raw_i]: raw_i += 1 collapsed = '' if raw_i != len(raw_tokens): raise Exception(f'Token mismatch: \n{tokens}\n{raw_tokens}') return torch.tensor(mask)
1,612
24.603175
68
py
trees_from_transformers
trees_from_transformers-master/utils/extractor.py
import torch import torch.nn as nn import torch.nn.functional as F class Extractor(nn.Module): def __init__(self, n_hidden): super(Extractor, self).__init__() self.linear = nn.Linear(n_hidden * 2, 1) nn.init.uniform_(self.linear.weight, -0.01, 0.01) nn.init.uniform_(self.linear.bias, 0) def forward(self, l, r): h = torch.cat([l, r], dim=-1) o = self.linear(h) # (seq_len-1) return o.squeeze(-1) def loss(self, d, gold): assert len(d) == len(gold) gold = d.new_tensor(gold) l = 0 for i in range(len(d)): for j in range(i+1, len(d)): l += F.relu(1 - torch.sign(gold[i]- gold[j]) * (d[i] - d[j])) return l
752
27.961538
77
py
trees_from_transformers
trees_from_transformers-master/utils/measure.py
import math import torch import torch.nn.functional as F from utils.score import Score class Measure(object): def __init__(self, n_layers, n_att): self.h_measures = ['cos', 'l1', 'l2'] self.a_measures = ['hellinger', 'jsd'] self.a_avg_measures = ['avg_hellinger', 'avg_jsd'] self.measures = self.h_measures + self.a_measures + self.a_avg_measures self.max_m_len = max([len(m) for m in self.measures]) + 2 self.scores = {m: Score(n_layers) for m in self.h_measures} for m in self.a_measures: self.scores[m] = Score(n_layers * n_att) for m in self.a_avg_measures: self.scores[m] = Score(n_layers) def derive_dists(self, l_hidden, r_hidden, l_att, r_att): syn_dists = {} for m in self.h_measures: syn_dists[m] = getattr(self, m)(l_hidden, r_hidden) for m in self.a_measures: syn_dists[m] = getattr(self, m)(l_att, r_att) syn_dists[m] = syn_dists[m].view(-1, syn_dists[m].size(-1)) for m in self.a_avg_measures: syn_dists[m] = getattr(self, m)(l_att, r_att) return syn_dists def derive_final_score(self): for m in self.scores.keys(): self.scores[m].derive_final_score() @staticmethod def cos(l_hidden, r_hidden): # (n_layers, seq_len-1, hidden_dim) * 2 -> (n_layers, seq_len-1) return (F.cosine_similarity(l_hidden, r_hidden, dim=-1) + 1) / 2 @staticmethod def l1(l_hidden, r_hidden): # (n_layers, seq_len-1, hidden_dim) * 2 -> (n_layers, seq_len-1) return torch.norm(l_hidden - r_hidden, p=1, dim=-1) @staticmethod def l2(l_hidden, r_hidden): # (n_layers, seq_len-1, hidden_dim) * 2 -> (n_layers, seq_len-1) return torch.norm(l_hidden - r_hidden, p=2, dim=-1) @staticmethod def kl(p, q): eps = 1e-30 p, q = p + eps, q + eps p, q = p / p.sum(dim=-1, keepdim=True), q / q.sum(dim=-1, keepdim=True) kl = F.kl_div(torch.log(q), p, reduction='none').sum(dim=-1) # kl = (p * (torch.log(p) - torch.log(q))).sum(dim=-1) # To deal with the numerical instability of the KL-div function in PyTorch if (kl < 0).sum() > 0: kl = kl * (1 - (kl < 0).float()) assert torch.isinf(kl).sum() == 0 assert torch.isnan(kl).sum() == 0 return kl @staticmethod def jsd(l_att, r_att): m = (l_att + r_att) / 2 l_kl = Measure.kl(l_att, m) r_kl = Measure.kl(r_att, m) d = torch.sqrt((l_kl + r_kl) / 2) assert (d < 0).sum() == 0 assert torch.isnan(d).sum() == 0 return d @staticmethod def hellinger(l_att, r_att): d = (((l_att.sqrt() - r_att.sqrt()) ** 2).sum(dim=-1)).sqrt() d /= math.sqrt(2) return d @staticmethod def avg_hellinger(l_att, r_att): d = Measure.hellinger(l_att, r_att) return d.mean(dim=1) @staticmethod def avg_jsd(l_att, r_att): d = Measure.jsd(l_att, r_att) return d.mean(dim=1)
3,102
33.477778
82
py
trees_from_transformers
trees_from_transformers-master/data/dataset.py
from utils.yk import get_actions, get_nonbinary_spans, get_tags_tokens_lowercase class Dataset(object): def __init__(self, path, tokenizer): self.path = path self.tokenizer = tokenizer self.cnt = 0 self.sents = [] self.raw_tokens = [] self.tokens = [] self.masks = [] self.gold_spans = [] self.gold_tags = [] self.gold_trees = [] flatten = lambda l: [item for sublist in l for item in sublist] with open(path, 'r') as f: lines = f.readlines() for line in lines: raw_tokens = get_tags_tokens_lowercase(line)[1] sent = ' '.join(raw_tokens) actions = get_actions(line) self.cnt += 1 self.sents.append(sent) self.raw_tokens.append(raw_tokens) self.tokens.append(self.tokenizer.tokenize(sent)) mask = [len(self.tokenizer.tokenize(w)) * [i] for i, w in enumerate(sent.split())] self.masks.append(flatten(mask)) gold_spans, gold_tags, _, _ = get_nonbinary_spans(actions) self.gold_spans.append(gold_spans) self.gold_tags.append(gold_tags) self.gold_trees.append(line.strip())
1,271
32.473684
80
py
SSTAP
SSTAP-main/main.py
import sys from dataset import VideoDataSet, VideoDataSet_unlabel from loss_function import bmn_loss_func, get_mask import os import json import torch import torch.nn.parallel import torch.nn.functional as F import torch.nn as nn import torch.optim as optim import numpy as np import opts from ipdb import set_trace from models import BMN, TemporalShift, TemporalShift_random import pandas as pd import random from post_processing import BMN_post_processing from eval import evaluation_proposal from ipdb import set_trace seed = 400 torch.manual_seed(seed) torch.cuda.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) # Numpy module. random.seed(seed) # Python random module. torch.manual_seed(seed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True os.environ["CUDA_VISIBLE_DEVICES"] = '0,1,2,3' blue = lambda x: '\033[94m' + x + '\033[0m' sys.dont_write_bytecode = True global_step = 0 eval_loss = [] consistency_rampup = 5 consistency = 6 # 30 # 3 # None def update_ema_variables(model, ema_model, alpha, global_step): # Use the true average until the exponential average is more correct alpha = min(1 - 1 / (global_step + 1), alpha) for ema_param, param in zip(ema_model.parameters(), model.parameters()): ema_param.data.mul_(alpha).add_(1 - alpha, param.data) def softmax_mse_loss(input_logits, target_logits): """Takes softmax on both sides and returns MSE loss Note: - Returns the sum over all examples. Divide by the batch size afterwards if you want the mean. - Sends gradients to inputs but not the targets. """ assert input_logits.size() == target_logits.size() # input_softmax = F.softmax(input_logits, dim=1) # target_softmax = F.softmax(target_logits, dim=1) # num_classes = input_logits.size()[1] # return F.mse_loss(input_softmax, target_softmax, reduction='sum') / num_classes # size_average=False return F.mse_loss(input_logits, target_logits, reduction='mean') def softmax_kl_loss(input_logits, target_logits): """Takes softmax on both sides and returns KL divergence Note: - Returns the sum over all examples. Divide by the batch size afterwards if you want the mean. - Sends gradients to inputs but not the targets. """ assert input_logits.size() == target_logits.size() # input_log_softmax = F.log_softmax(input_logits, dim=1) # target_softmax = F.softmax(target_logits, dim=1) # return F.kl_div(input_log_softmax, target_softmax, reduction='sum') return F.kl_div(input_logits, target_logits, reduction='mean') def Motion_MSEloss(output,clip_label,motion_mask=torch.ones(100).cuda()): z = torch.pow((output-clip_label),2) loss = torch.mean(motion_mask*z) return loss def sigmoid_rampup(current, rampup_length): """Exponential rampup from https://arxiv.org/abs/1610.02242""" if rampup_length == 0: return 1.0 else: current = np.clip(current, 0.0, rampup_length) phase = 1.0 - current / rampup_length return float(np.exp(-5.0 * phase * phase)) def linear_rampup(current, rampup_length): """Linear rampup""" assert current >= 0 and rampup_length >= 0 if current >= rampup_length: return 1.0 else: return current / rampup_length def cosine_rampdown(current, rampdown_length): """Cosine rampdown from https://arxiv.org/abs/1608.03983""" assert 0 <= current <= rampdown_length return float(.5 * (np.cos(np.pi * current / rampdown_length) + 1)) def get_current_consistency_weight(epoch): # Consistency ramp-up from https://arxiv.org/abs/1610.02242 return consistency * sigmoid_rampup(epoch, consistency_rampup) def train_BMN(data_loader, model, optimizer, epoch, bm_mask): model.train() epoch_pemreg_loss = 0 epoch_pemclr_loss = 0 epoch_tem_loss = 0 epoch_loss = 0 for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader): input_data = input_data.cuda() label_start = label_start.cuda() label_end = label_end.cuda() label_confidence = label_confidence.cuda() confidence_map, start, end = model(input_data) # [B, 2, 100, 100], [B,100],[B,100] loss = bmn_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda()) # loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss # return loss, tem_loss, pem_reg_loss, pem_cls_loss optimizer.zero_grad() loss[0].backward() optimizer.step() epoch_pemreg_loss += loss[2].cpu().detach().numpy() epoch_pemclr_loss += loss[3].cpu().detach().numpy() epoch_tem_loss += loss[1].cpu().detach().numpy() epoch_loss += loss[0].cpu().detach().numpy() print( "BMN training loss(epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, total_loss: %.03f" % ( epoch, epoch_tem_loss / (n_iter + 1), epoch_pemclr_loss / (n_iter + 1), epoch_pemreg_loss / (n_iter + 1), epoch_loss / (n_iter + 1))) def train_BMN_Semi(data_loader, train_loader_unlabel, model, model_ema, optimizer, epoch, bm_mask): global global_step model.train() epoch_pemreg_loss = 0 epoch_pemclr_loss = 0 epoch_tem_loss = 0 epoch_loss = 0 consistency_loss_all = 0 consistency_loss_ema_all = 0 consistency_criterion = softmax_mse_loss # softmax_kl_loss temporal_perb = TemporalShift_random(400, 64) order_clip_criterion = nn.CrossEntropyLoss() consistency = True clip_order = True dropout2d = True temporal_re = True unlabeled_train_iter = iter(train_loader_unlabel) for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader): input_data = input_data.cuda() label_start = label_start.cuda() label_end = label_end.cuda() label_confidence = label_confidence.cuda() input_data_student = temporal_perb(input_data) if dropout2d: input_data_student = F.dropout2d(input_data_student, 0.2) else: input_data_student = F.dropout(input_data_student, 0.2) confidence_map, start, end = model(input_data_student) # [B, 2, 100, 100], [B,100],[B,100] loss = bmn_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda()) confidence_map = confidence_map * bm_mask.cuda() if temporal_re: input_recons = F.dropout2d(input_data.permute(0,2,1), 0.2).permute(0,2,1) else: input_recons = F.dropout2d(input_data, 0.2) recons_feature = model(input_recons, recons=True) try: input_data_unlabel= unlabeled_train_iter.next() input_data_unlabel = input_data_unlabel.cuda() except: unlabeled_train_iter = iter(train_loader_unlabel) input_data_unlabel = unlabeled_train_iter.next() input_data_unlabel = input_data_unlabel.cuda() input_data_unlabel_student = temporal_perb(input_data_unlabel) if dropout2d: input_data_unlabel_student = F.dropout2d(input_data_unlabel_student, 0.2) else: input_data_unlabel_student = F.dropout(input_data_unlabel_student, 0.2) confidence_map_unlabel_student, start_unlabel_student, end_unlabel_student = model(input_data_unlabel_student) confidence_map_unlabel_student = confidence_map_unlabel_student * bm_mask.cuda() # label input_data_label_student_flip = F.dropout2d(input_data.flip(2).contiguous(), 0.1) confidence_map_label_student_flip, start_label_student_flip, end_label_student_flip = model( input_data_label_student_flip) confidence_map_label_student_flip = confidence_map_label_student_flip * bm_mask.cuda() # unlabel input_data_unlabel_student_flip = F.dropout2d(input_data_unlabel.flip(2).contiguous(), 0.1) confidence_map_unlabel_student_flip, start_unlabel_student_flip, end_unlabel_student_flip = model( input_data_unlabel_student_flip) confidence_map_unlabel_student_flip = confidence_map_unlabel_student_flip * bm_mask.cuda() if temporal_re: recons_input_student = F.dropout2d(input_data_unlabel.permute(0,2,1), 0.2).permute(0,2,1) else: recons_input_student = F.dropout2d(input_data_unlabel, 0.2) recons_feature_unlabel_student = model(recons_input_student, recons=True) loss_recons = 0.0005 * ( Motion_MSEloss(recons_feature, input_data) + Motion_MSEloss(recons_feature_unlabel_student, input_data_unlabel)) # 0.0001 with torch.no_grad(): # input_data_unlabel = input_data_unlabel.cuda() input_data_ema = F.dropout(input_data, 0.05) # 0.3 confidence_map_teacher, start_teacher, end_teacher = model_ema(input_data_ema) confidence_map_teacher = confidence_map_teacher * bm_mask.cuda() input_data_unlabel_teacher = F.dropout(input_data_unlabel, 0.05) # 0.3 confidence_map_unlabel_teacher, start_unlabel_teacher, end_unlabel_teacher = model_ema( input_data_unlabel_teacher) confidence_map_unlabel_teacher = confidence_map_unlabel_teacher * bm_mask.cuda() # flip (label) out = torch.zeros_like(confidence_map_unlabel_teacher) out_m = confidence_map_unlabel_teacher.flip(3).contiguous() for i in range(100): out[:, :, i, :100 - i] = out_m[:, :, i, i:] confidence_map_unlabel_teacher_flip = out # flip (unlabel) out = torch.zeros_like(confidence_map_teacher) out_m = confidence_map_teacher.flip(3).contiguous() for i in range(100): out[:, :, i, :100 - i] = out_m[:, :, i, i:] confidence_map_label_teacher_flip = out # start_unlabel_teacher_flip = start_unlabel_teacher.flip(1).contiguous() # end_unlabel_teacher_flip = end_unlabel_teacher.flip(1).contiguous() # add mask start_unlabel_teacher[start_unlabel_teacher >= 0.9] = 1.0 start_unlabel_teacher[start_unlabel_teacher <= 0.1] = 0.0 # 2_add end_unlabel_teacher[end_unlabel_teacher >= 0.9] = 1.0 end_unlabel_teacher[end_unlabel_teacher <= 0.1] = 0.0 # flip (label) start_label_teacher_flip = start_teacher.flip(1).contiguous() end_label_teacher_flip = end_teacher.flip(1).contiguous() # flip (unlabel) start_unlabel_teacher_flip = start_unlabel_teacher.flip(1).contiguous() end_unlabel_teacher_flip = end_unlabel_teacher.flip(1).contiguous() mask = torch.eq( (start_unlabel_teacher.max(1)[0] > 0.6).float() + (end_unlabel_teacher.max(1)[0] > 0.6).float(), 2.) confidence_map_unlabel_teacher = confidence_map_unlabel_teacher[mask] start_unlabel_teacher = start_unlabel_teacher[mask] end_unlabel_teacher = end_unlabel_teacher[mask] # flip confidence_map_unlabel_teacher_flip = confidence_map_unlabel_teacher_flip[mask] start_unlabel_teacher_flip = start_unlabel_teacher_flip[mask] end_unlabel_teacher_flip = end_unlabel_teacher_flip[mask] # add mask confidence_map_unlabel_student = confidence_map_unlabel_student[mask] start_unlabel_student = start_unlabel_student[mask] end_unlabel_student = end_unlabel_student[mask] # flip add mask confidence_map_unlabel_student_flip = confidence_map_unlabel_student_flip[mask] start_unlabel_student_flip = start_unlabel_student_flip[mask] end_unlabel_student_flip = end_unlabel_student_flip[mask] if consistency: consistency_weight = get_current_consistency_weight(epoch) # meters.update('cons_weight', consistency_weight) # set_trace() consistency_loss = consistency_weight * (consistency_criterion(confidence_map, confidence_map_teacher) + consistency_criterion(start, start_teacher) + consistency_criterion(end, end_teacher)) consistency_loss_ema = consistency_weight * ( consistency_criterion(confidence_map_unlabel_teacher, confidence_map_unlabel_student) + consistency_criterion(start_unlabel_teacher, start_unlabel_student) + consistency_criterion(end_unlabel_teacher, end_unlabel_student)) # set_trace() if torch.isnan(consistency_loss_ema): consistency_loss_ema = torch.tensor(0.).cuda() consistency_loss_ema_flip = 0.1 * consistency_weight * ( consistency_criterion(confidence_map_unlabel_teacher_flip, confidence_map_unlabel_student_flip) + consistency_criterion(start_unlabel_teacher_flip, start_unlabel_student_flip) + consistency_criterion(end_unlabel_teacher_flip, end_unlabel_student_flip)) + 0.1 * consistency_weight * ( consistency_criterion(confidence_map_label_teacher_flip, confidence_map_label_student_flip) + consistency_criterion(start_label_teacher_flip, start_label_student_flip) + consistency_criterion(end_label_teacher_flip, end_label_student_flip)) # meters.update('cons_loss', consistency_loss.item()) else: consistency_loss = torch.tensor(0).cuda() consistency_loss_ema = torch.tensor(0).cuda() consistency_loss_ema_flip = torch.tensor(0).cuda() # meters.update('cons_loss', 0) if clip_order: input_data_all = torch.cat([input_data, input_data_unlabel], 0) batch_size, C, T = input_data_all.size() idx = torch.randperm(batch_size) input_data_all_new = input_data_all[idx] forw_input = torch.cat( [input_data_all_new[:batch_size // 2, :, T // 2:], input_data_all_new[:batch_size // 2, :, :T // 2]], 2) back_input = input_data_all_new[batch_size // 2:, :, :] input_all = torch.cat([forw_input, back_input], 0) label_order = [0] * (batch_size // 2) + [1] * (batch_size - batch_size // 2) label_order = torch.tensor(label_order).long().cuda() out = model(input_all, clip_order=True) loss_clip_order = order_clip_criterion(out, label_order) loss_all = loss[0] + consistency_loss + consistency_loss_ema + loss_recons + 0.01 * loss_clip_order + consistency_loss_ema_flip optimizer.zero_grad() loss_all.backward() optimizer.step() global_step += 1 update_ema_variables(model, model_ema, 0.999, float(global_step/20)) # //5 //25 epoch_pemreg_loss += loss[2].cpu().detach().numpy() epoch_pemclr_loss += loss[3].cpu().detach().numpy() epoch_tem_loss += loss[1].cpu().detach().numpy() epoch_loss += loss[0].cpu().detach().numpy() consistency_loss_all += consistency_loss.cpu().detach().numpy() consistency_loss_ema_all += consistency_loss_ema.cpu().detach().numpy() if n_iter % 10 == 0: print( "training %d (epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, consistency_loss: %.05f, consistency_loss_ema: %.05f, total_loss: %.03f" % (global_step, epoch, epoch_tem_loss / (n_iter + 1), epoch_pemclr_loss / (n_iter + 1), epoch_pemreg_loss / (n_iter + 1), consistency_loss_all / (n_iter + 1), consistency_loss_ema_all / (n_iter + 1), epoch_loss / (n_iter + 1))) print( blue("BMN training loss(epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, total_loss: %.03f" % ( epoch, epoch_tem_loss / (n_iter + 1), epoch_pemclr_loss / (n_iter + 1), epoch_pemreg_loss / (n_iter + 1), epoch_loss / (n_iter + 1)))) def train_BMN_Semi_Full(data_loader, model, model_ema, optimizer, epoch, bm_mask): global global_step model.train() epoch_pemreg_loss = 0 epoch_pemclr_loss = 0 epoch_tem_loss = 0 epoch_loss = 0 consistency_loss_all = 0 consistency_loss_ema_all = 0 consistency_criterion = softmax_mse_loss # softmax_kl_loss # perturbance = nn.dropout(0.3) temporal_perb = TemporalShift_random(400, 64) # TemporalShift(400, 8) 16 order_clip_criterion = nn.CrossEntropyLoss() consistency = True clip_order = True dropout2d = True temporal_re = True # unlabeled_train_iter = iter(train_loader_unlabel) for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader): input_data = input_data.cuda() label_start = label_start.cuda() label_end = label_end.cuda() label_confidence = label_confidence.cuda() input_data_student = temporal_perb(input_data) if dropout2d: input_data_student = F.dropout2d(input_data_student, 0.2) else: input_data_student = F.dropout(input_data_student, 0.2) confidence_map, start, end = model(input_data_student) # [B, 2, 100, 100], [B,100],[B,100] loss = bmn_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda()) confidence_map = confidence_map * bm_mask.cuda() if temporal_re: input_recons = F.dropout2d(input_data.permute(0, 2, 1), 0.2).permute(0, 2, 1) else: input_recons = F.dropout2d(input_data, 0.2) recons_feature = model(input_recons, recons=True) # try: # input_data_unlabel= unlabeled_train_iter.next() # input_data_unlabel = input_data_unlabel.cuda() # except: # unlabeled_train_iter = iter(train_loader_unlabel) # input_data_unlabel = unlabeled_train_iter.next() # input_data_unlabel = input_data_unlabel.cuda() # input_data_unlabel = F.dropout2d(input_data_unlabel.cuda(), 0.2) # input_data_unlabel_student = temporal_perb(input_data_unlabel) # if dropout2d: # input_data_unlabel_student = F.dropout2d(input_data_unlabel_student, 0.2) # else: # input_data_unlabel_student = F.dropout(input_data_unlabel_student, 0.2) # confidence_map_unlabel_student, start_unlabel_student, end_unlabel_student = model(input_data_unlabel_student) # confidence_map_unlabel_student = confidence_map_unlabel_student * bm_mask.cuda() input_data_label_student_flip = F.dropout2d(input_data.flip(2).contiguous(), 0.1) confidence_map_label_student_flip, start_label_student_flip, end_label_student_flip = model( input_data_label_student_flip) confidence_map_label_student_flip = confidence_map_label_student_flip * bm_mask.cuda() # recons_input_student = F.dropout2d(input_data_unlabel.cuda(), 0.2) # recons_feature_unlabel_student = model(recons_input_student, recons=True) # set_trace() loss_recons = 0.0005 * ( Motion_MSEloss(recons_feature, input_data)) # 0.0001 with torch.no_grad(): # input_data_unlabel = input_data_unlabel.cuda() input_data_ema = F.dropout(input_data, 0.05) # 0.3 confidence_map_teacher, start_teacher, end_teacher = model_ema(input_data_ema) confidence_map_teacher = confidence_map_teacher * bm_mask.cuda() # input_data_unlabel_teacher = F.dropout(input_data_unlabel, 0.05) # 0.3 # confidence_map_unlabel_teacher, start_unlabel_teacher, end_unlabel_teacher = model_ema( # input_data_unlabel_teacher) # confidence_map_unlabel_teacher = confidence_map_unlabel_teacher * bm_mask.cuda() # flip out = torch.zeros_like(confidence_map_teacher) out_m = confidence_map_teacher.flip(3).contiguous() for i in range(100): out[:, :, i, :100 - i] = out_m[:, :, i, i:] confidence_map_label_teacher = out # start_unlabel_teacher_flip = start_unlabel_teacher.flip(1).contiguous() # end_unlabel_teacher_flip = end_unlabel_teacher.flip(1).contiguous() # add mask # start_label_teacher[start_label_teacher >= 0.9] = 1.0 # start_label_teacher[start_label_teacher <= 0.1] = 0.0 # 2_add # end_unlabel_teacher[end_unlabel_teacher >= 0.9] = 1.0 # end_unlabel_teacher[end_unlabel_teacher <= 0.1] = 0.0 # flip start_label_teacher_flip = label_start.flip(1).contiguous() end_label_teacher_flip = label_end.flip(1).contiguous() # mask = torch.eq( # (start_unlabel_teacher.max(1)[0] > 0.6).float() + (end_unlabel_teacher.max(1)[0] > 0.6).float(), 2.) # confidence_map_unlabel_teacher = confidence_map_unlabel_teacher[mask] # start_unlabel_teacher = start_unlabel_teacher[mask] # end_unlabel_teacher = end_unlabel_teacher[mask] # flip # confidence_map_unlabel_teacher_flip = confidence_map_unlabel_teacher_flip[mask] # start_unlabel_teacher_flip = start_unlabel_teacher_flip[mask] # end_unlabel_teacher_flip = end_unlabel_teacher_flip[mask] # add mask # confidence_map_unlabel_student = confidence_map_unlabel_student[mask] # start_unlabel_student = start_unlabel_student[mask] # end_unlabel_student = end_unlabel_student[mask] # flip add mask # confidence_map_unlabel_student_flip = confidence_map_label_student_flip[mask] # start_unlabel_student_flip = start_label_student_flip[mask] # end_unlabel_student_flip = end_label_student_flip[mask] if consistency: consistency_weight = get_current_consistency_weight(epoch) # meters.update('cons_weight', consistency_weight) # set_trace() consistency_loss = consistency_weight * (consistency_criterion(confidence_map, confidence_map_teacher) + consistency_criterion(start, start_teacher) + consistency_criterion(end, end_teacher)) consistency_loss_ema_flip = 0.1 * consistency_weight * ( consistency_criterion(confidence_map_label_student_flip, confidence_map_label_teacher) + consistency_criterion(start_label_student_flip, start_label_teacher_flip) + consistency_criterion(end_label_student_flip, end_label_teacher_flip)) # consistency_loss_ema_flip = 0.1 * consistency_weight * ( # consistency_criterion(confidence_map_label_teacher, confidence_map_label_student_flip) + # consistency_criterion(start_label_teacher_flip, start_label_student_flip) + # consistency_criterion(end_label_teacher_flip, end_label_student_flip)) # meters.update('cons_loss', consistency_loss.item()) else: consistency_loss = torch.tensor(0).cuda() consistency_loss_ema = torch.tensor(0).cuda() consistency_loss_ema_flip = torch.tensor(0).cuda() # meters.update('cons_loss', 0) if clip_order: input_data_all = input_data # torch.cat([input_data, input_data_unlabel], 0) batch_size, C, T = input_data_all.size() idx = torch.randperm(batch_size) input_data_all_new = input_data_all[idx] forw_input = torch.cat( [input_data_all_new[:batch_size // 2, :, T // 2:], input_data_all_new[:batch_size // 2, :, :T // 2]], 2) back_input = input_data_all_new[batch_size // 2:, :, :] input_all = torch.cat([forw_input, back_input], 0) label_order = [0] * (batch_size // 2) + [1] * (batch_size - batch_size // 2) label_order = torch.tensor(label_order).long().cuda() out = model(input_all, clip_order=True) loss_clip_order = order_clip_criterion(out, label_order) loss_all = loss[0] + consistency_loss + loss_recons + 0.01 * loss_clip_order + consistency_loss_ema_flip optimizer.zero_grad() loss_all.backward() optimizer.step() global_step += 1 update_ema_variables(model, model_ema, 0.999, float(global_step/20)) # //5 //25 epoch_pemreg_loss += loss[2].cpu().detach().numpy() epoch_pemclr_loss += loss[3].cpu().detach().numpy() epoch_tem_loss += loss[1].cpu().detach().numpy() epoch_loss += loss[0].cpu().detach().numpy() consistency_loss_all += consistency_loss.cpu().detach().numpy() # consistency_loss_ema_all += consistency_loss_ema.cpu().detach().numpy() if n_iter % 10 == 0: print( "training %d (epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, consistency_loss: %.05f, total_loss: %.03f" % (global_step, epoch, epoch_tem_loss / (n_iter + 1), epoch_pemclr_loss / (n_iter + 1), epoch_pemreg_loss / (n_iter + 1), consistency_loss_all / (n_iter + 1), # consistency_loss_ema_all / (n_iter + 1), epoch_loss / (n_iter + 1))) print( blue("BMN training loss(epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, total_loss: %.03f" % ( epoch, epoch_tem_loss / (n_iter + 1), epoch_pemclr_loss / (n_iter + 1), epoch_pemreg_loss / (n_iter + 1), epoch_loss / (n_iter + 1)))) def test_BMN(data_loader, model, epoch, bm_mask): global eval_loss model.eval() best_loss = 1e10 epoch_pemreg_loss = 0 epoch_pemclr_loss = 0 epoch_tem_loss = 0 epoch_loss = 0 for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader): input_data = input_data.cuda() label_start = label_start.cuda() label_end = label_end.cuda() label_confidence = label_confidence.cuda() confidence_map, start, end = model(input_data) loss = bmn_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda()) epoch_pemreg_loss += loss[2].cpu().detach().numpy() epoch_pemclr_loss += loss[3].cpu().detach().numpy() epoch_tem_loss += loss[1].cpu().detach().numpy() epoch_loss += loss[0].cpu().detach().numpy() print( blue("BMN val loss(epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, total_loss: %.03f" % ( epoch, epoch_tem_loss / (n_iter + 1), epoch_pemclr_loss / (n_iter + 1), epoch_pemreg_loss / (n_iter + 1), epoch_loss / (n_iter + 1)))) eval_loss.append(epoch_loss / (n_iter + 1)) state = {'epoch': epoch + 1, 'state_dict': model.state_dict()} torch.save(state, opt["checkpoint_path"] + "/BMN_checkpoint.pth.tar") # ./checkpoint if epoch_loss < model.module.tem_best_loss: model.module.tem_best_loss = epoch_loss torch.save(state, opt["checkpoint_path"] + "/BMN_best.pth.tar") # eval_loss.append(epoch_loss / (n_iter + 1)) opt_file = open(opt["checkpoint_path"] + "/output_eval_loss.json", "w") json.dump(eval_loss, opt_file) opt_file.close() def test_BMN_ema(data_loader, model, epoch, bm_mask): model.eval() best_loss = 1e10 epoch_pemreg_loss = 0 epoch_pemclr_loss = 0 epoch_tem_loss = 0 epoch_loss = 0 for n_iter, (input_data, label_confidence, label_start, label_end) in enumerate(data_loader): input_data = input_data.cuda() label_start = label_start.cuda() label_end = label_end.cuda() label_confidence = label_confidence.cuda() confidence_map, start, end = model(input_data) loss = bmn_loss_func(confidence_map, start, end, label_confidence, label_start, label_end, bm_mask.cuda()) epoch_pemreg_loss += loss[2].cpu().detach().numpy() epoch_pemclr_loss += loss[3].cpu().detach().numpy() epoch_tem_loss += loss[1].cpu().detach().numpy() epoch_loss += loss[0].cpu().detach().numpy() print( blue("BMN val_ema loss(epoch %d): tem_loss: %.03f, pem class_loss: %.03f, pem reg_loss: %.03f, total_loss: %.03f" % ( epoch, epoch_tem_loss / (n_iter + 1), epoch_pemclr_loss / (n_iter + 1), epoch_pemreg_loss / (n_iter + 1), epoch_loss / (n_iter + 1)))) state = {'epoch': epoch + 1, 'state_dict': model.state_dict()} torch.save(state, opt["checkpoint_path"] + "/BMN_checkpoint_ema.pth.tar") # ./checkpoint if epoch_loss < model.module.tem_best_loss: model.module.tem_best_loss = epoch_loss torch.save(state, opt["checkpoint_path"] + "/BMN_best_ema.pth.tar") def BMN_Train(opt): model = BMN(opt) model = torch.nn.DataParallel(model, device_ids=[0, 1, 2, 3]).cuda() model_ema = BMN(opt) model_ema = torch.nn.DataParallel(model_ema, device_ids=[0, 1, 2, 3]).cuda() for param in model_ema.parameters(): param.detach_() optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=opt["training_lr"], weight_decay=opt["weight_decay"]) # 1e-4 train_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="train"), # [16,400,100] batch_size=opt["batch_size"], shuffle=True, drop_last=True, num_workers=8, pin_memory=True) if opt['use_semi'] and opt['unlabel_percent'] > 0.: train_loader_unlabel = torch.utils.data.DataLoader(VideoDataSet_unlabel(opt, subset="unlabel"), # [16,400,100] batch_size=min(max(round(opt["batch_size"]*opt['unlabel_percent']/(4*(1.-opt['unlabel_percent'])))*4, 4), 24), shuffle=True,drop_last=True, num_workers=8, pin_memory=True) test_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="validation"), batch_size=opt["batch_size"], shuffle=False, num_workers=8, pin_memory=True) scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=opt["step_size"], gamma=opt["step_gamma"]) # 7 0.1 bm_mask = get_mask(opt["temporal_scale"]) use_semi = opt['use_semi'] print('use {} label for training!!!'.format(1-opt['unlabel_percent'])) print('training batchsize : {}'.format(opt["batch_size"])) print('unlabel_training batchsize : {}'.format(min(max(round(opt["batch_size"]*opt['unlabel_percent']/(4*(1.-opt['unlabel_percent'])))*4, 4), 24))) for epoch in range(opt["train_epochs"]): # 9 # scheduler.step() if use_semi: if opt['unlabel_percent'] == 0.: print('use Semi !!! use all label !!!') train_BMN_Semi_Full(train_loader, model, model_ema, optimizer, epoch, bm_mask) test_BMN(test_loader, model, epoch, bm_mask) test_BMN_ema(test_loader, model_ema, epoch, bm_mask) else: print('use Semi !!!') train_BMN_Semi(train_loader, train_loader_unlabel, model, model_ema, optimizer, epoch, bm_mask) test_BMN(test_loader, model, epoch, bm_mask) test_BMN_ema(test_loader, model_ema, epoch, bm_mask) else: print('use Fewer label !!!') train_BMN(train_loader, model, optimizer, epoch, bm_mask) test_BMN(test_loader, model, epoch, bm_mask) scheduler.step() def BMN_inference(opt, eval_name): model = BMN(opt) model = torch.nn.DataParallel(model, device_ids=[0, 1, 2, 3]).cuda() model_checkpoint_dir = opt["checkpoint_path"] + eval_name # BMN_checkpoint.pth.tar BMN_best.pth.tar checkpoint = torch.load(model_checkpoint_dir) # BMN_best.pth.tar print('load :', model_checkpoint_dir, ' OK !') model.load_state_dict(checkpoint['state_dict']) model.eval() test_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="validation"), batch_size=8, shuffle=False, num_workers=8, pin_memory=True, drop_last=False) tscale = opt["temporal_scale"] with torch.no_grad(): for idx, input_data in test_loader: # set_trace() length = idx.shape[0] # for ii in range(length): video_name = [] for ii in range(length): video_name_video = test_loader.dataset.video_list[idx[ii]] video_name.append(video_name_video) input_data = input_data.cuda() confidence_map, start, end = model(input_data) # set_trace() for ii in range(length): start_scores = start[ii].detach().cpu().numpy() end_scores = end[ii].detach().cpu().numpy() clr_confidence = (confidence_map[ii][1]).detach().cpu().numpy() reg_confidence = (confidence_map[ii][0]).detach().cpu().numpy() max_start = max(start_scores) max_end = max(end_scores) # generate the set of start points and end points start_bins = np.zeros(len(start_scores)) start_bins[0] = 1 # [1,0,0...,0,1] for idx in range(1, tscale - 1): if start_scores[idx] > start_scores[idx + 1] and start_scores[idx] > start_scores[idx - 1]: start_bins[idx] = 1 elif start_scores[idx] > (0.5 * max_start): start_bins[idx] = 1 end_bins = np.zeros(len(end_scores)) end_bins[-1] = 1 for idx in range(1, tscale - 1): if end_scores[idx] > end_scores[idx + 1] and end_scores[idx] > end_scores[idx - 1]: end_bins[idx] = 1 elif end_scores[idx] > (0.5 * max_end): end_bins[idx] = 1 # new_props = [] for idx in range(tscale): for jdx in range(tscale): start_index = jdx end_index = start_index + idx+1 if end_index < tscale and start_bins[start_index] == 1 and end_bins[end_index] == 1: xmin = start_index/tscale xmax = end_index/tscale xmin_score = start_scores[start_index] xmax_score = end_scores[end_index] clr_score = clr_confidence[idx, jdx] reg_score = reg_confidence[idx, jdx] score = xmin_score * xmax_score * clr_score*reg_score new_props.append([xmin, xmax, xmin_score, xmax_score, clr_score, reg_score, score]) new_props = np.stack(new_props) col_name = ["xmin", "xmax", "xmin_score", "xmax_score", "clr_score", "reg_socre", "score"] new_df = pd.DataFrame(new_props, columns=col_name) new_df.to_csv("./output/BMN_results/" + video_name[ii] + ".csv", index=False) def BMN_inference_ema(opt, eval_name): model = BMN(opt) model = torch.nn.DataParallel(model, device_ids=[0, 1, 2, 3]).cuda() model_checkpoint_dir = opt["checkpoint_path"] + eval_name # BMN_checkpoint.pth.tar BMN_best.pth.tar checkpoint = torch.load(model_checkpoint_dir) # BMN_best.pth.tar print('load :', model_checkpoint_dir, ' OK !') model.load_state_dict(checkpoint['state_dict']) model.eval() test_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="validation"), batch_size=8, shuffle=False, num_workers=8, pin_memory=True, drop_last=False) tscale = opt["temporal_scale"] with torch.no_grad(): for idx, input_data in test_loader: # set_trace() length = idx.shape[0] # for ii in range(length): video_name = [] for ii in range(length): video_name_video = test_loader.dataset.video_list[idx[ii]] video_name.append(video_name_video) input_data = input_data.cuda() confidence_map, start, end = model(input_data) # set_trace() for ii in range(length): start_scores = start[ii].detach().cpu().numpy() end_scores = end[ii].detach().cpu().numpy() clr_confidence = (confidence_map[ii][1]).detach().cpu().numpy() reg_confidence = (confidence_map[ii][0]).detach().cpu().numpy() max_start = max(start_scores) max_end = max(end_scores) # generate the set of start points and end points start_bins = np.zeros(len(start_scores)) start_bins[0] = 1 # [1,0,0...,0,1] for idx in range(1, tscale - 1): if start_scores[idx] > start_scores[idx + 1] and start_scores[idx] > start_scores[idx - 1]: start_bins[idx] = 1 elif start_scores[idx] > (0.5 * max_start): start_bins[idx] = 1 end_bins = np.zeros(len(end_scores)) end_bins[-1] = 1 for idx in range(1, tscale - 1): if end_scores[idx] > end_scores[idx + 1] and end_scores[idx] > end_scores[idx - 1]: end_bins[idx] = 1 elif end_scores[idx] > (0.5 * max_end): end_bins[idx] = 1 new_props = [] for idx in range(tscale): for jdx in range(tscale): start_index = jdx end_index = start_index + idx+1 if end_index < tscale and start_bins[start_index] == 1 and end_bins[end_index] == 1: xmin = start_index/tscale xmax = end_index/tscale xmin_score = start_scores[start_index] xmax_score = end_scores[end_index] clr_score = clr_confidence[idx, jdx] reg_score = reg_confidence[idx, jdx] score = xmin_score * xmax_score * clr_score*reg_score new_props.append([xmin, xmax, xmin_score, xmax_score, clr_score, reg_score, score]) new_props = np.stack(new_props) col_name = ["xmin", "xmax", "xmin_score", "xmax_score", "clr_score", "reg_socre", "score"] new_df = pd.DataFrame(new_props, columns=col_name) new_df.to_csv("./output/BMN_results/" + video_name[ii] + ".csv", index=False) def main(opt): if opt["mode"] == "train": BMN_Train(opt) elif opt["mode"] == "inference": if not os.path.exists("output/BMN_results"): os.makedirs("output/BMN_results") print('unlabel percent: ', opt['unlabel_percent']) print('eval student model !!') for eval_name in ['/BMN_checkpoint.pth.tar', '/BMN_best.pth.tar']: BMN_inference(opt, eval_name) print("Post processing start") BMN_post_processing(opt) print("Post processing finished") evaluation_proposal(opt) print('eval teacher model !!') for eval_name in ['/BMN_checkpoint_ema.pth.tar', '/BMN_best_ema.pth.tar']: BMN_inference_ema(opt, eval_name) print("Post processing start") BMN_post_processing(opt) print("Post processing finished") evaluation_proposal(opt) if __name__ == '__main__': opt = opts.parse_opt() opt = vars(opt) if not os.path.exists(opt["checkpoint_path"]): os.makedirs(opt["checkpoint_path"]) if not os.path.exists('./output'): os.makedirs('./output') opt_file = open(opt["checkpoint_path"] + "/opts.json", "w") json.dump(opt, opt_file) opt_file.close() main(opt)
42,436
48.173812
190
py
SSTAP
SSTAP-main/gen_unlabel_videos.py
import numpy as np import pandas as pd import json import random def load_json(file): with open(file) as json_file: json_data = json.load(json_file) return json_data anno_df = pd.read_csv("./data/activitynet_annotations/video_info_new.csv") anno_database = load_json("./data/activitynet_annotations/anet_anno_action.json") subset = 'training' training_video = [] action_dict = {} action_dict_num = {} # get all training video names for i in range(len(anno_df)): video_name = anno_df.video.values[i] video_info = anno_database[video_name] video_subset = anno_df.subset.values[i] if subset in video_subset: training_video.append(video_name) label = video_info["annotations"][0]['label'] if label not in action_dict: action_dict[label] = [video_name] else: action_dict[label].append(video_name) for label_name in action_dict: action_dict_num[label_name] = len(action_dict[label_name]) opt_file = open("./data/activitynet_annotations/per_label_num.json", "w") json.dump(action_dict_num, opt_file) opt_file.close() # unlabel percents label_percent = np.linspace(0.1, 0.9, 9) # unlabeled_video = [] for percent in label_percent: unlabeled_video = [] new_props = [] for label_name in action_dict: unlabeled_video.extend(random.sample(action_dict[label_name], round(percent*len(action_dict[label_name])))) for i in range(len(anno_df)): video_name = anno_df.video.values[i] numFrame = anno_df.numFrame.values[i] seconds = anno_df.seconds.values[i] fps = anno_df.fps.values[i] rfps = anno_df.rfps.values[i] featureFrame = anno_df.featureFrame.values[i] video_info = anno_database[video_name] video_subset = anno_df.subset.values[i] if video_name in unlabeled_video: new_props.append([video_name, numFrame, seconds, fps, rfps, 'training_unlabel', featureFrame]) else: new_props.append([video_name, numFrame, seconds, fps, rfps, video_subset, featureFrame]) new_props = np.stack(new_props) col_name = ["video", "numFrame", "seconds", "fps", "rfps", "subset", "featureFrame"] new_df = pd.DataFrame(new_props, columns=col_name) new_df.to_csv("./data/activitynet_annotations/video_info_new_{}.csv".format(round(percent, 1)), index=False)
2,370
36.046875
115
py
SSTAP
SSTAP-main/opts.py
import argparse def parse_opt(): parser = argparse.ArgumentParser() # Overall settings parser.add_argument( '--mode', type=str, default='train') parser.add_argument( '--checkpoint_path', type=str, default='./checkpoint') parser.add_argument( '--use_semi', type=bool, default=True) parser.add_argument( '--training_lr', type=float, default=0.001) parser.add_argument( '--unlabel_percent', type=float, default=0.5) # 0.5 parser.add_argument( '--weight_decay', type=float, default=1e-4) parser.add_argument( '--train_epochs', type=int, default=10) parser.add_argument( '--batch_size', type=int, default=16) # 16 parser.add_argument( '--step_size', type=int, default=7) parser.add_argument( '--step_gamma', type=float, default=0.1) # Overall Dataset settings parser.add_argument( '--video_info', type=str, default="./data/activitynet_annotations/video_info_new.csv") parser.add_argument( '--video_anno', type=str, default="./data/activitynet_annotations/anet_anno_action.json") parser.add_argument( '--temporal_scale', type=int, default=100) parser.add_argument( '--feature_path', type=str, default="../BSN/data/activitynet_feature_cuhk/") parser.add_argument( '--num_sample', type=int, default=32) parser.add_argument( '--num_sample_perbin', type=int, default=3) parser.add_argument( '--prop_boundary_ratio', type=int, default=0.5) parser.add_argument( '--feat_dim', type=int, default=400) # Post processing parser.add_argument( '--post_process_thread', type=int, default=8) parser.add_argument( '--soft_nms_alpha', type=float, default=0.4) parser.add_argument( '--soft_nms_low_thres', type=float, default=0.5) parser.add_argument( '--soft_nms_high_thres', type=float, default=0.9) parser.add_argument( '--result_file', type=str, default="./output/result_proposal.json") parser.add_argument( '--save_fig_path', type=str, default="./output/evaluation_result.jpg") args = parser.parse_args() return args
2,615
21.747826
71
py
SSTAP
SSTAP-main/utils.py
import numpy as np def ioa_with_anchors(anchors_min, anchors_max, box_min, box_max): # calculate the overlap proportion between the anchor and all bbox for supervise signal, # the length of the anchor is 0.01 len_anchors = anchors_max - anchors_min int_xmin = np.maximum(anchors_min, box_min) int_xmax = np.minimum(anchors_max, box_max) inter_len = np.maximum(int_xmax - int_xmin, 0.) scores = np.divide(inter_len, len_anchors) return scores def iou_with_anchors(anchors_min, anchors_max, box_min, box_max): """Compute jaccard score between a box and the anchors. """ len_anchors = anchors_max - anchors_min int_xmin = np.maximum(anchors_min, box_min) int_xmax = np.minimum(anchors_max, box_max) inter_len = np.maximum(int_xmax - int_xmin, 0.) union_len = len_anchors - inter_len + box_max - box_min # print inter_len,union_len jaccard = np.divide(inter_len, union_len) return jaccard
960
37.44
92
py
SSTAP
SSTAP-main/dataset.py
import numpy as np import pandas as pd import json import torch.utils.data as data import torch from utils import ioa_with_anchors, iou_with_anchors from ipdb import set_trace def load_json(file): with open(file) as json_file: json_data = json.load(json_file) return json_data class VideoDataSet(data.Dataset): def __init__(self, opt, subset="train"): self.temporal_scale = opt["temporal_scale"] # 100 self.temporal_gap = 1. / self.temporal_scale self.subset = subset self.mode = opt["mode"] self.feature_path = opt["feature_path"] self.video_info_path = "./data/activitynet_annotations/video_info_new_{}.csv".format(opt['unlabel_percent']) self.video_anno_path = opt["video_anno"] self._getDatasetDict() self._get_match_map() # set_trace() def _getDatasetDict(self): anno_df = pd.read_csv(self.video_info_path) anno_database = load_json(self.video_anno_path) self.video_dict = {} for i in range(len(anno_df)): video_name = anno_df.video.values[i] video_info = anno_database[video_name] video_subset = anno_df.subset.values[i] if self.subset in video_subset: if 'unlabel' not in video_subset: self.video_dict[video_name] = video_info self.video_list = list(self.video_dict.keys()) print("%s subset video numbers: %d" % (self.subset, len(self.video_list))) def __getitem__(self, index): video_data = self._load_file(index) if self.mode == "train": match_score_start, match_score_end, confidence_score = self._get_train_label(index, self.anchor_xmin, self.anchor_xmax) return video_data,confidence_score, match_score_start, match_score_end # [400,100],[100,100],[100] else: return index, video_data def _get_match_map(self): match_map = [] for idx in range(self.temporal_scale): tmp_match_window = [] xmin = self.temporal_gap * idx for jdx in range(1, self.temporal_scale + 1): xmax = xmin + self.temporal_gap * jdx tmp_match_window.append([xmin, xmax]) match_map.append(tmp_match_window) match_map = np.array(match_map) # 100x100x2 match_map = np.transpose(match_map, [1, 0, 2]) # [0,1] [1,2] [2,3].....[99,100] match_map = np.reshape(match_map, [-1, 2]) # [0,2] [1,3] [2,4].....[99,101] # duration x start self.match_map = match_map # duration is same in row, start is same in col [10000,2] self.anchor_xmin = [self.temporal_gap * (i-0.5) for i in range(self.temporal_scale)] # [-0.5/100,0.5/100,...98.5/100] self.anchor_xmax = [self.temporal_gap * (i+0.5) for i in range(1, self.temporal_scale + 1)] # [1.5/100,...,100.5/100] def _load_file(self, index): video_name = self.video_list[index] video_df = pd.read_csv(self.feature_path + "csv_mean_" + str(self.temporal_scale) + "/" + video_name + ".csv") video_data = video_df.values[:, :] video_data = torch.Tensor(video_data) video_data = torch.transpose(video_data, 0, 1) video_data.float() return video_data def _get_train_label(self, index, anchor_xmin, anchor_xmax): video_name = self.video_list[index] # video_name video_info = self.video_dict[video_name] video_frame = video_info['duration_frame'] video_second = video_info['duration_second'] feature_frame = video_info['feature_frame'] corrected_second = float(feature_frame) / video_frame * video_second # there are some frames not used video_labels = video_info['annotations'] # the measurement is second, not frame # change the measurement from second to percentage gt_bbox = [] gt_iou_map = [] for j in range(len(video_labels)): tmp_info = video_labels[j] tmp_start = max(min(1, tmp_info['segment'][0] / corrected_second), 0) tmp_end = max(min(1, tmp_info['segment'][1] / corrected_second), 0) gt_bbox.append([tmp_start, tmp_end]) # gt_bbox [0~1] tmp_gt_iou_map = iou_with_anchors( self.match_map[:, 0], self.match_map[:, 1], tmp_start, tmp_end) # [100*100] tmp_gt_iou_map = np.reshape(tmp_gt_iou_map, [self.temporal_scale, self.temporal_scale]) gt_iou_map.append(tmp_gt_iou_map) gt_iou_map = np.array(gt_iou_map) # gt [100*100] gt_iou_map = np.max(gt_iou_map, axis=0) gt_iou_map = torch.Tensor(gt_iou_map) # [100,100] # generate R_s and R_e gt_bbox = np.array(gt_bbox) # gt [start,end] gt_xmins = gt_bbox[:, 0] gt_xmaxs = gt_bbox[:, 1] gt_lens = gt_xmaxs - gt_xmins gt_len_small = 3 * self.temporal_gap # np.maximum(self.temporal_gap, self.boundary_ratio * gt_lens) gt_start_bboxs = np.stack((gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1) gt_end_bboxs = np.stack((gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1) # calculate the ioa for all timestamp match_score_start = [] for jdx in range(len(anchor_xmin)): match_score_start.append(np.max( ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[jdx], gt_start_bboxs[:, 0], gt_start_bboxs[:, 1]))) match_score_end = [] for jdx in range(len(anchor_xmin)): match_score_end.append(np.max( ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[jdx], gt_end_bboxs[:, 0], gt_end_bboxs[:, 1]))) match_score_start = torch.Tensor(match_score_start) match_score_end = torch.Tensor(match_score_end) return match_score_start, match_score_end, gt_iou_map def __len__(self): return len(self.video_list) class VideoDataSet_unlabel(data.Dataset): def __init__(self, opt, subset="unlabel"): self.temporal_scale = opt["temporal_scale"] # 100 self.temporal_gap = 1. / self.temporal_scale self.subset = subset self.mode = opt["mode"] self.feature_path = opt["feature_path"] self.video_info_path = "./data/activitynet_annotations/video_info_new_{}.csv".format(opt['unlabel_percent']) self.video_anno_path = opt["video_anno"] self._getDatasetDict() self.unlabel_percent = opt['unlabel_percent'] self._get_match_map() def _getDatasetDict(self): anno_df = pd.read_csv(self.video_info_path) anno_database = load_json(self.video_anno_path) self.video_dict = {} for i in range(len(anno_df)): video_name = anno_df.video.values[i] video_info = anno_database[video_name] video_subset = anno_df.subset.values[i] if self.subset in video_subset: self.video_dict[video_name] = 'unseen' self.video_list = list(self.video_dict.keys()) print("%s unlabeled subset video numbers: %d" % (self.subset, len(self.video_list))) def __getitem__(self, index): video_data = self._load_file(index) if self.mode == "train": # match_score_start, match_score_end, confidence_score = self._get_train_label(index, self.anchor_xmin, # self.anchor_xmax) return video_data # ,confidence_score, match_score_start, match_score_end # [400,100],[100,100],[100] else: return index, video_data def _get_match_map(self): match_map = [] for idx in range(self.temporal_scale): tmp_match_window = [] xmin = self.temporal_gap * idx for jdx in range(1, self.temporal_scale + 1): xmax = xmin + self.temporal_gap * jdx tmp_match_window.append([xmin, xmax]) match_map.append(tmp_match_window) match_map = np.array(match_map) # 100x100x2 match_map = np.transpose(match_map, [1, 0, 2]) # [0,1] [1,2] [2,3].....[99,100] match_map = np.reshape(match_map, [-1, 2]) # [0,2] [1,3] [2,4].....[99,101] # duration x start self.match_map = match_map # duration is same in row, start is same in col [10000,2] self.anchor_xmin = [self.temporal_gap * (i-0.5) for i in range(self.temporal_scale)] # [-0.5/100,0.5/100,...98.5/100] self.anchor_xmax = [self.temporal_gap * (i+0.5) for i in range(1, self.temporal_scale + 1)] # [1.5/100,...,100.5/100] def _load_file(self, index): video_name = self.video_list[index] video_df = pd.read_csv(self.feature_path + "csv_mean_" + str(self.temporal_scale) + "/" + video_name + ".csv") video_data = video_df.values[:, :] video_data = torch.Tensor(video_data) video_data = torch.transpose(video_data, 0, 1) video_data.float() return video_data def _get_train_label(self, index, anchor_xmin, anchor_xmax): video_name = self.video_list[index] # video_name video_info = self.video_dict[video_name] video_frame = video_info['duration_frame'] video_second = video_info['duration_second'] feature_frame = video_info['feature_frame'] corrected_second = float(feature_frame) / video_frame * video_second # there are some frames not used video_labels = video_info['annotations'] # the measurement is second, not frame # change the measurement from second to percentage gt_bbox = [] gt_iou_map = [] for j in range(len(video_labels)): tmp_info = video_labels[j] tmp_start = max(min(1, tmp_info['segment'][0] / corrected_second), 0) tmp_end = max(min(1, tmp_info['segment'][1] / corrected_second), 0) gt_bbox.append([tmp_start, tmp_end]) # gt_bbox [0~1] tmp_gt_iou_map = iou_with_anchors( self.match_map[:, 0], self.match_map[:, 1], tmp_start, tmp_end) # [100*100] tmp_gt_iou_map = np.reshape(tmp_gt_iou_map, [self.temporal_scale, self.temporal_scale]) gt_iou_map.append(tmp_gt_iou_map) gt_iou_map = np.array(gt_iou_map) # gt个[100*100] gt_iou_map = np.max(gt_iou_map, axis=0) gt_iou_map = torch.Tensor(gt_iou_map) # [100,100] # generate R_s and R_e gt_bbox = np.array(gt_bbox) # gt个[start,end] gt_xmins = gt_bbox[:, 0] gt_xmaxs = gt_bbox[:, 1] gt_lens = gt_xmaxs - gt_xmins gt_len_small = 3 * self.temporal_gap # np.maximum(self.temporal_gap, self.boundary_ratio * gt_lens) gt_start_bboxs = np.stack((gt_xmins - gt_len_small / 2, gt_xmins + gt_len_small / 2), axis=1) gt_end_bboxs = np.stack((gt_xmaxs - gt_len_small / 2, gt_xmaxs + gt_len_small / 2), axis=1) # calculate the ioa for all timestamp match_score_start = [] for jdx in range(len(anchor_xmin)): match_score_start.append(np.max( ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[jdx], gt_start_bboxs[:, 0], gt_start_bboxs[:, 1]))) match_score_end = [] for jdx in range(len(anchor_xmin)): match_score_end.append(np.max( ioa_with_anchors(anchor_xmin[jdx], anchor_xmax[jdx], gt_end_bboxs[:, 0], gt_end_bboxs[:, 1]))) match_score_start = torch.Tensor(match_score_start) match_score_end = torch.Tensor(match_score_end) return match_score_start, match_score_end, gt_iou_map def __len__(self): return len(self.video_list) if __name__ == '__main__': import opts opt = opts.parse_opt() opt = vars(opt) train_loader = torch.utils.data.DataLoader(VideoDataSet(opt, subset="train"), batch_size=opt["batch_size"], shuffle=True, num_workers=8, pin_memory=True) for aaa,bbb,ccc,ddd in train_loader: # len(train_loader)=604 set_trace() print(aaa.shape,bbb.shape,ccc.shape,ddd.shape) # torch.Size([16, 400, 100]) torch.Size([16, 100, 100]) torch.Size([16, 100]) torch.Size([16, 100]) # set_trace() break
14,230
51.707407
155
py
SSTAP
SSTAP-main/loss_function.py
import torch import numpy as np import torch.nn.functional as F def get_mask(tscale): bm_mask = [] for idx in range(tscale): mask_vector = [1 for i in range(tscale - idx) ] + [0 for i in range(idx)] bm_mask.append(mask_vector) bm_mask = np.array(bm_mask, dtype=np.float32) return torch.Tensor(bm_mask) ''' [1, 1, 1, 1, 1] [1, 1, 1, 1, 0] [1, 1, 1, 0, 0] [1, 1, 0, 0, 0] [1, 0, 0, 0, 0]''' def bmn_loss_func(pred_bm, pred_start, pred_end, gt_iou_map, gt_start, gt_end, bm_mask): pred_bm_reg = pred_bm[:, 0].contiguous() pred_bm_cls = pred_bm[:, 1].contiguous() gt_iou_map = gt_iou_map * bm_mask # [b,100,100]*[100,100] ->[B,100,100] pem_reg_loss = pem_reg_loss_func(pred_bm_reg, gt_iou_map, bm_mask) pem_cls_loss = pem_cls_loss_func(pred_bm_cls, gt_iou_map, bm_mask) tem_loss = tem_loss_func(pred_start, pred_end, gt_start, gt_end) loss = tem_loss + 10 * pem_reg_loss + pem_cls_loss return loss, tem_loss, pem_reg_loss, pem_cls_loss def tem_loss_func(pred_start, pred_end, gt_start, gt_end): def bi_loss(pred_score, gt_label): pred_score = pred_score.view(-1) gt_label = gt_label.view(-1) pmask = (gt_label > 0.5).float() num_entries = len(pmask) num_positive = torch.sum(pmask) ratio = num_entries / num_positive coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio epsilon = 0.000001 loss_pos = coef_1 * torch.log(pred_score + epsilon) * pmask loss_neg = coef_0 * torch.log(1.0 - pred_score + epsilon)*(1.0 - pmask) loss = -1 * torch.mean(loss_pos + loss_neg) return loss loss_start = bi_loss(pred_start, gt_start) loss_end = bi_loss(pred_end, gt_end) loss = loss_start + loss_end return loss def pem_reg_loss_func(pred_score, gt_iou_map, mask): u_hmask = (gt_iou_map > 0.7).float() u_mmask = ((gt_iou_map <= 0.7) & (gt_iou_map > 0.3)).float() u_lmask = ((gt_iou_map <= 0.3) & (gt_iou_map > 0.)).float() u_lmask = u_lmask * mask num_h = torch.sum(u_hmask) num_m = torch.sum(u_mmask) num_l = torch.sum(u_lmask) r_m = num_h / num_m u_smmask = torch.Tensor(np.random.rand(*gt_iou_map.shape)).cuda() u_smmask = u_mmask * u_smmask u_smmask = (u_smmask > (1. - r_m)).float() r_l = num_h / num_l u_slmask = torch.Tensor(np.random.rand(*gt_iou_map.shape)).cuda() u_slmask = u_lmask * u_slmask u_slmask = (u_slmask > (1. - r_l)).float() weights = u_hmask + u_smmask + u_slmask loss = F.mse_loss(pred_score* weights, gt_iou_map* weights) loss = 0.5 * torch.sum(loss*torch.ones(*weights.shape).cuda()) / torch.sum(weights) return loss def pem_cls_loss_func(pred_score, gt_iou_map, mask): pmask = (gt_iou_map > 0.9).float() nmask = (gt_iou_map <= 0.9).float() nmask = nmask * mask num_positive = torch.sum(pmask) num_entries = num_positive + torch.sum(nmask) ratio = num_entries / num_positive coef_0 = 0.5 * ratio / (ratio - 1) coef_1 = 0.5 * ratio epsilon = 0.000001 loss_pos = coef_1 * torch.log(pred_score + epsilon) * pmask loss_neg = coef_0 * torch.log(1.0 - pred_score + epsilon) * nmask loss = -1 * torch.sum(loss_pos + loss_neg) / num_entries return loss
3,482
32.171429
90
py
SSTAP
SSTAP-main/eval.py
import sys import warnings warnings.filterwarnings('ignore') sys.path.append('./Evaluation') from eval_proposal import ANETproposal import matplotlib.pyplot as plt import numpy as np def run_evaluation(ground_truth_filename, proposal_filename, max_avg_nr_proposals=100, tiou_thresholds=np.linspace(0.5, 0.95, 10), subset='validation'): anet_proposal = ANETproposal(ground_truth_filename, proposal_filename, tiou_thresholds=tiou_thresholds, max_avg_nr_proposals=max_avg_nr_proposals, subset=subset, verbose=True, check_status=False) anet_proposal.evaluate() recall = anet_proposal.recall average_recall = anet_proposal.avg_recall average_nr_proposals = anet_proposal.proposals_per_video return (average_nr_proposals, average_recall, recall) def plot_metric(opt,average_nr_proposals, average_recall, recall, tiou_thresholds=np.linspace(0.5, 0.95, 10)): fn_size = 14 plt.figure(num=None, figsize=(12, 8)) ax = plt.subplot(1,1,1) colors = ['k', 'r', 'yellow', 'b', 'c', 'm', 'b', 'pink', 'lawngreen', 'indigo'] area_under_curve = np.zeros_like(tiou_thresholds) for i in range(recall.shape[0]): area_under_curve[i] = np.trapz(recall[i], average_nr_proposals) for idx, tiou in enumerate(tiou_thresholds[::2]): ax.plot(average_nr_proposals, recall[2*idx,:], color=colors[idx+1], label="tiou=[" + str(tiou) + "], area=" + str(int(area_under_curve[2*idx]*100)/100.), linewidth=4, linestyle='--', marker=None) # Plots Average Recall vs Average number of proposals. ax.plot(average_nr_proposals, average_recall, color=colors[0], label="tiou = 0.5:0.05:0.95," + " area=" + str(int(np.trapz(average_recall, average_nr_proposals)*100)/100.), linewidth=4, linestyle='-', marker=None) handles, labels = ax.get_legend_handles_labels() ax.legend([handles[-1]] + handles[:-1], [labels[-1]] + labels[:-1], loc='best') plt.ylabel('Average Recall', fontsize=fn_size) plt.xlabel('Average Number of Proposals per Video', fontsize=fn_size) plt.grid(b=True, which="both") plt.ylim([0, 1.0]) plt.setp(plt.axes().get_xticklabels(), fontsize=fn_size) plt.setp(plt.axes().get_yticklabels(), fontsize=fn_size) #plt.show() plt.savefig(opt["save_fig_path"]) def evaluation_proposal(opt): uniform_average_nr_proposals_valid, uniform_average_recall_valid, uniform_recall_valid = run_evaluation( "./Evaluation/data/activity_net_1_3_new.json", # filter_activity_net_1_3_new.json opt["result_file"], max_avg_nr_proposals=100, tiou_thresholds=np.linspace(0.5, 0.95, 10), subset='validation') plot_metric(opt,uniform_average_nr_proposals_valid, uniform_average_recall_valid, uniform_recall_valid) print( "AR@1 is \t",np.mean(uniform_recall_valid[:,0])) print( "AR@5 is \t",np.mean(uniform_recall_valid[:,4])) print( "AR@10 is \t",np.mean(uniform_recall_valid[:,9])) print( "AR@100 is \t",np.mean(uniform_recall_valid[:,-1]))
3,247
44.111111
122
py
SSTAP
SSTAP-main/models.py
import math import numpy as np import torch import torch.nn as nn from ipdb import set_trace import random import torch.nn.functional as F class TemporalShift(nn.Module): def __init__(self, n_segment=3, n_div=8, inplace=False): super(TemporalShift, self).__init__() # self.net = net self.n_segment = n_segment self.fold_div = n_div self.inplace = inplace self.channels_range = list(range(400)) # feature_channels if inplace: print('=> Using in-place shift...') # print('=> Using fold div: {}'.format(self.fold_div)) def forward(self, x): # self.fold_div = n_div x = self.shift(x, self.n_segment, fold_div=self.fold_div, inplace=self.inplace, channels_range =self.channels_range) return x @staticmethod def shift(x, n_segment, fold_div=8, inplace=False, channels_range=[1,2]): x = x.permute(0, 2, 1) # [B,C,T] --> [B, T, C] # set_trace() n_batch, T, c = x.size() # nt, c, h, w = x.size() # n_batch = nt // n_segment # x = x.view(n_batch, n_segment, c, h, w) # x = x.view(n_batch, T, c, h, w) fold = c // 2*fold_div # all = random.sample(channels_range, fold*2) # forward = sorted(all[:fold]) # backward = sorted(all[fold:]) # fixed = list(set(channels_range) - set(all)) # fold = c // fold_div if inplace: # Due to some out of order error when performing parallel computing. # May need to write a CUDA kernel. raise NotImplementedError # out = InplaceShift.apply(x, fold) else: out = torch.zeros_like(x) out[:, :-1, :fold] = x[:, 1:, :fold] # shift left out[:, 1:, fold: 2 * fold] = x[:, :-1, fold: 2 * fold] # shift right out[:, :, 2 * fold:200] = x[:, :, 2 * fold:200] # not shift out[:, :-1, 200:200+fold] = x[:, 1:, 200:200+fold] # shift left out[:, 1:, 200+fold: 200+2 * fold] = x[:, :-1, 200+fold: 200+2 * fold] # shift right out[:, :, 200+2 * fold:] = x[:, :, 200 + 2 * fold:] # not shift # out = torch.zeros_like(x) # out[:, :-1, forward] = x[:, 1:, forward] # shift left # out[:, 1:, backward] = x[:, :-1, backward] # shift right # out[:, :, fixed] = x[:, :, fixed] # not shift # return out.view(nt, c, h, w) return out.permute(0, 2, 1) class TemporalShift_random(nn.Module): def __init__(self, n_segment=3, n_div=8, inplace=False): super(TemporalShift_random, self).__init__() # self.net = net self.n_segment = n_segment self.fold_div = n_div self.inplace = inplace self.channels_range = list(range(400)) # feature_channels if inplace: print('=> Using in-place shift...') # print('=> Using fold div: {}'.format(self.fold_div)) def forward(self, x): # self.fold_div = n_div x = self.shift(x, self.n_segment, fold_div=self.fold_div, inplace=self.inplace, channels_range =self.channels_range) return x @staticmethod def shift(x, n_segment, fold_div=8, inplace=False, channels_range=[1,2]): x = x.permute(0, 2, 1) # [B,C,T] --> [B, T, C] # set_trace() n_batch, T, c = x.size() # nt, c, h, w = x.size() # n_batch = nt // n_segment # x = x.view(n_batch, n_segment, c, h, w) # x = x.view(n_batch, T, c, h, w) fold = c // fold_div all = random.sample(channels_range, fold*2) forward = sorted(all[:fold]) backward = sorted(all[fold:]) fixed = list(set(channels_range) - set(all)) # fold = c // fold_div if inplace: # Due to some out of order error when performing parallel computing. # May need to write a CUDA kernel. raise NotImplementedError # out = InplaceShift.apply(x, fold) else: # out = torch.zeros_like(x) # out[:, :-1, :fold] = x[:, 1:, :fold] # shift left # out[:, 1:, fold: 2 * fold] = x[:, :-1, fold: 2 * fold] # shift right # out[:, :, 2 * fold:] = x[:, :, 2 * fold:] # not shift out = torch.zeros_like(x) out[:, :-1, forward] = x[:, 1:, forward] # shift left out[:, 1:, backward] = x[:, :-1, backward] # shift right out[:, :, fixed] = x[:, :, fixed] # not shift # return out.view(nt, c, h, w) return out.permute(0, 2, 1) class InplaceShift(torch.autograd.Function): # Special thanks to @raoyongming for the help to this function @staticmethod def forward(ctx, input, fold): # not support higher order gradient # input = input.detach_() ctx.fold_ = fold n, t, c, h, w = input.size() buffer = input.data.new(n, t, fold, h, w).zero_() buffer[:, :-1] = input.data[:, 1:, :fold] input.data[:, :, :fold] = buffer buffer.zero_() buffer[:, 1:] = input.data[:, :-1, fold: 2 * fold] input.data[:, :, fold: 2 * fold] = buffer return input @staticmethod def backward(ctx, grad_output): # grad_output = grad_output.detach_() fold = ctx.fold_ n, t, c, h, w = grad_output.size() buffer = grad_output.data.new(n, t, fold, h, w).zero_() buffer[:, 1:] = grad_output.data[:, :-1, :fold] grad_output.data[:, :, :fold] = buffer buffer.zero_() buffer[:, :-1] = grad_output.data[:, 1:, fold: 2 * fold] grad_output.data[:, :, fold: 2 * fold] = buffer return grad_output, None class BMN(nn.Module): def __init__(self, opt): super(BMN, self).__init__() self.tscale = opt["temporal_scale"] # 100 self.prop_boundary_ratio = opt["prop_boundary_ratio"] # 0.5 self.num_sample = opt["num_sample"] # 32 self.num_sample_perbin = opt["num_sample_perbin"] # 3 self.feat_dim=opt["feat_dim"] # 400 self.tem_best_loss = 10000000 self.hidden_dim_1d = 256 self.hidden_dim_2d = 128 self.hidden_dim_3d = 512 self._get_interp1d_mask() # Base Module self.x_1d_b = nn.Sequential( nn.Conv1d(self.feat_dim, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True), nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), # 256 nn.ReLU(inplace=True) ) self.recons = nn.Sequential( nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True), nn.Conv1d(self.hidden_dim_1d, self.feat_dim, kernel_size=3, padding=1, groups=4), # 256 # nn.ReLU(inplace=True) ) self.clip_order = nn.Sequential( # nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), # nn.ReLU(inplace=True), nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=3, padding=1), # 256 nn.ReLU(inplace=True) ) self.clip_order_drop = nn.Dropout(0.5) self.clip_order_linear = nn.Linear(100, 2) # Temporal Evaluation Module self.x_1d_s = nn.Sequential( nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True), nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1), nn.Sigmoid() ) self.x_1d_e = nn.Sequential( nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1, groups=4), nn.ReLU(inplace=True), nn.Conv1d(self.hidden_dim_1d, 1, kernel_size=1), nn.Sigmoid() ) # Proposal Evaluation Module self.x_1d_p = nn.Sequential( nn.Conv1d(self.hidden_dim_1d, self.hidden_dim_1d, kernel_size=3, padding=1), nn.ReLU(inplace=True) ) self.x_3d_p = nn.Sequential( nn.Conv3d(self.hidden_dim_1d, self.hidden_dim_3d, kernel_size=(self.num_sample, 1, 1), stride=(self.num_sample, 1, 1)), # 512 nn.ReLU(inplace=True) ) self.x_2d_p = nn.Sequential( nn.Conv2d(self.hidden_dim_3d, self.hidden_dim_2d, kernel_size=1), nn.ReLU(inplace=True), nn.Conv2d(self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(self.hidden_dim_2d, self.hidden_dim_2d, kernel_size=3, padding=1), nn.ReLU(inplace=True), nn.Conv2d(self.hidden_dim_2d, 2, kernel_size=1), nn.Sigmoid() ) def forward(self, x, recons=False, clip_order=False): # [B,400,100] base_feature = self.x_1d_b(x) # [B,256,100] recons_feature = self.recons(base_feature) if recons: return recons_feature batch_size, C, T = base_feature.size() if clip_order: return self.clip_order_linear(self.clip_order_drop(self.clip_order(base_feature).view(batch_size, T))) start = self.x_1d_s(base_feature).squeeze(1) # [B,1,100]->[B,100] sigmoid() end = self.x_1d_e(base_feature).squeeze(1) confidence_map = self.x_1d_p(base_feature) # [B,256,100]———>[B,256,100]+relu() confidence_map = self._boundary_matching_layer(confidence_map) # [B, 256, 32, 100, 100] # set_trace() confidence_map = self.x_3d_p(confidence_map).squeeze(2) confidence_map = self.x_2d_p(confidence_map) # [B, 2, 100, 100] return confidence_map, start, end # [B, 2, 100, 100], [B,100],[B,100] def _boundary_matching_layer(self, x): input_size = x.size() # [B,256,100] out = torch.matmul(x, self.sample_mask).reshape(input_size[0],input_size[1],self.num_sample,self.tscale,self.tscale) return out # sample_mask= [100, 320000] def _get_interp1d_bin_mask(self, seg_xmin, seg_xmax, tscale, num_sample, num_sample_perbin): # generate sample mask for a boundary-matching pair plen = float(seg_xmax - seg_xmin) # during plen_sample = plen / (num_sample * num_sample_perbin - 1.0) total_samples = [ seg_xmin + plen_sample * ii for ii in range(num_sample * num_sample_perbin) ] # num_sample * num_sample_perbin p_mask = [] for idx in range(num_sample): # 32 bin_samples = total_samples[idx * num_sample_perbin:(idx + 1) * num_sample_perbin] bin_vector = np.zeros([tscale]) for sample in bin_samples: sample_upper = math.ceil(sample) sample_decimal, sample_down = math.modf(sample) if int(sample_down) <= (tscale - 1) and int(sample_down) >= 0: bin_vector[int(sample_down)] += 1 - sample_decimal # down if int(sample_upper) <= (tscale - 1) and int(sample_upper) >= 0: bin_vector[int(sample_upper)] += sample_decimal # upper bin_vector = 1.0 / num_sample_perbin * bin_vector p_mask.append(bin_vector) p_mask = np.stack(p_mask, axis=1) # 100*32 return p_mask def _get_interp1d_mask(self): # generate sample mask for each point in Boundary-Matching Map mask_mat = [] for start_index in range(self.tscale): # 100 mask_mat_vector = [] for duration_index in range(self.tscale): # 100 if start_index + duration_index < self.tscale: # p_xmin = start_index # start p_xmax = start_index + duration_index # end center_len = float(p_xmax - p_xmin) + 1 # during sample_xmin = p_xmin - center_len * self.prop_boundary_ratio # sample_start sample_xmax = p_xmax + center_len * self.prop_boundary_ratio # sample_end p_mask = self._get_interp1d_bin_mask( sample_xmin, sample_xmax, self.tscale, self.num_sample, # 32 self.num_sample_perbin) else: p_mask = np.zeros([self.tscale, self.num_sample]) # [100,32] mask_mat_vector.append(p_mask) # mask_mat_vector = np.stack(mask_mat_vector, axis=2) # [100,32,100] mask_mat.append(mask_mat_vector) mask_mat = np.stack(mask_mat, axis=3) # [100,32,100,100] mask_mat = mask_mat.astype(np.float32) self.sample_mask = nn.Parameter(torch.Tensor(mask_mat).view(self.tscale, -1), requires_grad=False) # [100,32*100*100] if __name__ == '__main__': import opts opt = opts.parse_opt() opt = vars(opt) model=BMN(opt).cuda() input=torch.randn(2,400,100).cuda() a,b,c=model(input) print(a.shape,b.shape,c.shape)
13,366
43.115512
138
py
SSTAP
SSTAP-main/data/activitynet_feature_cuhk/data_process.py
import random import numpy as np import scipy import pandas as pd import pandas import numpy import json def resizeFeature(inputData,newSize): # inputX: (temporal_length,feature_dimension) # originalSize=len(inputData) #print originalSize if originalSize==1: inputData=np.reshape(inputData,[-1]) return np.stack([inputData]*newSize) x=numpy.array(range(originalSize)) f=scipy.interpolate.interp1d(x,inputData,axis=0) x_new=[i*float(originalSize-1)/(newSize-1) for i in range(newSize)] y_new=f(x_new) return y_new def readData(video_name,data_type=["spatial","temporal"]): spatial_dir="./spatial/csv_action/" temporal_dir="./temporal/csv_action/" data=[] for dtype in data_type: if dtype=="spatial": df=pandas.read_csv(spatial_dir+video_name+".csv") elif dtype=="temporal": df=pandas.read_csv(temporal_dir+video_name+".csv") data.append(df.values[:,:]) lens=[len(d) for d in data] #print lens min_len=min(lens) new_data=[d[:min_len] for d in data] new_data=numpy.concatenate(new_data,axis=1) return new_data def load_json(file): with open(file) as json_file: data = json.load(json_file) return data def getDatasetDict(): df=pd.read_csv("./info/video_info.csv") json_data= load_json("./info/activity_net.v1-3.min.json") database=json_data['database'] out_dict={} for i in range(len(df)): video_name=df.video.values[i] video_info=database[video_name[2:]] video_new_info={} video_new_info['duration_frame']=df.numFrame.values[i] video_new_info['duration_second']=df.seconds.values[i] video_new_info['annotations']=video_info['annotations'] out_dict[video_name]=video_new_info return out_dict def poolData(data,videoAnno,num_prop=100,num_bin=1,num_sample_bin=3,pool_type="mean"): feature_frame=len(data)*16 video_frame=videoAnno['duration_frame'] video_second=videoAnno['duration_second'] corrected_second=float(feature_frame)/video_frame*video_second fps=float(video_frame)/video_second st=16/fps if len(data)==1: video_feature=np.stack([data]*num_prop) video_feature=np.reshape(video_feature,[num_prop,400]) return video_feature x=[st/2+ii*st for ii in range(len(data))] f=scipy.interpolate.interp1d(x,data,axis=0) video_feature=[] zero_sample=np.zeros(num_bin*400) tmp_anchor_xmin=[1.0/num_prop*i for i in range(num_prop)] tmp_anchor_xmax=[1.0/num_prop*i for i in range(1,num_prop+1)] num_sample=num_bin*num_sample_bin for idx in range(num_prop): xmin=max(x[0]+0.0001,tmp_anchor_xmin[idx]*corrected_second) xmax=min(x[-1]-0.0001,tmp_anchor_xmax[idx]*corrected_second) if xmax<x[0]: #print "fuck" video_feature.append(zero_sample) continue if xmin>x[-1]: video_feature.append(zero_sample) continue plen=(xmax-xmin)/(num_sample-1) x_new=[xmin+plen*ii for ii in range(num_sample)] y_new=f(x_new) y_new_pool=[] for b in range(num_bin): tmp_y_new=y_new[num_sample_bin*b:num_sample_bin*(b+1)] if pool_type=="mean": tmp_y_new=np.mean(y_new,axis=0) elif pool_type=="max": tmp_y_new=np.max(y_new,axis=0) y_new_pool.append(tmp_y_new) y_new_pool=np.stack(y_new_pool) y_new_pool=np.reshape(y_new_pool,[-1]) video_feature.append(y_new_pool) video_feature=np.stack(video_feature) return video_feature videoDict=getDatasetDict() videoNameList=videoDict.keys() random.shuffle(videoNameList) col_names=[] for i in range(400): col_names.append("f"+str(i)) for videoName in videoNameList: videoAnno=videoDict[videoName] data=readData(videoName) numFrame=videoAnno['duration_frame'] featureFrame=len(data)*16 videoAnno["feature_frame"]=featureFrame videoDict[videoName]=videoAnno print numFrame,featureFrame videoFeature_mean=poolData(data,videoAnno,num_prop=100,num_bin=1,num_sample_bin=3,pool_type="mean") outDf=pd.DataFrame(videoFeature_mean,columns=col_names) outDf.to_csv("./csv_mean_100/"+videoName+".csv",index=False) outfile=open("./anet_anno_anet.json","w") json.dump(videoDict,outfile) outfile.close()
4,484
31.737226
103
py
SSTAP
SSTAP-main/data/activitynet_feature_cuhk/ldb_process.py
""" Created on Mon May 15 22:31:31 2017 @author: wzmsltw """ import caffe import leveldb import numpy as np from caffe.proto import caffe_pb2 import pandas as pd col_names=[] for i in range(200): col_names.append("f"+str(i)) df=pd.read_table("./input_spatial_list.txt",names=['image','frame','label'],sep=" ") db = leveldb.LevelDB('./LDB') datum = caffe_pb2.Datum() i=0 video_name="init" videoData=np.reshape([],[-1,200]) for key, value in db.RangeIter(): tmp_video_name=df.image.values[i].split('/')[-1] if tmp_video_name !=video_name: outDf=pd.DataFrame(videoData,columns=col_names) outDf.to_csv("./csv_raw/"+video_name+".csv",index=False) videoData=np.reshape([],[-1,200]) video_name=tmp_video_name i+=1 datum.ParseFromString(value) label = datum.label data = caffe.io.datum_to_array(datum) data=np.reshape(data,[1,200]) videoData=np.concatenate((videoData,data)) del db
983
21.883721
84
py
SSTAP
SSTAP-main/Evaluation/eval_proposal.py
import json import numpy as np import pandas as pd def interpolated_prec_rec(prec, rec): """Interpolated AP - VOCdevkit from VOC 2011. """ mprec = np.hstack([[0], prec, [0]]) mrec = np.hstack([[0], rec, [1]]) for i in range(len(mprec) - 1)[::-1]: mprec[i] = max(mprec[i], mprec[i + 1]) idx = np.where(mrec[1::] != mrec[0:-1])[0] + 1 ap = np.sum((mrec[idx] - mrec[idx - 1]) * mprec[idx]) return ap def segment_iou(target_segment, candidate_segments): """Compute the temporal intersection over union between a target segment and all the test segments. Parameters ---------- target_segment : 1d array Temporal target segment containing [starting, ending] times. candidate_segments : 2d array Temporal candidate segments containing N x [starting, ending] times. Outputs ------- tiou : 1d array Temporal intersection over union score of the N's candidate segments. """ tt1 = np.maximum(target_segment[0], candidate_segments[:, 0]) tt2 = np.minimum(target_segment[1], candidate_segments[:, 1]) # Intersection including Non-negative overlap score. segments_intersection = (tt2 - tt1).clip(0) # Segment union. segments_union = (candidate_segments[:, 1] - candidate_segments[:, 0]) \ + (target_segment[1] - target_segment[0]) - segments_intersection # Compute overlap as the ratio of the intersection # over union of two segments. tIoU = segments_intersection.astype(float) / segments_union return tIoU def wrapper_segment_iou(target_segments, candidate_segments): """Compute intersection over union btw segments Parameters ---------- target_segments : ndarray 2-dim array in format [m x 2:=[init, end]] candidate_segments : ndarray 2-dim array in format [n x 2:=[init, end]] Outputs ------- tiou : ndarray 2-dim array [n x m] with IOU ratio. Note: It assumes that candidate-segments are more scarce that target-segments """ if candidate_segments.ndim != 2 or target_segments.ndim != 2: raise ValueError('Dimension of arguments is incorrect') n, m = candidate_segments.shape[0], target_segments.shape[0] tiou = np.empty((n, m)) for i in range(m): tiou[:, i] = segment_iou(target_segments[i,:], candidate_segments) return tiou class ANETproposal(object): GROUND_TRUTH_FIELDS = ['database', 'taxonomy', 'version'] PROPOSAL_FIELDS = ['results', 'version', 'external_data'] def __init__(self, ground_truth_filename=None, proposal_filename=None, ground_truth_fields=GROUND_TRUTH_FIELDS, proposal_fields=PROPOSAL_FIELDS, tiou_thresholds=np.linspace(0.5, 0.95, 10), max_avg_nr_proposals=None, subset='validation', verbose=False, check_status=False): if not ground_truth_filename: raise IOError('Please input a valid ground truth file.') if not proposal_filename: raise IOError('Please input a valid proposal file.') self.subset = subset self.tiou_thresholds = tiou_thresholds self.max_avg_nr_proposals = max_avg_nr_proposals self.verbose = verbose self.gt_fields = ground_truth_fields self.pred_fields = proposal_fields self.recall = None self.avg_recall = None self.proposals_per_video = None self.check_status = check_status # Retrieve blocked videos from server. if self.check_status: self.blocked_videos = get_blocked_videos() else: self.blocked_videos = list() # Import ground truth and proposals. self.ground_truth, self.activity_index = self._import_ground_truth( ground_truth_filename) self.proposal = self._import_proposal(proposal_filename) if self.verbose: print ('[INIT] Loaded annotations from {} subset.'.format(subset)) nr_gt = len(self.ground_truth) print ('\tNumber of ground truth instances: {}'.format(nr_gt)) nr_pred = len(self.proposal) print ('\tNumber of proposals: {}'.format(nr_pred)) print ('\tFixed threshold for tiou score: {}'.format(self.tiou_thresholds)) def _import_ground_truth(self, ground_truth_filename): """Reads ground truth file, checks if it is well formatted, and returns the ground truth instances and the activity classes. Parameters ---------- ground_truth_filename : str Full path to the ground truth json file. Outputs ------- ground_truth : df Data frame containing the ground truth instances. activity_index : dict Dictionary containing class index. """ with open(ground_truth_filename, 'r') as fobj: data = json.load(fobj) # Checking format if not all([field in data.keys() for field in self.gt_fields]): raise IOError('Please input a valid ground truth file.') # Read ground truth data. activity_index, cidx = {}, 0 video_lst, t_start_lst, t_end_lst, label_lst = [], [], [], [] for videoid, v in data['database'].items(): if self.subset != v['subset']: continue if videoid in self.blocked_videos: continue for ann in v['annotations']: if ann['label'] not in activity_index: activity_index[ann['label']] = cidx cidx += 1 video_lst.append(videoid) t_start_lst.append(ann['segment'][0]) t_end_lst.append(ann['segment'][1]) label_lst.append(activity_index[ann['label']]) ground_truth = pd.DataFrame({'video-id': video_lst, 't-start': t_start_lst, 't-end': t_end_lst, 'label': label_lst}) return ground_truth, activity_index def _import_proposal(self, proposal_filename): """Reads proposal file, checks if it is well formatted, and returns the proposal instances. Parameters ---------- proposal_filename : str Full path to the proposal json file. Outputs ------- proposal : df Data frame containing the proposal instances. """ with open(proposal_filename, 'r') as fobj: data = json.load(fobj) # Checking format... if not all([field in data.keys() for field in self.pred_fields]): raise IOError('Please input a valid proposal file.') # Read predictions. video_lst, t_start_lst, t_end_lst = [], [], [] score_lst = [] for videoid, v in data['results'].items(): if videoid in self.blocked_videos: continue for result in v: video_lst.append(videoid) t_start_lst.append(result['segment'][0]) t_end_lst.append(result['segment'][1]) score_lst.append(result['score']) proposal = pd.DataFrame({'video-id': video_lst, 't-start': t_start_lst, 't-end': t_end_lst, 'score': score_lst}) return proposal def evaluate(self): """Evaluates a proposal file. To measure the performance of a method for the proposal task, we computes the area under the average recall vs average number of proposals per video curve. """ recall, avg_recall, proposals_per_video = average_recall_vs_avg_nr_proposals( self.ground_truth, self.proposal, max_avg_nr_proposals=self.max_avg_nr_proposals, tiou_thresholds=self.tiou_thresholds) area_under_curve = np.trapz(avg_recall, proposals_per_video) if self.verbose: print('[RESULTS] Performance on ActivityNet proposal task.') print('\tArea Under the AR vs AN curve: {}%'.format(100.*float(area_under_curve)/proposals_per_video[-1])) self.recall = recall self.avg_recall = avg_recall self.proposals_per_video = proposals_per_video def average_recall_vs_avg_nr_proposals(ground_truth, proposals, max_avg_nr_proposals=None, tiou_thresholds=np.linspace(0.5, 0.95, 10)): """ Computes the average recall given an average number of proposals per video. Parameters ---------- ground_truth : df Data frame containing the ground truth instances. Required fields: ['video-id', 't-start', 't-end'] proposal : df Data frame containing the proposal instances. Required fields: ['video-id, 't-start', 't-end', 'score'] tiou_thresholds : 1darray, optional array with tiou thresholds. Outputs ------- recall : 2darray recall[i,j] is recall at ith tiou threshold at the jth average number of average number of proposals per video. average_recall : 1darray recall averaged over a list of tiou threshold. This is equivalent to recall.mean(axis=0). proposals_per_video : 1darray average number of proposals per video. """ # Get list of videos. video_lst = ground_truth['video-id'].unique() if not max_avg_nr_proposals: max_avg_nr_proposals = float(proposals.shape[0])/video_lst.shape[0] ratio = max_avg_nr_proposals*float(video_lst.shape[0])/proposals.shape[0] # Adaptation to query faster ground_truth_gbvn = ground_truth.groupby('video-id') proposals_gbvn = proposals.groupby('video-id') # For each video, computes tiou scores among the retrieved proposals. score_lst = [] total_nr_proposals = 0 for videoid in video_lst: # Get proposals for this video. # try: proposals_videoid = proposals_gbvn.get_group(videoid) # except: # continue this_video_proposals = proposals_videoid.loc[:, ['t-start', 't-end']].values # Sort proposals by score. sort_idx = proposals_videoid['score'].argsort()[::-1] this_video_proposals = this_video_proposals[sort_idx, :] # Get ground-truth instances associated to this video. ground_truth_videoid = ground_truth_gbvn.get_group(videoid) this_video_ground_truth = ground_truth_videoid.loc[:,['t-start', 't-end']].values if this_video_proposals.shape[0] == 0: n = this_video_ground_truth.shape[0] score_lst.append(np.zeros((n, 1))) continue if this_video_proposals.ndim != 2: this_video_proposals = np.expand_dims(this_video_proposals, axis=0) if this_video_ground_truth.ndim != 2: this_video_ground_truth = np.expand_dims(this_video_ground_truth, axis=0) nr_proposals = np.minimum(int(this_video_proposals.shape[0] * ratio), this_video_proposals.shape[0]) total_nr_proposals += nr_proposals this_video_proposals = this_video_proposals[:nr_proposals, :] # Compute tiou scores. tiou = wrapper_segment_iou(this_video_proposals, this_video_ground_truth) score_lst.append(tiou) # Given that the length of the videos is really varied, we # compute the number of proposals in terms of a ratio of the total # proposals retrieved, i.e. average recall at a percentage of proposals # retrieved per video. # Computes average recall. pcn_lst = np.arange(1, 101) / 100.0 *(max_avg_nr_proposals*float(video_lst.shape[0])/total_nr_proposals) matches = np.empty((video_lst.shape[0], pcn_lst.shape[0])) positives = np.empty(video_lst.shape[0]) recall = np.empty((tiou_thresholds.shape[0], pcn_lst.shape[0])) # Iterates over each tiou threshold. for ridx, tiou in enumerate(tiou_thresholds): # Inspect positives retrieved per video at different # number of proposals (percentage of the total retrieved). for i, score in enumerate(score_lst): # Total positives per video. positives[i] = score.shape[0] # Find proposals that satisfies minimum tiou threshold. true_positives_tiou = score >= tiou # Get number of proposals as a percentage of total retrieved. pcn_proposals = np.minimum((score.shape[1] * pcn_lst).astype(np.int), score.shape[1]) for j, nr_proposals in enumerate(pcn_proposals): # Compute the number of matches for each percentage of the proposals matches[i, j] = np.count_nonzero((true_positives_tiou[:, :nr_proposals]).sum(axis=1)) # Computes recall given the set of matches per video. recall[ridx, :] = matches.sum(axis=0) / positives.sum() # Recall is averaged. avg_recall = recall.mean(axis=0) # Get the average number of proposals per video. proposals_per_video = pcn_lst * (float(total_nr_proposals) / video_lst.shape[0]) return recall, avg_recall, proposals_per_video
13,318
38.877246
119
py
SSTAP
SSTAP-main/Evaluation/utils.py
import json import urllib2 import numpy as np API = 'http://ec2-52-11-11-89.us-west-2.compute.amazonaws.com/challenge16/api.py' def get_blocked_videos(api=API): api_url = '{}?action=get_blocked'.format(api) req = urllib2.Request(api_url) response = urllib2.urlopen(req) return json.loads(response.read()) def interpolated_prec_rec(prec, rec): """Interpolated AP - VOCdevkit from VOC 2011. """ mprec = np.hstack([[0], prec, [0]]) mrec = np.hstack([[0], rec, [1]]) for i in range(len(mprec) - 1)[::-1]: mprec[i] = max(mprec[i], mprec[i + 1]) idx = np.where(mrec[1::] != mrec[0:-1])[0] + 1 ap = np.sum((mrec[idx] - mrec[idx - 1]) * mprec[idx]) return ap def segment_iou(target_segment, candidate_segments): """Compute the temporal intersection over union between a target segment and all the test segments. Parameters ---------- target_segment : 1d array Temporal target segment containing [starting, ending] times. candidate_segments : 2d array Temporal candidate segments containing N x [starting, ending] times. Outputs ------- tiou : 1d array Temporal intersection over union score of the N's candidate segments. """ tt1 = np.maximum(target_segment[0], candidate_segments[:, 0]) tt2 = np.minimum(target_segment[1], candidate_segments[:, 1]) # Intersection including Non-negative overlap score. segments_intersection = (tt2 - tt1).clip(0) # Segment union. segments_union = (candidate_segments[:, 1] - candidate_segments[:, 0]) \ + (target_segment[1] - target_segment[0]) - segments_intersection # Compute overlap as the ratio of the intersection # over union of two segments. tIoU = segments_intersection.astype(float) / segments_union return tIoU def wrapper_segment_iou(target_segments, candidate_segments): """Compute intersection over union btw segments Parameters ---------- target_segments : ndarray 2-dim array in format [m x 2:=[init, end]] candidate_segments : ndarray 2-dim array in format [n x 2:=[init, end]] Outputs ------- tiou : ndarray 2-dim array [n x m] with IOU ratio. Note: It assumes that candidate-segments are more scarce that target-segments """ if candidate_segments.ndim != 2 or target_segments.ndim != 2: raise ValueError('Dimension of arguments is incorrect') n, m = candidate_segments.shape[0], target_segments.shape[0] tiou = np.empty((n, m)) for i in xrange(m): tiou[:, i] = segment_iou(target_segments[i,:], candidate_segments) return tiou
2,648
33.855263
81
py
xSLHA
xSLHA-master/setup.py
import setuptools with open("README.md", "r") as fh: long_description = fh.read() setuptools.setup( name="xslha", version="1.0.2", author="Florian Staub", author_email="florian.staub@gmail.com", description="A python package to read (big/many) SLHA files", long_description=long_description, long_description_content_type="text/markdown", url="https://github.com/fstaub/xSLHA", packages=setuptools.find_packages(), classifiers=[ "Programming Language :: Python :: 3", "Programming Language :: Python :: 2", "License :: OSI Approved :: MIT License", "Operating System :: POSIX :: Linux", "Operating System :: MacOS" ], )
710
28.625
65
py
xSLHA
xSLHA-master/xslha/main.py
import subprocess import os from six import string_types # SLHA parser # SLHA Class class SLHA(): def __init__(self): self.blocks = {} self.br = {} self.widths = {} self.br1L = {} self.widths1L = {} self.xsections = {} self.block_name = None self.entries = {} self.reading_block = False self.reading_decay = False self.reading_xsection = False self.reading_hb_fermion = False self.reading_hb_boson = False self.decay1L = False self.decay_part = 0 # return wdith and BR def BR(self, init, final): # frozenset: make sure that the final states are order-less return self.br[init][tuple(sorted(final))] def Width(self, pdg): return self.widths[pdg] def Value(self, block, number): '''return value of a parameter defined by block and entry or the width or an BR''' if block == 'WIDTH': return self.widths[number] elif block == 'BR': return self.br[number[0]][tuple(sorted(number[1]))] elif block == 'WIDTH1L': return self.widths1L[number] elif block == 'BR1L': return self.br1L[number[0]][tuple(sorted(number[1]))] elif block == 'XSECTION': xs = self.xsections[tuple(number)] return [[x, xs[x]] for x in xs.keys()] else: return self.blocks[block.upper()][ str(number)[1:-1].replace(" ", "")] def start_decay(self, li): parsed = list(filter(None, li.split(' '))) self.decay1L = li.upper().startswith("DECAY1L") self.decay_part = int(parsed[1]) if self.decay1L: self.widths1L[self.decay_part] = float(parsed[2]) else: self.widths[self.decay_part] = float(parsed[2]) self.entries = {} self.reading_block, self.reading_decay, self.reading_xsection \ = False, True, False def start_block(self, li): self.block_name = (list(filter(None, li.split(' ')))[1]).upper() self.entries = {} self.reading_block, self.reading_decay, self.reading_xsection \ = True, False, False self.reading_hb_boson = \ self.block_name in ["HIGGSBOUNDSINPUTHIGGSCOUPLINGSBOSONS", "HIGGSCOUPLINGSBOSONS"] self.reading_hb_fermion = \ self.block_name in ["HIGGSBOUNDSINPUTHIGGSCOUPLINGSFERMIONS", "HIGGSCOUPLINGSFERMIONS"] def start_xsection(self, li): parsed = list(filter(None, li.split(' '))) if "#" in parsed: parsed = parsed[:parsed.index("#")] # remove comments self.xs_head = tuple( [float(parsed[1]), tuple([int(parsed[2]), int(parsed[3])]), tuple([int(parsed[-2]), int(parsed[-1])]) ]) self.entries = {} self.reading_block, self.reading_decay, self.reading_xsection \ = False, False, True def flush(self): '''store the information once a block is completely parsed''' if len(self.entries) > 0: if self.reading_block: self.blocks[self.block_name] = self.entries if self.reading_decay: if self.decay1L: self.br1L[self.decay_part] = self.entries else: self.br[self.decay_part] = self.entries if self.reading_xsection: self.xsections[self.xs_head] = self.entries # Reading # now the main function to read the SLHA file def read(file, separator=None, verbose=False): spc = SLHA() if separator is not None: all_files = [] count = 1 with open(file) as infile: for line in infile: li = line.strip().upper() if li.startswith("#") or len(li) < 1: continue if separator is not None: if li.startswith(separator): spc.flush() if max(len(spc.blocks.keys()),len(spc.widths.keys())) > 0: all_files.append(spc) # start next point spc = SLHA() count = count + 1 if verbose: print("Read spc file:", count) continue # New block started if li.startswith("BLOCK"): spc.flush() # store information which was read spc.start_block(li) elif li.startswith("DECAY"): spc.flush() # store information which was read spc.start_decay(li) elif li.startswith("XSECTION"): spc.flush() # store information which was read spc.start_xsection(li) # Reading and parsing values else: parsed = list(filter(None, li.split(' '))) if "#" in parsed: parsed = parsed[:parsed.index("#")] # remove comments if spc.reading_block: if spc.reading_hb_fermion: spc.entries[",".join(parsed[3:])] = \ [float(parsed[0]), float(parsed[1])] elif spc.reading_hb_boson: spc.entries[",".join(parsed[2:])] = \ float(parsed[0]) else: # Value might be a string like in SPINFO block try: value = float(parsed[-1]) except: value = parsed[-2] spc.entries[",".join(parsed[0:-1])] = value if spc.reading_decay: spc.entries[ tuple(sorted(eval("[" + ",".join(parsed[2:]) + "]"))) ] = float(parsed[0]) if spc.reading_xsection: spc.entries[ tuple(eval("[" + ",".join(parsed[0:-2]) + "]")) ] = float(parsed[-2]) spc.flush() # save the very last block in the file if verbose: print("Read %i blocks and %i decays" % (len(spc.blocks), len(spc.br))) if separator is None: return spc else: if len(spc.entries) > 0: all_files.append(spc) return all_files # wrapper for faster read-in of multiple files # squeeze the file (just keeping the necessary entries) to make the reading more efficient # example: read_small_spc(filename,["# m0","# m12","# relic"],separator="ENDOF") def read_small(file, entries, sep): if entries is None: out = read(file, separator=sep) else: string = "--regexp=\"" + sep + "\" --regexp=\"Block\" " for i in entries: string = string + "--regexp=\"" + i + "\" " if os.path.isfile("temp.spc"): subprocess.call("rm temp.spc", shell=True) subprocess.call("cat " + file + " | grep -i " + string + " > temp_read_small.spc", shell=True) out = read("temp_read_small.spc", separator=sep) subprocess.call("rm temp_read_small.spc", shell=True) return out def read_dir(dir, entries=None): if os.path.isfile("temp_read_dir.spc"): subprocess.call("rm temp_read_dir.spc", shell=True) # subprocess.check_call("cat "+dir+"/* > temp_read_dir.spc",shell=True) subprocess.check_call("tail -n+1 " + dir + "/* > temp_read_dir.spc", shell=True) out = read_small("temp_read_dir.spc", entries, "==>") subprocess.call("rm temp_read_dir.spc", shell=True) return out #def read_dir(dir,entries=None): #subprocess.call("rm temp_read_dir.spc",shell=True) #subprocess.check_call("cat "+dir+"/* > temp_read_dir.spc",shell=True) #with open("temp_read_dir.spc") as infile: #for line in infile: #li=line.strip().upper() #if li.startswith("#") or len(li)<1: #continue #else: #file_sep=li[:li.index("#")] #break #out=read_small("temp_read_dir.spc",entries,file_sep) #subprocess.call("rm temp_read_dir.spc",shell=True) #return out # Writing def write(blocks, file): with open(file, 'w+') as f: for b in blocks: write_block_head(b, f) write_block_entries(blocks[b], f) def write_block_entries(values, file): for v in values.keys(): file.write(' %s %10.4e # \n' % (v, float(values[v]))) def write_les_houches(block, values, point, file): write_block_head(block, file) write_block_numbers(block, values, point, file) def write_block_head(name, file): file.write("Block " + name.upper() + " # \n") def write_block_numbers(name, values, Variable, file): for v in values.keys(): # if type(values[v]) is string_types: if isinstance(values[v], string_types): # to be 2 and 3 compatible if str(eval(values[v]))==values[v]: file.write(' %s %s # %s \n' % (v, values[v], name.upper() + "[" + str(v) + "]")) else: file.write(' %s %10.4e # %s \n' % (v, float(eval(values[v])), name.upper() + "[" + str(v) + "]")) elif isinstance(values[v], int): file.write(' %s %i # %s \n' % (v, (values[v]), name.upper() + "[" + str(v) + "]")) else: file.write(' %s %10.4e # %s \n' % (v, float(values[v]), name.upper() + "[" + str(v) + "]"))
10,207
34.817544
90
py
enterprise_extensions
enterprise_extensions-master/setup.py
"""The setup script.""" from setuptools import setup with open("README.rst") as readme_file: readme = readme_file.read() with open("HISTORY.rst") as history_file: history = history_file.read() requirements = [ "numpy>=1.16.3", "scipy>=1.2.0", "ephem>=3.7.6.0", "healpy>=1.14.0", "scikit-sparse>=0.4.5", "pint-pulsar>=0.8.2", "libstempo>=2.4.0", "enterprise-pulsar>=3.3.0", "scikit-learn>=0.24", "emcee", "ptmcmcsampler", ] test_requirements = [] # Extract version def get_version(): with open("enterprise_extensions/__init__.py") as f: for line in f.readlines(): if "__version__" in line: return line.split('"')[1] setup( name="enterprise_extensions", version=get_version(), description="Extensions, model shortcuts, and utilities for the enterprise PTA analysis framework.", long_description=readme + "\n\n" + history, long_description_content_type='text/x-rst', classifiers=[ "Topic :: Scientific/Engineering :: Astronomy", "Topic :: Scientific/Engineering :: Physics", "Topic :: Scientific/Engineering :: Mathematics", "Intended Audience :: Science/Research", "Programming Language :: Python :: 3", "Topic :: Software Development :: Libraries :: Python Modules", ], keywords="gravitational-wave, black-hole binary, pulsar-timing arrays", url="https://github.com/stevertaylor/enterprise_extensions", author="Stephen R. Taylor, Paul T. Baker, Jeffrey S. Hazboun, Sarah Vigeland", author_email="jeffrey.hazboun@gmail.com", license="MIT", packages=[ "enterprise_extensions", "enterprise_extensions.frequentist", "enterprise_extensions.chromatic", ], package_data={ "enterprise_extensions.chromatic": [ "ACE_SWEPAM_daily_proton_density_1998_2018_MJD_cm-3.txt" ] }, test_suite="tests", tests_require=test_requirements, install_requires=requirements, zip_safe=False, )
2,094
27.310811
104
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/hypermodel.py
import os import numpy as np import scipy.linalg as sl from enterprise import constants as const from PTMCMCSampler.PTMCMCSampler import PTSampler as ptmcmc from .sampler import JumpProposal, get_parameter_groups, save_runtime_info class HyperModel(object): """ Class to define hyper-model that is the concatenation of all models. """ def __init__(self, models, log_weights=None): self.models = models self.num_models = len(self.models) self.log_weights = log_weights self.param_names, ind = np.unique(np.concatenate([p.param_names for p in self.models.values()]), return_index=True) self.param_names = self.param_names[np.argsort(ind)] self.param_names = np.append(self.param_names, 'nmodel').tolist() self.pulsars = np.unique(np.concatenate([p.pulsars for p in self.models.values()])) self.pulsars = np.sort(self.pulsars) self.params = [p for p in self.models[0].params] # start of param list uniq_params = [str(p) for p in self.models[0].params] # which params are unique for model in self.models.values(): # find differences between next model and concatenation of previous param_diffs = np.setdiff1d([str(p) for p in model.params], uniq_params) mask = np.array([str(p) in param_diffs for p in model.params]) # concatenate for next loop iteration uniq_params = np.union1d([str(p) for p in model.params], uniq_params) # extend list of unique parameters self.params.extend([pp for pp in np.array(model.params)[mask]]) # get signal collections self.snames = dict.fromkeys(np.unique(sum(sum([[[qq.signal_name for qq in pp._signals] for pp in self.models[mm]._signalcollections] for mm in self.models], []), []))) for key in self.snames: self.snames[key] = [] for mm in self.models: for sc in self.models[mm]._signalcollections: for signal in sc._signals: self.snames[signal.signal_name].extend(signal.params) for key in self.snames: self.snames[key] = list(set(self.snames[key])) for key in self.snames: uniq_params, ind = np.unique([p.name for p in self.snames[key]], return_index=True) uniq_params = uniq_params[np.argsort(ind)].tolist() all_params = [p.name for p in self.snames[key]] self.snames[key] = np.array(self.snames[key])[[all_params.index(q) for q in uniq_params]].tolist() def get_lnlikelihood(self, x): # find model index variable idx = list(self.param_names).index('nmodel') nmodel = int(np.rint(x[idx])) # find parameters of active model q = [] for par in self.models[nmodel].param_names: idx = self.param_names.index(par) q.append(x[idx]) # only active parameters enter likelihood active_lnlike = self.models[nmodel].get_lnlikelihood(q) if self.log_weights is not None: active_lnlike += self.log_weights[nmodel] return active_lnlike def get_lnprior(self, x): # find model index variable idx = list(self.param_names).index('nmodel') nmodel = int(np.rint(x[idx])) if nmodel not in self.models.keys(): return -np.inf else: lnP = 0 for p in self.models.values(): q = [] for par in p.param_names: idx = self.param_names.index(par) q.append(x[idx]) lnP += p.get_lnprior(np.array(q)) return lnP def get_parameter_groups(self): unique_groups = [] for p in self.models.values(): groups = get_parameter_groups(p) # check for any duplicate groups # e.g. the GWB may have different indices in model 1 and model 2 for group in groups: check_group = [] for idx in group: param_name = p.param_names[idx] check_group.append(self.param_names.index(param_name)) if check_group not in unique_groups: unique_groups.append(check_group) unique_groups.extend([[len(self.param_names) - 1]]) return unique_groups def initial_sample(self): """ Draw an initial sample from within the hyper-model prior space. """ x0 = [np.array(p.sample()).ravel().tolist() for p in self.models[0].params] uniq_params = [str(p) for p in self.models[0].params] for model in self.models.values(): param_diffs = np.setdiff1d([str(p) for p in model.params], uniq_params) mask = np.array([str(p) in param_diffs for p in model.params]) x0.extend([np.array(pp.sample()).ravel().tolist() for pp in np.array(model.params)[mask]]) uniq_params = np.union1d([str(p) for p in model.params], uniq_params) x0.extend([[0.1]]) return np.array([p for sublist in x0 for p in sublist]) def draw_from_nmodel_prior(self, x, iter, beta): """ Model-index uniform distribution prior draw. """ q = x.copy() idx = list(self.param_names).index('nmodel') q[idx] = np.random.uniform(-0.5, self.num_models-0.5) lqxy = 0 return q, float(lqxy) def setup_sampler(self, outdir='chains', resume=False, sample_nmodel=True, empirical_distr=None, groups=None, human=None, loglkwargs={}, logpkwargs={}): """ Sets up an instance of PTMCMC sampler. We initialize the sampler the likelihood and prior function from the PTA object. We set up an initial jump covariance matrix with fairly small jumps as this will be adapted as the MCMC runs. We will setup an output directory in `outdir` that will contain the chain (first n columns are the samples for the n parameters and last 4 are log-posterior, log-likelihood, acceptance rate, and an indicator variable for parallel tempering but it doesn't matter because we aren't using parallel tempering). We then add several custom jump proposals to the mix based on whether or not certain parameters are in the model. These are all either draws from the prior distribution of parameters or draws from uniform distributions. """ # dimension of parameter space ndim = len(self.param_names) # initial jump covariance matrix if os.path.exists(outdir+'/cov.npy') and resume: cov = np.load(outdir+'/cov.npy') # check that the one we load is the same shape as our data cov_new = np.diag(np.ones(ndim) * 1.0**2) if cov.shape != cov_new.shape: msg = 'The covariance matrix (cov.npy) in the output folder is ' msg += 'the wrong shape for the parameters given. ' msg += 'Start with a different output directory or ' msg += 'change resume to False to overwrite the run that exists.' raise ValueError(msg) else: cov = np.diag(np.ones(ndim) * 1.0**2) # used to be 0.1 # parameter groupings if groups is None: groups = self.get_parameter_groups() sampler = ptmcmc(ndim, self.get_lnlikelihood, self.get_lnprior, cov, groups=groups, outDir=outdir, resume=resume, loglkwargs=loglkwargs, logpkwargs=logpkwargs) save_runtime_info(self, sampler.outDir, human) # additional jump proposals jp = JumpProposal(self, self.snames, empirical_distr=empirical_distr) sampler.jp = jp # always add draw from prior sampler.addProposalToCycle(jp.draw_from_prior, 5) # try adding empirical proposals if empirical_distr is not None: print('Adding empirical proposals...\n') sampler.addProposalToCycle(jp.draw_from_empirical_distr, 25) # Red noise prior draw if 'red noise' in self.snames: print('Adding red noise prior draws...\n') sampler.addProposalToCycle(jp.draw_from_red_prior, 10) # DM GP noise prior draw if 'dm_gp' in self.snames: print('Adding DM GP noise prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dm_gp_prior, 10) # DM annual prior draw if 'dm_s1yr' in jp.snames: print('Adding DM annual prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dm1yr_prior, 10) # DM dip prior draw if 'dmexp' in '\t'.join(jp.snames): print('Adding DM exponential dip prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dmexpdip_prior, 10) # DM cusp prior draw if 'dm_cusp' in jp.snames: print('Adding DM exponential cusp prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dmexpcusp_prior, 10) # DMX prior draw if 'dmx_signal' in jp.snames: print('Adding DMX prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dmx_prior, 10) # Chromatic GP noise prior draw if 'chrom_gp' in self.snames: print('Adding Chromatic GP noise prior draws...\n') sampler.addProposalToCycle(jp.draw_from_chrom_gp_prior, 10) # SW prior draw if 'gp_sw' in jp.snames: print('Adding Solar Wind DM GP prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dm_sw_prior, 10) # Chromatic GP noise prior draw if 'chrom_gp' in self.snames: print('Adding Chromatic GP noise prior draws...\n') sampler.addProposalToCycle(jp.draw_from_chrom_gp_prior, 10) # Ephemeris prior draw if 'd_jupiter_mass' in self.param_names: print('Adding ephemeris model prior draws...\n') sampler.addProposalToCycle(jp.draw_from_ephem_prior, 10) # GWB uniform distribution draw if np.any([('gw' in par and 'log10_A' in par) for par in self.param_names]): print('Adding GWB uniform distribution draws...\n') sampler.addProposalToCycle(jp.draw_from_gwb_log_uniform_distribution, 10) # Dipole uniform distribution draw if 'dipole_log10_A' in self.param_names: print('Adding dipole uniform distribution draws...\n') sampler.addProposalToCycle(jp.draw_from_dipole_log_uniform_distribution, 10) # Monopole uniform distribution draw if 'monopole_log10_A' in self.param_names: print('Adding monopole uniform distribution draws...\n') sampler.addProposalToCycle(jp.draw_from_monopole_log_uniform_distribution, 10) # BWM prior draw if 'bwm_log10_A' in self.param_names: print('Adding BWM prior draws...\n') sampler.addProposalToCycle(jp.draw_from_bwm_prior, 10) # FDM prior draw if 'fdm_log10_A' in self.param_names: print('Adding FDM prior draws...\n') sampler.addProposalToCycle(jp.draw_from_fdm_prior, 10) # CW prior draw if 'cw_log10_h' in self.param_names: print('Adding CW prior draws...\n') sampler.addProposalToCycle(jp.draw_from_cw_log_uniform_distribution, 10) # free spectrum prior draw if np.any(['log10_rho' in par for par in self.param_names]): print('Adding free spectrum prior draws...\n') sampler.addProposalToCycle(jp.draw_from_gw_rho_prior, 25) # Prior distribution draw for parameters named GW if any([str(p).split(':')[0] for p in list(self.params) if 'gw' in str(p)]): print('Adding gw param prior draws...\n') sampler.addProposalToCycle(jp.draw_from_par_prior( par_names=[str(p).split(':')[0] for p in list(self.params) if 'gw' in str(p)]), 10) # Model index distribution draw if sample_nmodel: if 'nmodel' in self.param_names: print('Adding nmodel uniform distribution draws...\n') sampler.addProposalToCycle(self.draw_from_nmodel_prior, 25) return sampler def get_process_timeseries(self, psr, chain, burn, comp='DM', mle=False, model=0): """ Construct a time series realization of various constrained processes. :param psr: enterprise pulsar object :param chain: MCMC chain from sampling all models :param burn: desired number of initial samples to discard :param comp: which process to reconstruct? (red noise or DM) [default=DM] :param mle: create time series from ML of GP hyper-parameters? [default=False] :param model: which sub-model within the super-model to reconstruct from? [default=0] :return ret: time-series of the reconstructed process """ wave = 0 pta = self.models[model] model_chain = chain[np.rint(chain[:, -5])==model, :] # get parameter dictionary if mle: ind = np.argmax(model_chain[:, -4]) else: ind = np.random.randint(burn, model_chain.shape[0]) params = {par: model_chain[ind, ct] for ct, par in enumerate(self.param_names) if par in pta.param_names} # deterministic signal part wave += pta.get_delay(params=params)[0] # get linear parameters # Nvec = pta.get_ndiag(params)[0] # Not currently used in code phiinv = pta.get_phiinv(params, logdet=False)[0] T = pta.get_basis(params)[0] d = pta.get_TNr(params)[0] TNT = pta.get_TNT(params)[0] # Red noise piece Sigma = TNT + (np.diag(phiinv) if phiinv.ndim == 1 else phiinv) try: u, s, _ = sl.svd(Sigma) mn = np.dot(u, np.dot(u.T, d)/s) Li = u * np.sqrt(1/s) except np.linalg.LinAlgError: Q, R = sl.qr(Sigma) Sigi = sl.solve(R, Q.T) mn = np.dot(Sigi, d) u, s, _ = sl.svd(Sigi) Li = u * np.sqrt(1/s) b = mn + np.dot(Li, np.random.randn(Li.shape[0])) # find basis indices pardict = {} for sc in pta._signalcollections: ntot = 0 for sig in sc._signals: if sig.signal_type == 'basis': basis = sig.get_basis(params=params) nb = basis.shape[1] pardict[sig.signal_name] = np.arange(ntot, nb+ntot) ntot += nb # DM quadratic + GP if comp == 'DM': idx = pardict['dm_gp'] wave += np.dot(T[:, idx], b[idx]) ret = wave * (psr.freqs**2 * const.DM_K * 1e12) elif comp == 'scattering': idx = pardict['scattering_gp'] wave += np.dot(T[:, idx], b[idx]) ret = wave * (psr.freqs**4) # * const.DM_K * 1e12) elif comp == 'red': idx = pardict['red noise'] wave += np.dot(T[:, idx], b[idx]) ret = wave elif comp == 'FD': idx = pardict['FD'] wave += np.dot(T[:, idx], b[idx]) ret = wave elif comp == 'all': wave += np.dot(T, b) ret = wave else: ret = wave return ret def summary(self, to_stdout=False): """generate summary string for HyperModel, including all PTAs :param to_stdout: [bool] print summary to `stdout` instead of returning it :return: [string] """ summary = "" for ii, pta in self.models.items(): summary += "model " + str(ii) + "\n" summary += "=" * 9 + "\n\n" summary += pta.summary() summary += "=" * 90 + "\n\n" if to_stdout: print(summary) else: return summary
16,731
37.200913
102
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/gp_kernels.py
import numpy as np from enterprise.signals import signal_base, utils __all__ = ['linear_interp_basis_dm', 'linear_interp_basis_freq', 'dmx_ridge_prior', 'periodic_kernel', 'se_kernel', 'se_dm_kernel', 'get_tf_quantization_matrix', 'tf_kernel', 'sf_kernel', ] # linear interpolation basis in time with nu^-2 scaling @signal_base.function def linear_interp_basis_dm(toas, freqs, dt=30*86400): # get linear interpolation basis in time U, avetoas = utils.linear_interp_basis(toas, dt=dt) # scale with radio frequency Dm = (1400/freqs)**2 return U * Dm[:, None], avetoas @signal_base.function def linear_interp_basis_chromatic(toas, freqs, dt=30*86400, idx=4): """Linear interpolation basis in time with nu^-4 scaling""" # get linear interpolation basis in time U, avetoas = utils.linear_interp_basis(toas, dt=dt) # scale with radio frequency Dm = (1400/freqs)**idx return U * Dm[:, None], avetoas @signal_base.function def linear_interp_basis_freq(freqs, df=64): """Linear interpolation in radio frequency""" return utils.linear_interp_basis(freqs, dt=df) @signal_base.function def dmx_ridge_prior(avetoas, log10_sigma=-7): """DMX-like signal with Gaussian prior""" sigma = 10**log10_sigma return sigma**2 * np.ones_like(avetoas) @signal_base.function def periodic_kernel(avetoas, log10_sigma=-7, log10_ell=2, log10_gam_p=0, log10_p=0): """Quasi-periodic kernel for DM""" r = np.abs(avetoas[None, :] - avetoas[:, None]) # convert units to seconds sigma = 10**log10_sigma l = 10**log10_ell * 86400 p = 10**log10_p * 3.16e7 gam_p = 10**log10_gam_p d = np.eye(r.shape[0]) * (sigma/500)**2 K = sigma**2 * np.exp(-r**2/2/l**2 - gam_p*np.sin(np.pi*r/p)**2) + d return K @signal_base.function def se_kernel(avefreqs, log10_sigma=-7, log10_lam=3): """Squared-exponential kernel for FD""" tm = np.abs(avefreqs[None, :] - avefreqs[:, None]) lam = 10**log10_lam sigma = 10**log10_sigma d = np.eye(tm.shape[0]) * (sigma/500)**2 return sigma**2 * np.exp(-tm**2/2/lam) + d @signal_base.function def se_dm_kernel(avetoas, log10_sigma=-7, log10_ell=2): """Squared-exponential kernel for DM""" r = np.abs(avetoas[None, :] - avetoas[:, None]) # Convert everything into seconds l = 10**log10_ell * 86400 sigma = 10**log10_sigma d = np.eye(r.shape[0]) * (sigma/500)**2 K = sigma**2 * np.exp(-r**2/2/l**2) + d return K @signal_base.function def get_tf_quantization_matrix(toas, freqs, dt=30*86400, df=None, dm=False, dm_idx=2): """ Quantization matrix in time and radio frequency to cut down on the kernel size. """ if df is None: dfs = [(600, 1000), (1000, 1900), (1900, 3000), (3000, 5000)] else: fmin = freqs.min() fmax = freqs.max() fs = np.arange(fmin, fmax+df, df) dfs = [(fs[ii], fs[ii+1]) for ii in range(len(fs)-1)] Us, avetoas, avefreqs, masks = [], [], [], [] for rng in dfs: mask = np.logical_and(freqs>=rng[0], freqs<rng[1]) if any(mask): masks.append(mask) U, _ = utils.create_quantization_matrix(toas[mask], dt=dt, nmin=1) avetoa = np.array([toas[mask][idx.astype(bool)].mean() for idx in U.T]) avefreq = np.array([freqs[mask][idx.astype(bool)].mean() for idx in U.T]) Us.append(U) avetoas.append(avetoa) avefreqs.append(avefreq) nc = np.sum(U.shape[1] for U in Us) U = np.zeros((len(toas), nc)) avetoas = np.concatenate(avetoas) idx = np.argsort(avetoas) avefreqs = np.concatenate(avefreqs) nctot = 0 for ct, mask in enumerate(masks): Umat = Us[ct] nn = Umat.shape[1] U[mask, nctot:nn+nctot] = Umat nctot += nn if dm: weights = (1400/freqs)**dm_idx else: weights = np.ones_like(freqs) return U[:, idx] * weights[:, None], {'avetoas': avetoas[idx], 'avefreqs': avefreqs[idx]} @signal_base.function def tf_kernel(labels, log10_sigma=-7, log10_ell=2, log10_gam_p=0, log10_p=0, log10_ell2=4, log10_alpha_wgt=0): """ The product of a quasi-periodic time kernel and a rational-quadratic frequency kernel. """ avetoas = labels['avetoas'] avefreqs = labels['avefreqs'] r = np.abs(avetoas[None, :] - avetoas[:, None]) r2 = np.abs(avefreqs[None, :] - avefreqs[:, None]) # convert units to seconds sigma = 10**log10_sigma l = 10**log10_ell * 86400 l2 = 10**log10_ell2 p = 10**log10_p * 3.16e7 gam_p = 10**log10_gam_p alpha_wgt = 10**log10_alpha_wgt d = np.eye(r.shape[0]) * (sigma/500)**2 Kt = sigma**2 * np.exp(-r**2/2/l**2 - gam_p*np.sin(np.pi*r/p)**2) Kv = (1+r2**2/2/alpha_wgt/l2**2)**(-alpha_wgt) return Kt * Kv + d @signal_base.function def sf_kernel(labels, log10_sigma=-7, log10_ell=2, log10_ell2=4, log10_alpha_wgt=0): """ The product of a squared-exponential time kernel and a rational-quadratic frequency kernel. """ avetoas = labels['avetoas'] avefreqs = labels['avefreqs'] r = np.abs(avetoas[None, :] - avetoas[:, None]) r2 = np.abs(avefreqs[None, :] - avefreqs[:, None]) # Convert everything into seconds l = 10**log10_ell * 86400 sigma = 10**log10_sigma l2 = 10**log10_ell2 alpha_wgt = 10**log10_alpha_wgt d = np.eye(r.shape[0]) * (sigma/500)**2 Kt = sigma**2 * np.exp(-r**2/2/l**2) Kv = (1+r2**2/2/alpha_wgt/l2**2)**(-alpha_wgt) return Kt * Kv + d
5,878
28.691919
86
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/deterministic.py
import numpy as np from enterprise import constants as const from enterprise.signals import (deterministic_signals, parameter, signal_base, utils) def fdm_block(Tmin, Tmax, amp_prior='log-uniform', name='fdm', amp_lower=-18, amp_upper=-11, freq_lower=-9, freq_upper=-7, use_fixed_freq=False, fixed_freq=-8): """ Returns deterministic fuzzy dark matter model: 1. FDM parameterized by frequency, phase, and amplitude (mass and DM energy density). :param Tmin: Min time to search, probably first TOA (MJD). :param Tmax: Max time to search, probably last TOA (MJD). :param amp_prior: Prior on log10_A. :param logmin: log of minimum FDM amplitude for prior (log10) :param logmax: log of maximum FDM amplitude for prior (log10) :param name: Name of FDM signal. :param amp_upper, amp_lower, freq_upper, freq_lower: The log-space bounds on the amplitude and frequency priors. :param use_fixed_freq: Whether to do a fixed-frequency run and not search over the frequency. :param fixed_freq: The frequency value to do a fixed-frequency run with. """ # BWM parameters amp_name = '{}_log10_A'.format(name) log10_A_fdm = parameter.Uniform(amp_lower, amp_upper)(amp_name) if use_fixed_freq is True: log10_f_fdm = fixed_freq if use_fixed_freq is False: freq_name = '{}_log10_f'.format(name) log10_f_fdm = parameter.Uniform(freq_lower, freq_upper)(freq_name) phase_e_name = '{}_phase_e'.format(name) phase_e_fdm = parameter.Uniform(0, 2*np.pi)(phase_e_name) phase_p = parameter.Uniform(0, 2*np.pi) fdm_wf = fdm_delay(log10_A=log10_A_fdm, log10_f=log10_f_fdm, phase_e=phase_e_fdm, phase_p=phase_p) fdm = deterministic_signals.Deterministic(fdm_wf, name=name) return fdm def cw_block_circ(amp_prior='log-uniform', dist_prior=None, skyloc=None, log10_fgw=None, psrTerm=False, tref=0, name='cw'): """ Returns deterministic, cirular orbit continuous GW model: :param amp_prior: Prior on log10_h. Default is "log-uniform." Use "uniform" for upper limits, or "None" to search over log10_dist instead. :param dist_prior: Prior on log10_dist. Default is "None," meaning that the search is over log10_h instead of log10_dist. Use "log-uniform" to search over log10_h with a log-uniform prior. :param skyloc: Fixed sky location of CW signal search as [cos(theta), phi]. Search over sky location if ``None`` given. :param log10_fgw: Fixed log10 GW frequency of CW signal search. Search over GW frequency if ``None`` given. :param ecc: Fixed log10 distance to SMBHB search. Search over distance or strain if ``None`` given. :param psrTerm: Boolean for whether to include the pulsar term. Default is False. :param name: Name of CW signal. """ if dist_prior is None: log10_dist = None if amp_prior == 'uniform': log10_h = parameter.LinearExp(-18.0, -11.0)('{}_log10_h'.format(name)) elif amp_prior == 'log-uniform': log10_h = parameter.Uniform(-18.0, -11.0)('{}_log10_h'.format(name)) elif dist_prior == 'log-uniform': log10_dist = parameter.Uniform(-2.0, 4.0)('{}_log10_dL'.format(name)) log10_h = None # chirp mass [Msol] log10_Mc = parameter.Uniform(6.0, 10.0)('{}_log10_Mc'.format(name)) # GW frequency [Hz] if log10_fgw is None: log10_fgw = parameter.Uniform(-9.0, -7.0)('{}_log10_fgw'.format(name)) else: log10_fgw = parameter.Constant(log10_fgw)('{}_log10_fgw'.format(name)) # orbital inclination angle [radians] cosinc = parameter.Uniform(-1.0, 1.0)('{}_cosinc'.format(name)) # initial GW phase [radians] phase0 = parameter.Uniform(0.0, 2*np.pi)('{}_phase0'.format(name)) # polarization psi_name = '{}_psi'.format(name) psi = parameter.Uniform(0, np.pi)(psi_name) # sky location costh_name = '{}_costheta'.format(name) phi_name = '{}_phi'.format(name) if skyloc is None: costh = parameter.Uniform(-1, 1)(costh_name) phi = parameter.Uniform(0, 2*np.pi)(phi_name) else: costh = parameter.Constant(skyloc[0])(costh_name) phi = parameter.Constant(skyloc[1])(phi_name) if psrTerm: # orbital phase p_phase = parameter.Uniform(0, np.pi) p_dist = parameter.Normal(0, 1) else: p_phase = None p_dist = 0 # continuous wave signal wf = cw_delay(cos_gwtheta=costh, gwphi=phi, cos_inc=cosinc, log10_mc=log10_Mc, log10_fgw=log10_fgw, log10_h=log10_h, log10_dist=log10_dist, phase0=phase0, psi=psi, psrTerm=True, p_dist=p_dist, p_phase=p_phase, phase_approx=True, check=False, tref=tref) cw = CWSignal(wf, ecc=False, psrTerm=psrTerm) return cw def cw_block_ecc(amp_prior='log-uniform', skyloc=None, log10_F=None, ecc=None, psrTerm=False, tref=0, name='cw'): """ Returns deterministic, eccentric orbit continuous GW model: :param amp_prior: Prior on log10_h and log10_Mc/log10_dL. Default is "log-uniform" with log10_Mc and log10_dL searched over. Use "uniform" for upper limits, log10_h searched over. :param skyloc: Fixed sky location of CW signal search as [cos(theta), phi]. Search over sky location if ``None`` given. :param log10_F: Fixed log-10 orbital frequency of CW signal search. Search over orbital frequency if ``None`` given. :param ecc: Fixed eccentricity of SMBHB search. Search over eccentricity if ``None`` given. :param psrTerm: Boolean for whether to include the pulsar term. Default is False. :param name: Name of CW signal. """ if amp_prior == 'uniform': log10_h = parameter.LinearExp(-18.0, -11.0)('{}_log10_h'.format(name)) elif amp_prior == 'log-uniform': log10_h = None # chirp mass [Msol] log10_Mc = parameter.Uniform(6.0, 10.0)('{}_log10_Mc'.format(name)) # luminosity distance [Mpc] log10_dL = parameter.Uniform(-2.0, 4.0)('{}_log10_dL'.format(name)) # orbital frequency [Hz] if log10_F is None: log10_Forb = parameter.Uniform(-9.0, -7.0)('{}_log10_Forb'.format(name)) else: log10_Forb = parameter.Constant(log10_F)('{}_log10_Forb'.format(name)) # orbital inclination angle [radians] cosinc = parameter.Uniform(-1.0, 1.0)('{}_cosinc'.format(name)) # periapsis position angle [radians] gamma_0 = parameter.Uniform(0.0, np.pi)('{}_gamma0'.format(name)) # Earth-term eccentricity if ecc is None: e_0 = parameter.Uniform(0.0, 0.99)('{}_e0'.format(name)) else: e_0 = parameter.Constant(ecc)('{}_e0'.format(name)) # initial mean anomaly [radians] l_0 = parameter.Uniform(0.0, 2.0*np.pi)('{}_l0'.format(name)) # mass ratio = M_2/M_1 q = parameter.Constant(1.0)('{}_q'.format(name)) # polarization pol_name = '{}_pol'.format(name) pol = parameter.Uniform(0, np.pi)(pol_name) # sky location costh_name = '{}_costheta'.format(name) phi_name = '{}_phi'.format(name) if skyloc is None: costh = parameter.Uniform(-1, 1)(costh_name) phi = parameter.Uniform(0, 2*np.pi)(phi_name) else: costh = parameter.Constant(skyloc[0])(costh_name) phi = parameter.Constant(skyloc[1])(phi_name) # continuous wave signal wf = compute_eccentric_residuals(cos_gwtheta=costh, gwphi=phi, log10_mc=log10_Mc, log10_dist=log10_dL, log10_h=log10_h, log10_F=log10_Forb, cos_inc=cosinc, psi=pol, gamma0=gamma_0, e0=e_0, l0=l_0, q=q, nmax=400, pdist=None, pphase=None, pgam=None, tref=tref, check=False) cw = CWSignal(wf, ecc=True, psrTerm=psrTerm) return cw @signal_base.function def cw_delay(toas, pos, pdist, cos_gwtheta=0, gwphi=0, cos_inc=0, log10_mc=9, log10_fgw=-8, log10_dist=None, log10_h=None, phase0=0, psi=0, psrTerm=False, p_dist=1, p_phase=None, evolve=False, phase_approx=False, check=False, tref=0): """ Function to create GW incuced residuals from a SMBMB as defined in Ellis et. al 2012,2013. :param toas: Pular toas in seconds :param pos: Unit vector from the Earth to the pulsar :param pdist: Pulsar distance (mean and uncertainty) [kpc] :param cos_gwtheta: Cosine of Polar angle of GW source in celestial coords [radians] :param gwphi: Azimuthal angle of GW source in celestial coords [radians] :param cos_inc: cosine of Inclination of GW source [radians] :param log10_mc: log10 of Chirp mass of SMBMB [solar masses] :param log10_fgw: log10 of Frequency of GW (twice the orbital frequency) [Hz] :param log10_dist: log10 of Luminosity distance to SMBMB [Mpc], used to compute strain, if not None :param log10_h: log10 of GW strain, used to compute distance, if not None :param phase0: Initial GW phase of source [radians] :param psi: Polarization angle of GW source [radians] :param psrTerm: Option to include pulsar term [boolean] :param p_dist: Pulsar distance parameter :param p_phase: Use pulsar phase to determine distance [radian] :param evolve: Option to include/exclude full evolution [boolean] :param phase_approx: Option to include/exclude phase evolution across observation time [boolean] :param check: Check if frequency evolves significantly over obs. time [boolean] :param tref: Reference time for phase and frequency [s] :return: Vector of induced residuals """ # convert units to time mc = 10**log10_mc * const.Tsun fgw = 10**log10_fgw gwtheta = np.arccos(cos_gwtheta) inc = np.arccos(cos_inc) p_dist = (pdist[0] + pdist[1]*p_dist)*const.kpc/const.c if log10_h is None and log10_dist is None: raise ValueError("one of log10_dist or log10_h must be non-None") elif log10_h is not None and log10_dist is not None: raise ValueError("only one of log10_dist or log10_h can be non-None") elif log10_h is None: dist = 10**log10_dist * const.Mpc / const.c else: dist = 2 * mc**(5/3) * (np.pi*fgw)**(2/3) / 10**log10_h if check: # check that frequency is not evolving significantly over obs. time fstart = fgw * (1 - 256/5 * mc**(5/3) * fgw**(8/3) * toas[0])**(-3/8) fend = fgw * (1 - 256/5 * mc**(5/3) * fgw**(8/3) * toas[-1])**(-3/8) df = fend - fstart # observation time Tobs = toas.max()-toas.min() fbin = 1/Tobs if np.abs(df) > fbin: print('WARNING: Frequency is evolving over more than one ' 'frequency bin.') print('f0 = {0}, f1 = {1}, df = {2}, fbin = {3}'.format(fstart, fend, df, fbin)) return np.ones(len(toas)) * np.nan # get antenna pattern funcs and cosMu # write function to get pos from theta,phi fplus, fcross, cosMu = utils.create_gw_antenna_pattern(pos, gwtheta, gwphi) # get pulsar time toas -= tref if p_dist > 0: tp = toas-p_dist*(1-cosMu) else: tp = toas # orbital frequency w0 = np.pi * fgw phase0 /= 2 # convert GW to orbital phase # omegadot = 96/5 * mc**(5/3) * w0**(11/3) # Not currently used in code # evolution if evolve: # calculate time dependent frequency at earth and pulsar omega = w0 * (1 - 256/5 * mc**(5/3) * w0**(8/3) * toas)**(-3/8) omega_p = w0 * (1 - 256/5 * mc**(5/3) * w0**(8/3) * tp)**(-3/8) if p_dist > 0: omega_p0 = w0 * (1 + 256/5 * mc**(5/3) * w0**(8/3) * p_dist*(1-cosMu))**(-3/8) else: omega_p0 = w0 # calculate time dependent phase phase = phase0 + 1/32/mc**(5/3) * (w0**(-5/3) - omega**(-5/3)) if p_phase is None: phase_p = phase0 + 1/32/mc**(5/3) * (w0**(-5/3) - omega_p**(-5/3)) else: phase_p = (phase0 + p_phase + 1/32*mc**(-5/3) * (omega_p0**(-5/3) - omega_p**(-5/3))) elif phase_approx: # monochromatic omega = w0 if p_dist > 0: omega_p = w0 * (1 + 256/5 * mc**(5/3) * w0**(8/3) * p_dist*(1-cosMu))**(-3/8) else: omega_p = w0 # phases phase = phase0 + omega * toas if p_phase is not None: phase_p = phase0 + p_phase + omega_p*toas else: phase_p = (phase0 + omega_p*toas + 1/32/mc**(5/3) * (w0**(-5/3) - omega_p**(-5/3))) # no evolution else: # monochromatic omega = np.pi*fgw omega_p = omega # phases phase = phase0 + omega * toas phase_p = phase0 + omega * tp # define time dependent coefficients At = -0.5*np.sin(2*phase)*(3+np.cos(2*inc)) Bt = 2*np.cos(2*phase)*np.cos(inc) At_p = -0.5*np.sin(2*phase_p)*(3+np.cos(2*inc)) Bt_p = 2*np.cos(2*phase_p)*np.cos(inc) # now define time dependent amplitudes alpha = mc**(5./3.)/(dist*omega**(1./3.)) alpha_p = mc**(5./3.)/(dist*omega_p**(1./3.)) # define rplus and rcross rplus = alpha*(-At*np.cos(2*psi)+Bt*np.sin(2*psi)) rcross = alpha*(At*np.sin(2*psi)+Bt*np.cos(2*psi)) rplus_p = alpha_p*(-At_p*np.cos(2*psi)+Bt_p*np.sin(2*psi)) rcross_p = alpha_p*(At_p*np.sin(2*psi)+Bt_p*np.cos(2*psi)) # residuals if psrTerm: res = fplus*(rplus_p-rplus)+fcross*(rcross_p-rcross) else: res = -fplus*rplus - fcross*rcross return res @signal_base.function def bwm_delay(toas, pos, log10_h=-14.0, cos_gwtheta=0.0, gwphi=0.0, gwpol=0.0, t0=55000, antenna_pattern_fn=None): """ Function that calculates the earth-term gravitational-wave burst-with-memory signal, as described in: Seto et al, van haasteren and Levin, phsirkov et al, Cordes and Jenet. This version uses the F+/Fx polarization modes, as verified with the Continuous Wave and Anisotropy papers. :param toas: Time-of-arrival measurements [s] :param pos: Unit vector from Earth to pulsar :param log10_h: log10 of GW strain :param cos_gwtheta: Cosine of GW polar angle :param gwphi: GW azimuthal polar angle [rad] :param gwpol: GW polarization angle :param t0: Burst central time [day] :param antenna_pattern_fn: User defined function that takes `pos`, `gwtheta`, `gwphi` as arguments and returns (fplus, fcross) :return: the waveform as induced timing residuals (seconds) """ # convert h = 10 ** log10_h gwtheta = np.arccos(cos_gwtheta) t0 *= const.day # antenna patterns if antenna_pattern_fn is None: apc = utils.create_gw_antenna_pattern(pos, gwtheta, gwphi) else: apc = antenna_pattern_fn(pos, gwtheta, gwphi) # grab fplus, fcross fp, fc = apc[0], apc[1] # combined polarization pol = np.cos(2 * gwpol) * fp + np.sin(2 * gwpol) * fc # Return the time-series for the pulsar return pol * h * np.heaviside(toas - t0, 0.5) * (toas - t0) @signal_base.function def bwm_sglpsr_delay(toas, sign, log10_A=-15, t0=55000): """ Function that calculates the earth-term gravitational-wave burst-with-memory signal for an optimally oriented source in a single pulsar :param toas: Time-of-arrival measurements [s] :param log10_A: log10 of the amplitude of the ramp (delta_f/f) :param t0: Burst central time [day] :return: the waveform as induced timing residuals (seconds) """ A = 10 ** log10_A t0 *= const.day # Return the time-series for the pulsar def heaviside(x): return 0.5 * (np.sign(x) + 1) # return 0 #Fix the return to 0 in order to test what the heck is wrong with red noise detection in bwm return A * np.sign(sign) * heaviside(toas - t0) * (toas - t0) @signal_base.function def compute_eccentric_residuals(toas, theta, phi, cos_gwtheta, gwphi, log10_mc, log10_dist, log10_h, log10_F, cos_inc, psi, gamma0, e0, l0, q, nmax=400, pdist=1.0, pphase=None, pgam=None, psrTerm=False, tref=0, check=False): """ Simulate GW from eccentric SMBHB. Waveform models from Taylor et al. (2015) and Barack and Cutler (2004). WARNING: This residual waveform is only accurate if the GW frequency is not significantly evolving over the observation time of the pulsar. :param toa: pulsar observation times :param theta: polar coordinate of pulsar :param phi: azimuthal coordinate of pulsar :param gwtheta: Polar angle of GW source in celestial coords [radians] :param gwphi: Azimuthal angle of GW source in celestial coords [radians] :param log10_mc: Base-10 lof of chirp mass of SMBMB [solar masses] :param log10_dist: Base-10 uminosity distance to SMBMB [Mpc] :param log10_F: base-10 orbital frequency of SMBHB [Hz] :param inc: Inclination of GW source [radians] :param psi: Polarization of GW source [radians] :param gamma0: Initial angle of periastron [radians] :param e0: Initial eccentricity of SMBHB :param l0: Initial mean anomoly [radians] :param q: Mass ratio of SMBHB :param nmax: Number of harmonics to use in waveform decomposition :param pdist: Pulsar distance [kpc] :param pphase: Pulsar phase [rad] :param pgam: Pulsar angle of periastron [rad] :param psrTerm: Option to include pulsar term [boolean] :param tref: Fidicuial time at which initial parameters are referenced [s] :param check: Check if frequency evolves significantly over obs. time :returns: Vector of induced residuals """ # convert from sampling F = 10.0**log10_F mc = 10.0**log10_mc dist = 10.0**log10_dist if log10_h is not None: h0 = 10.0**log10_h else: h0 = None inc = np.arccos(cos_inc) gwtheta = np.arccos(cos_gwtheta) # define variable for later use cosgwtheta, cosgwphi = np.cos(gwtheta), np.cos(gwphi) singwtheta, singwphi = np.sin(gwtheta), np.sin(gwphi) sin2psi, cos2psi = np.sin(2*psi), np.cos(2*psi) # unit vectors to GW source m = np.array([singwphi, -cosgwphi, 0.0]) n = np.array([-cosgwtheta*cosgwphi, -cosgwtheta*singwphi, singwtheta]) omhat = np.array([-singwtheta*cosgwphi, -singwtheta*singwphi, -cosgwtheta]) # pulsar position vector phat = np.array([np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta)]) fplus = 0.5 * (np.dot(m, phat)**2 - np.dot(n, phat)**2) / (1+np.dot(omhat, phat)) fcross = (np.dot(m, phat)*np.dot(n, phat)) / (1 + np.dot(omhat, phat)) cosMu = -np.dot(omhat, phat) # get values from pulsar object toas = toas.copy() - tref if check: # check that frequency is not evolving significantly over obs. time y = utils.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, np.array([0.0, toas.max()])) # initial and final values over observation time Fc0, ec0, gc0, phic0 = y[0, :] Fc1, ec1, gc1, phic1 = y[-1, :] # observation time Tobs = 1/(toas.max()-toas.min()) if np.abs(Fc0-Fc1) > 1/Tobs: print('WARNING: Frequency is evolving over more than one frequency bin.') print('F0 = {0}, F1 = {1}, delta f = {2}'.format(Fc0, Fc1, 1/Tobs)) return np.ones(len(toas)) * np.nan # get gammadot for earth term gammadot = utils.get_gammadot(F, mc, q, e0) # get number of harmonics to use if not isinstance(nmax, int): if e0 < 0.999 and e0 > 0.001: nharm = int(nmax(e0)) elif e0 < 0.001: nharm = 2 else: nharm = int(nmax(0.999)) else: nharm = nmax # no more than 100 harmonics nharm = min(nharm, 100) splus, scross = utils.calculate_splus_scross(nmax=nharm, mc=mc, dl=dist, h0=h0, F=F, e=e0, t=toas.copy(), l0=l0, gamma=gamma0, gammadot=gammadot, inc=inc) if psrTerm: # pulsar distance pd = pdist # convert units pd *= const.kpc / const.c # get pulsar time tp = toas.copy() - pd * (1-cosMu) # solve coupled system of equations to get pulsar term values y = utils.solve_coupled_ecc_solution(F, e0, gamma0, l0, mc, q, np.array([0.0, tp.min()])) # get pulsar term values if np.any(y): Fp, ep, gp, phip = y[-1, :] # get gammadot at pulsar term gammadotp = utils.get_gammadot(Fp, mc, q, ep) # get phase at pulsar if pphase is None: lp = phip else: lp = pphase # get angle of periastron at pulsar if pgam is None: gp = gp else: gp = pgam # get number of harmonics to use if not isinstance(nmax, int): if e0 < 0.999 and e0 > 0.001: nharm = int(nmax(e0)) elif e0 < 0.001: nharm = 2 else: nharm = int(nmax(0.999)) else: nharm = nmax # no more than 1000 harmonics nharm = min(nharm, 100) splusp, scrossp = utils.calculate_splus_scross(nmax=nharm, mc=mc, dl=dist, h0=h0, F=Fp, e=ep, t=toas.copy(), l0=lp, gamma=gp, gammadot=gammadotp, inc=inc) rr = (fplus*cos2psi - fcross*sin2psi) * (splusp - splus) + \ (fplus*sin2psi + fcross*cos2psi) * (scrossp - scross) else: rr = np.ones(len(toas)) * np.nan else: rr = - (fplus*cos2psi - fcross*sin2psi) * splus - \ (fplus*sin2psi + fcross*cos2psi) * scross return rr def CWSignal(cw_wf, ecc=False, psrTerm=False, name='cw'): BaseClass = deterministic_signals.Deterministic(cw_wf, name=name) class CWSignal(BaseClass): def __init__(self, psr): super(CWSignal, self).__init__(psr) self._wf[''].add_kwarg(psrTerm=psrTerm) if ecc: pgam = parameter.Uniform(0, 2*np.pi)('_'.join([psr.name, 'pgam', name])) self._params['pgam'] = pgam self._wf['']._params['pgam'] = pgam return CWSignal @signal_base.function def generalized_gwpol_psd(f, log10_A_tt=-15, log10_A_st=-15, log10_A_vl=-15, log10_A_sl=-15, kappa=10/3, p_dist=1.0): """ PSD for a generalized mixture of scalar+vector dipole radiation and tensorial quadrupole radiation from SMBHBs. """ df = np.diff(np.concatenate((np.array([0]), f[::2]))) euler_e = 0.5772156649 pdist = p_dist * const.kpc / const.c orf_aa_tt = (2/3) * np.ones(len(f)) orf_aa_st = (2/3) * np.ones(len(f)) orf_aa_vl = 2*np.log(4*np.pi*f*pdist) - 14/3 + 2*euler_e orf_aa_sl = np.pi**2*f*pdist/4 - \ np.log(4*np.pi*f*pdist) + 37/24 - euler_e prefactor = (1 + kappa**2) / (1 + kappa**2 * (f / const.fyr)**(-2/3)) gwpol_amps = 10**(2*np.array([log10_A_tt, log10_A_st, log10_A_vl, log10_A_sl])) gwpol_factors = np.array([orf_aa_tt*gwpol_amps[0], orf_aa_st*gwpol_amps[1], orf_aa_vl*gwpol_amps[2], orf_aa_sl*gwpol_amps[3]]) S_psd = prefactor * (gwpol_factors[0, :] * (f / const.fyr)**(-4/3) + np.sum(gwpol_factors[1:, :], axis=0) * (f / const.fyr)**(-2)) / \ (8*np.pi**2*f**3) return S_psd * np.repeat(df, 2) @signal_base.function def fdm_delay(toas, log10_A, log10_f, phase_e, phase_p): """ Function that calculates the earth-term gravitational-wave fuzzy dark matter signal, as described in: Kato et al. (2020). :param toas: Time-of-arrival measurements [s] :param log10_A: log10 of GW strain :param log10_f: log10 of GW frequency :param phase_e: The Earth-term phase of the GW :param phase_p: The Pulsar-term phase of the GW :return: the waveform as induced timing residuals (seconds) """ # convert A = 10 ** log10_A f = 10 ** log10_f # Return the time-series for the pulsar return - A / (2 * np.pi * f) * (np.sin(2 * np.pi * f * toas + phase_e) - np.sin(2 * np.pi * f * toas + phase_p))
26,111
34.334235
116
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/sampler.py
import glob import os import pickle import platform import healpy as hp import numpy as np from PTMCMCSampler import __version__ as __vPTMCMC__ from PTMCMCSampler.PTMCMCSampler import PTSampler as ptmcmc from enterprise_extensions import __version__ from enterprise_extensions.empirical_distr import (EmpiricalDistribution1D, EmpiricalDistribution1DKDE, EmpiricalDistribution2D, EmpiricalDistribution2DKDE) def extend_emp_dists(pta, emp_dists, npoints=100_000, save_ext_dists=False, outdir='./chains'): new_emp_dists = [] modified = False # check if anything was changed for emp_dist in emp_dists: if isinstance(emp_dist, EmpiricalDistribution2D) or isinstance(emp_dist, EmpiricalDistribution2DKDE): # check if we need to extend the distribution prior_ok=True for ii, (param, nbins) in enumerate(zip(emp_dist.param_names, emp_dist._Nbins)): param_names = [par.name for par in pta.params] if param not in param_names: # skip if one of the parameters isn't in our PTA object short_par = '_'.join(param.split('_')[:-1]) # make sure we aren't skipping priors with size!=None if short_par in param_names: param = short_par else: continue # check 2 conditions on both params to make sure that they cover their priors # skip if emp dist already covers the prior param_idx = param_names.index(param) if pta.params[param_idx].type not in ['uniform', 'normal']: msg = '{} cannot be covered automatically by the empirical distribution\n'.format(pta.params[param_idx].prior) msg += 'Please check that your prior is covered by the empirical distribution.\n' print(msg) continue elif pta.params[param_idx].type == 'uniform': prior_min = pta.params[param_idx].prior._defaults['pmin'] prior_max = pta.params[param_idx].prior._defaults['pmax'] elif pta.params[param_idx].type == 'normal': prior_min = pta.params[param_idx].prior._defaults['mu'] - 10 * pta.params[param_idx].prior._defaults['sigma'] prior_max = pta.params[param_idx].prior._defaults['mu'] + 10 * pta.params[param_idx].prior._defaults['sigma'] # no need to extend if histogram edges are already prior min/max if isinstance(emp_dist, EmpiricalDistribution2D): if not (emp_dist._edges[ii][0] == prior_min and emp_dist._edges[ii][-1] == prior_max): prior_ok = False continue elif isinstance(emp_dist, EmpiricalDistribution2DKDE): if not (emp_dist.minvals[ii] == prior_min and emp_dist.maxvals[ii] == prior_max): prior_ok=False continue if prior_ok: new_emp_dists.append(emp_dist) continue modified = True samples = np.zeros((npoints, emp_dist.draw().shape[0])) for ii in range(npoints): # generate samples from old emp dist samples[ii] = emp_dist.draw() new_bins = [] minvals = [] maxvals = [] idxs_to_remove = [] for ii, (param, nbins) in enumerate(zip(emp_dist.param_names, emp_dist._Nbins)): param_idx = param_names.index(param) if pta.params[param_idx].type == 'uniform': prior_min = pta.params[param_idx].prior._defaults['pmin'] prior_max = pta.params[param_idx].prior._defaults['pmax'] elif pta.params[param_idx].type == 'normal': prior_min = pta.params[param_idx].prior._defaults['mu'] - 10 * pta.params[param_idx].prior._defaults['sigma'] prior_max = pta.params[param_idx].prior._defaults['mu'] + 10 * pta.params[param_idx].prior._defaults['sigma'] # drop samples that are outside the prior range (in case prior is smaller than samples) if isinstance(emp_dist, EmpiricalDistribution2D): samples[(samples[:, ii] < prior_min) | (samples[:, ii] > prior_max), ii] = -np.inf elif isinstance(emp_dist, EmpiricalDistribution2DKDE): idxs_to_remove.extend(np.arange(npoints)[(samples[:, ii] < prior_min) | (samples[:, ii] > prior_max)]) minvals.append(prior_min) maxvals.append(prior_max) # new distribution with more bins this time to extend it all the way out in same style as above. new_bins.append(np.linspace(prior_min, prior_max, nbins + 40)) samples = np.delete(samples, idxs_to_remove, axis=0) if isinstance(emp_dist, EmpiricalDistribution2D): new_emp = EmpiricalDistribution2D(emp_dist.param_names, samples.T, new_bins) elif isinstance(emp_dist, EmpiricalDistribution2DKDE): # new distribution with more bins this time to extend it all the way out in same style as above. new_emp = EmpiricalDistribution2DKDE(emp_dist.param_names, samples.T, minvals=minvals, maxvals=maxvals, nbins=nbins+40, bandwidth=emp_dist.bandwidth) new_emp_dists.append(new_emp) elif isinstance(emp_dist, EmpiricalDistribution1D) or isinstance(emp_dist, EmpiricalDistribution1DKDE): param_names = [par.name for par in pta.params] if emp_dist.param_name not in param_names: # skip if one of the parameters isn't in our PTA object short_par = '_'.join(emp_dist.param_name.split('_')[:-1]) # make sure we aren't skipping priors with size!=None if short_par in param_names: param = short_par else: continue else: param = emp_dist.param_name param_idx = param_names.index(param) if pta.params[param_idx].type not in ['uniform', 'normal']: msg = 'This prior cannot be covered automatically by the empirical distribution\n' msg += 'Please check that your prior is covered by the empirical distribution.\n' print(msg) continue if pta.params[param_idx].type == 'uniform': prior_min = pta.params[param_idx].prior._defaults['pmin'] prior_max = pta.params[param_idx].prior._defaults['pmax'] elif pta.params[param_idx].type == 'uniform': prior_min = pta.params[param_idx].prior._defaults['mu'] - 10 * pta.params[param_idx].prior._defaults['sigma'] prior_max = pta.params[param_idx].prior._defaults['mu'] + 10 * pta.params[param_idx].prior._defaults['sigma'] # check 2 conditions on param to make sure that it covers the prior # skip if emp dist already covers the prior if isinstance(emp_dist, EmpiricalDistribution1D): if emp_dist._edges[0] == prior_min and emp_dist._edges[-1] == prior_max: new_emp_dists.append(emp_dist) continue elif isinstance(emp_dist, EmpiricalDistribution1DKDE): if emp_dist.minval == prior_min and emp_dist.maxval == prior_max: new_emp_dists.append(emp_dist) continue modified = True samples = np.zeros((npoints, 1)) for ii in range(npoints): # generate samples from old emp dist samples[ii] = emp_dist.draw() new_bins = [] idxs_to_remove = [] # drop samples that are outside the prior range (in case prior is smaller than samples) if isinstance(emp_dist, EmpiricalDistribution1D): samples[(samples < prior_min) | (samples > prior_max)] = -np.inf elif isinstance(emp_dist, EmpiricalDistribution1DKDE): idxs_to_remove.extend(np.arange(npoints)[(samples.squeeze() < prior_min) | (samples.squeeze() > prior_max)]) samples = np.delete(samples, idxs_to_remove, axis=0) new_bins = np.linspace(prior_min, prior_max, emp_dist._Nbins + 40) if isinstance(emp_dist, EmpiricalDistribution1D): new_emp = EmpiricalDistribution1D(emp_dist.param_name, samples, new_bins) elif isinstance(emp_dist, EmpiricalDistribution1DKDE): new_emp = EmpiricalDistribution1DKDE(emp_dist.param_name, samples, minval=prior_min, maxval=prior_max, bandwidth=emp_dist.bandwidth) new_emp_dists.append(new_emp) else: print('Unable to extend class of unknown type to the edges of the priors.') new_emp_dists.append(emp_dist) continue if save_ext_dists and modified: # if user wants to save them, and they have been modified... with open(outdir + '/new_emp_dists.pkl', 'wb') as f: pickle.dump(new_emp_dists, f) return new_emp_dists class JumpProposal(object): def __init__(self, pta, snames=None, empirical_distr=None, f_stat_file=None, save_ext_dists=False, outdir='./chains'): """Set up some custom jump proposals""" self.params = pta.params self.pnames = pta.param_names self.psrnames = pta.pulsars self.ndim = sum(p.size or 1 for p in pta.params) self.plist = [p.name for p in pta.params] # parameter map self.pmap = {} ct = 0 for p in pta.params: size = p.size or 1 self.pmap[str(p)] = slice(ct, ct+size) ct += size # parameter indices map self.pimap = {} for ct, p in enumerate(pta.param_names): self.pimap[p] = ct # collecting signal parameters across pta if snames is None: allsigs = np.hstack([[qq.signal_name for qq in pp._signals] for pp in pta._signalcollections]) self.snames = dict.fromkeys(np.unique(allsigs)) for key in self.snames: self.snames[key] = [] for sc in pta._signalcollections: for signal in sc._signals: self.snames[signal.signal_name].extend(signal.params) for key in self.snames: self.snames[key] = list(set(self.snames[key])) else: self.snames = snames # empirical distributions if isinstance(empirical_distr, list): # check if a list of emp dists is provided self.empirical_distr = empirical_distr # check if a directory of empirical dist pkl files are provided elif empirical_distr is not None and os.path.isdir(empirical_distr): dir_files = glob.glob(empirical_distr+'*.pkl') # search for pkls pickled_distr = np.array([]) for idx, emp_file in enumerate(dir_files): try: with open(emp_file, 'rb') as f: pickled_distr = np.append(pickled_distr, pickle.load(f)) except: try: with open(emp_file, 'rb') as f: pickled_distr = np.append(pickled_distr, pickle.load(f)) except: print(f'\nI can\'t open the empirical distribution pickle file at location {idx} in list!') print("Empirical distributions set to 'None'") pickled_distr = None break self.empirical_distr = pickled_distr # check if single pkl file provided elif empirical_distr is not None and os.path.isfile(empirical_distr): # checking for single file try: # try opening the file with open(empirical_distr, 'rb') as f: pickled_distr = pickle.load(f) except: # second attempt at opening the file try: with open(empirical_distr, 'rb') as f: pickled_distr = pickle.load(f) # if the second attempt fails... except: print('\nI can\'t open the empirical distribution pickle file!') pickled_distr = None self.empirical_distr = pickled_distr # all other cases - emp dists set to None else: self.empirical_distr = None if self.empirical_distr is not None: # only save the empirical distributions for parameters that are in the model mask = [] for idx, d in enumerate(self.empirical_distr): if d.ndim == 1: if d.param_name in pta.param_names: mask.append(idx) else: if d.param_names[0] in pta.param_names and d.param_names[1] in pta.param_names: mask.append(idx) if len(mask) >= 1: self.empirical_distr = [self.empirical_distr[m] for m in mask] # extend empirical_distr here: print('Extending empirical distributions to priors...\n') self.empirical_distr = extend_emp_dists(pta, self.empirical_distr, npoints=100_000, save_ext_dists=save_ext_dists, outdir=outdir) else: self.empirical_distr = None if empirical_distr is not None and self.empirical_distr is None: # if an emp dist path is provided, but fails the code, this helpful msg is provided print("Adding empirical distributions failed!! Empirical distributions set to 'None'\n") # F-statistic map if f_stat_file is not None and os.path.isfile(f_stat_file): npzfile = np.load(f_stat_file) self.fe_freqs = npzfile['freqs'] self.fe = npzfile['fe'] def draw_from_prior(self, x, iter, beta): """Prior draw. The function signature is specific to PTMCMCSampler. """ q = x.copy() lqxy = 0 # randomly choose parameter param = np.random.choice(self.params) # if vector parameter jump in random component if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_red_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'red noise' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_empirical_distr(self, x, iter, beta): q = x.copy() lqxy = 0 if self.empirical_distr is not None: # randomly choose one of the empirical distributions distr_idx = np.random.randint(0, len(self.empirical_distr)) if self.empirical_distr[distr_idx].ndim == 1: idx = self.pnames.index(self.empirical_distr[distr_idx].param_name) q[idx] = self.empirical_distr[distr_idx].draw() lqxy = (self.empirical_distr[distr_idx].logprob(x[idx]) - self.empirical_distr[distr_idx].logprob(q[idx])) dist = self.empirical_distr[distr_idx] # if we fall outside the emp distr support, pull from prior instead if x[idx] < dist._edges[0] or x[idx] > dist._edges[-1]: q, lqxy = self.draw_from_prior(x, iter, beta) else: dist = self.empirical_distr[distr_idx] oldsample = [x[self.pnames.index(p)] for p in dist.param_names] newsample = dist.draw() lqxy = (dist.logprob(oldsample) - dist.logprob(newsample)) for p, n in zip(dist.param_names, newsample): q[self.pnames.index(p)] = n # if we fall outside the emp distr support, pull from prior instead for ii in range(len(oldsample)): if oldsample[ii] < dist._edges[ii][0] or oldsample[ii] > dist._edges[ii][-1]: q, lqxy = self.draw_from_prior(x, iter, beta) return q, float(lqxy) def draw_from_psr_empirical_distr(self, x, iter, beta): q = x.copy() lqxy = 0 if self.empirical_distr is not None: # make list of empirical distributions with psr name psr = np.random.choice(self.psrnames) pnames = [ed.param_name if ed.ndim==1 else ed.param_names for ed in self.empirical_distr] # Retrieve indices of emp dists with pulsar pars. idxs = [] for par in pnames: if isinstance(par, str): if psr in par: idxs.append(pnames.index(par)) elif isinstance(par, list): if any([psr in p for p in par]): idxs.append(pnames.index(par)) for idx in idxs: if self.empirical_distr[idx].ndim == 1: pidx = self.pimap[self.empirical_distr[idx].param_name] q[pidx] = self.empirical_distr[idx].draw() lqxy += (self.empirical_distr[idx].logprob(x[pidx]) - self.empirical_distr[idx].logprob(q[pidx])) else: oldsample = [x[self.pnames.index(p)] for p in self.empirical_distr[idx].param_names] newsample = self.empirical_distr[idx].draw() for p, n in zip(self.empirical_distr[idx].param_names, newsample): q[self.pnames.index(p)] = n lqxy += (self.empirical_distr[idx].logprob(oldsample) - self.empirical_distr[idx].logprob(newsample)) return q, float(lqxy) def draw_from_dm_gp_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'dm_gp' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_dm1yr_prior(self, x, iter, beta): q = x.copy() dm1yr_names = [dmname for dmname in self.pnames if 'dm_s1yr' in dmname] dmname = np.random.choice(dm1yr_names) idx = self.pnames.index(dmname) if 'log10_Amp' in dmname: q[idx] = np.random.uniform(-10, -2) elif 'phase' in dmname: q[idx] = np.random.uniform(0, 2*np.pi) return q, 0 def draw_from_dmexpdip_prior(self, x, iter, beta): q = x.copy() dmexp_names = [dmname for dmname in self.pnames if 'dmexp' in dmname] dmname = np.random.choice(dmexp_names) idx = self.pnames.index(dmname) if 'log10_Amp' in dmname: q[idx] = np.random.uniform(-10, -2) elif 'log10_tau' in dmname: q[idx] = np.random.uniform(0, 2.5) elif 'sign_param' in dmname: q[idx] = np.random.uniform(-1.0, 1.0) return q, 0 def draw_from_dmexpcusp_prior(self, x, iter, beta): q = x.copy() dmexp_names = [dmname for dmname in self.pnames if 'dm_cusp' in dmname] dmname = np.random.choice(dmexp_names) idx = self.pnames.index(dmname) if 'log10_Amp' in dmname: q[idx] = np.random.uniform(-10, -2) elif 'log10_tau' in dmname: q[idx] = np.random.uniform(0, 2.5) # elif 't0' in dmname: # q[idx] = np.random.uniform(53393.0, 57388.0) elif 'sign_param' in dmname: q[idx] = np.random.uniform(-1.0, 1.0) return q, 0 def draw_from_dmx_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'dmx_signal' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_chrom_gp_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'chrom_gp' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_gwb_log_uniform_distribution(self, x, iter, beta): q = x.copy() lqxy = 0 # draw parameter from signal model signal_name = [par for par in self.pnames if ('gw' in par and 'log10_A' in par)][0] idx = list(self.pnames).index(signal_name) param = self.params[idx] q[self.pmap[str(param)]] = np.random.uniform(param.prior._defaults['pmin'], param.prior._defaults['pmax']) # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_dipole_log_uniform_distribution(self, x, iter, beta): q = x.copy() # draw parameter from signal model idx = self.pnames.index('dipole_log10_A') q[idx] = np.random.uniform(-18, -11) return q, 0 def draw_from_monopole_log_uniform_distribution(self, x, iter, beta): q = x.copy() # draw parameter from signal model idx = self.pnames.index('monopole_log10_A') q[idx] = np.random.uniform(-18, -11) return q, 0 def draw_from_altpol_log_uniform_distribution(self, x, iter, beta): q = x.copy() # draw parameter from signal model polnames = [pol for pol in self.pnames if 'log10Apol' in pol] if 'kappa' in self.pnames: polnames.append('kappa') pol = np.random.choice(polnames) idx = self.pnames.index(pol) if pol == 'log10Apol_tt': q[idx] = np.random.uniform(-18, -12) elif pol == 'log10Apol_st': q[idx] = np.random.uniform(-18, -12) elif pol == 'log10Apol_vl': q[idx] = np.random.uniform(-18, -15) elif pol == 'log10Apol_sl': q[idx] = np.random.uniform(-18, -16) elif pol == 'kappa': q[idx] = np.random.uniform(0, 10) return q, 0 def draw_from_ephem_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'phys_ephem' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_bwm_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'bwm' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_fdm_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'fdm' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_cw_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'cw' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_cw_log_uniform_distribution(self, x, iter, beta): q = x.copy() # draw parameter from signal model idx = self.pnames.index('log10_h') q[idx] = np.random.uniform(-18, -11) return q, 0 def draw_from_dm_sw_prior(self, x, iter, beta): q = x.copy() lqxy = 0 signal_name = 'gp_sw' # draw parameter from signal model param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_gw_rho_prior(self, x, iter, beta): """ Jump proposals on free spec """ q = x.copy() lqxy = 0 # draw parameter from signal model parnames = [par.name for par in self.params] pname = [pnm for pnm in parnames if ('gw' in pnm and 'rho' in pnm)][0] idx = parnames.index(pname) param = self.params[idx] if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_signal_prior(self, x, iter, beta): q = x.copy() lqxy = 0 std = ['linear timing model', 'red noise', 'phys_ephem', 'gw', 'cw', 'bwm', 'fdm', 'gp_sw', 'ecorr_sherman-morrison', 'ecorr', 'efac', 'equad', ] non_std = [nm for nm in self.snames.keys() if nm not in std] # draw parameter from signal model signal_name = np.random.choice(non_std) param = np.random.choice(self.snames[signal_name]) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) def draw_from_par_prior(self, par_names): # Preparing and comparing par_names with PTA parameters par_names = np.atleast_1d(par_names) par_list = [] name_list = [] for par_name in par_names: pn_list = [n for n in self.plist if par_name in n] if pn_list: par_list.append(pn_list) name_list.append(par_name) if not par_list: raise UserWarning("No parameter prior match found between {} and PTA.object." .format(par_names)) par_list = np.concatenate(par_list, axis=None) def draw(x, iter, beta): """Prior draw function generator for custom par_names. par_names: list of strings The function signature is specific to PTMCMCSampler. """ q = x.copy() lqxy = 0 # randomly choose parameter idx_name = np.random.choice(par_list) idx = self.plist.index(idx_name) # if vector parameter jump in random component param = self.params[idx] if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) name_string = '_'.join(name_list) draw.__name__ = 'draw_from_{}_prior'.format(name_string) return draw def draw_from_par_log_uniform(self, par_dict): # Preparing and comparing par_dict.keys() with PTA parameters par_list = [] name_list = [] for par_name in par_dict.keys(): pn_list = [n for n in self.plist if par_name in n and 'log' in n] if pn_list: par_list.append(pn_list) name_list.append(par_name) if not par_list: raise UserWarning("No parameter dictionary match found between {} and PTA.object." .format(par_dict.keys())) par_list = np.concatenate(par_list, axis=None) def draw(x, iter, beta): """log uniform prior draw function generator for custom par_names. par_dict: dictionary with {"par_names":(lower bound,upper bound)} { "string":(float,float)} The function signature is specific to PTMCMCSampler. """ q = x.copy() # draw parameter from signal model idx_name = np.random.choice(par_list) idx = self.plist.index(idx_name) q[idx] = np.random.uniform(par_dict[par_name][0], par_dict[par_name][1]) return q, 0 name_string = '_'.join(name_list) draw.__name__ = 'draw_from_{}_log_uniform'.format(name_string) return draw def draw_from_psr_prior(self, x, iter, beta): q = x.copy() lqxy = 0 # draw parameter from pulsar names psr = np.random.choice(self.psrnames) idxs = [self.pimap[par] for par in self.pnames if psr in par] for idx in idxs: q[idx] = self.params[idx].sample() # forward-backward jump probability first = np.sum([self.params[idx].get_logpdf(x[idx]) for idx in idxs]) last = np.sum([self.params[idx].get_logpdf(q[idx]) for idx in idxs]) lqxy = first - last return q, float(lqxy) def draw_from_signal(self, signal_names): # Preparing and comparing signal_names with PTA signals signal_names = np.atleast_1d(signal_names) signal_list = [] name_list = [] for signal_name in signal_names: try: param_list = self.snames[signal_name] signal_list.append(param_list) name_list.append(signal_name) except: pass if not signal_list: raise UserWarning("No signal match found between {} and PTA.object!" .format(signal_names)) signal_list = np.concatenate(signal_list, axis=None) def draw(x, iter, beta): """Signal draw function generator for custom signal_names. signal_names: list of strings The function signature is specific to PTMCMCSampler. """ q = x.copy() lqxy = 0 # draw parameter from signal model param = np.random.choice(signal_list) if param.size: idx2 = np.random.randint(0, param.size) q[self.pmap[str(param)]][idx2] = param.sample()[idx2] # scalar parameter else: q[self.pmap[str(param)]] = param.sample() # forward-backward jump probability lqxy = (param.get_logpdf(x[self.pmap[str(param)]]) - param.get_logpdf(q[self.pmap[str(param)]])) return q, float(lqxy) name_string = '_'.join(name_list) draw.__name__ = 'draw_from_{}_signal'.format(name_string) return draw def fe_jump(self, x, iter, beta): q = x.copy() lqxy = 0 fe_limit = np.max(self.fe) # draw skylocation and frequency from f-stat map accepted = False while accepted is False: log_f_new = self.params[self.pimap['log10_fgw']].sample() f_idx = (np.abs(np.log10(self.fe_freqs) - log_f_new)).argmin() gw_theta = np.arccos(self.params[self.pimap['cos_gwtheta']].sample()) gw_phi = self.params[self.pimap['gwphi']].sample() hp_idx = hp.ang2pix(hp.get_nside(self.fe), gw_theta, gw_phi) fe_new_point = self.fe[f_idx, hp_idx] if np.random.uniform()<(fe_new_point/fe_limit): accepted = True # draw other parameters from prior cos_inc = self.params[self.pimap['cos_inc']].sample() psi = self.params[self.pimap['psi']].sample() phase0 = self.params[self.pimap['phase0']].sample() log10_h = self.params[self.pimap['log10_h']].sample() # put new parameters into q for param_name, new_param in zip(['log10_fgw', 'gwphi', 'cos_gwtheta', 'cos_inc', 'psi', 'phase0', 'log10_h'], [log_f_new, gw_phi, np.cos(gw_theta), cos_inc, psi, phase0, log10_h]): q[self.pimap[param_name]] = new_param # calculate Hastings ratio log_f_old = x[self.pimap['log10_fgw']] f_idx_old = (np.abs(np.log10(self.fe_freqs) - log_f_old)).argmin() gw_theta_old = np.arccos(x[self.pimap['cos_gwtheta']]) gw_phi_old = x[self.pimap['gwphi']] hp_idx_old = hp.ang2pix(hp.get_nside(self.fe), gw_theta_old, gw_phi_old) fe_old_point = self.fe[f_idx_old, hp_idx_old] if fe_old_point>fe_limit: fe_old_point = fe_limit log10_h_old = x[self.pimap['log10_h']] phase0_old = x[self.pimap['phase0']] psi_old = x[self.pimap['psi']] cos_inc_old = x[self.pimap['cos_inc']] hastings_extra_factor = self.params[self.pimap['log10_h']].get_pdf(log10_h_old) hastings_extra_factor *= 1/self.params[self.pimap['log10_h']].get_pdf(log10_h) hastings_extra_factor = self.params[self.pimap['phase0']].get_pdf(phase0_old) hastings_extra_factor *= 1/self.params[self.pimap['phase0']].get_pdf(phase0) hastings_extra_factor = self.params[self.pimap['psi']].get_pdf(psi_old) hastings_extra_factor *= 1/self.params[self.pimap['psi']].get_pdf(psi) hastings_extra_factor = self.params[self.pimap['cos_inc']].get_pdf(cos_inc_old) hastings_extra_factor *= 1/self.params[self.pimap['cos_inc']].get_pdf(cos_inc) lqxy = np.log(fe_old_point/fe_new_point * hastings_extra_factor) return q, float(lqxy) def get_global_parameters(pta): """Utility function for finding global parameters.""" pars = [] for sc in pta._signalcollections: pars.extend(sc.param_names) gpars = list(set(par for par in pars if pars.count(par) > 1)) ipars = [par for par in pars if par not in gpars] # gpars = np.unique(list(filter(lambda x: pars.count(x)>1, pars))) # ipars = np.array([p for p in pars if p not in gpars]) return np.array(gpars), np.array(ipars) def get_parameter_groups(pta): """Utility function to get parameter groupings for sampling.""" params = pta.param_names ndim = len(params) groups = [list(np.arange(0, ndim))] # get global and individual parameters gpars, ipars = get_global_parameters(pta) if gpars.size: # add a group of all global parameters groups.append([params.index(gp) for gp in gpars]) # make a group for each signal, with all non-global parameters for sc in pta._signalcollections: for signal in sc._signals: ind = [params.index(p) for p in signal.param_names if not gpars.size or p not in gpars] if ind: groups.append(ind) return groups def get_psr_groups(pta): groups = [] for psr in pta.pulsars: grp = [pta.param_names.index(par) for par in pta.param_names if psr in par] groups.append(grp) return groups def get_cw_groups(pta): """Utility function to get parameter groups for CW sampling. These groups should be appended to the usual get_parameter_groups() output. """ ang_pars = ['costheta', 'phi', 'cosinc', 'phase0', 'psi'] mfdh_pars = ['log10_Mc', 'log10_fgw', 'log10_dL', 'log10_h'] freq_pars = ['log10_Mc', 'log10_fgw', 'pdist', 'pphase'] groups = [] for pars in [ang_pars, mfdh_pars, freq_pars]: groups.append(group_from_params(pta, pars)) return groups def group_from_params(pta, params): gr = [] for p in params: for q in pta.param_names: if p in q: gr.append(pta.param_names.index(q)) return gr def save_runtime_info(pta, outdir='chains', human=None): """save system info, enterprise PTA.summary, and other metadata to file """ # save system info and enterprise PTA.summary to single file sysinfo = {} if human is not None: sysinfo.update({"human": human}) sysinfo.update(platform.uname()._asdict()) with open(os.path.join(outdir, "runtime_info.txt"), "w") as fout: for field, data in sysinfo.items(): fout.write(field + " : " + data + "\n") fout.write("\n") fout.write("enterprise_extensions v" + __version__ +"\n") fout.write("PTMCMCSampler v" + __vPTMCMC__ +"\n") fout.write(pta.summary()) # save paramter list with open(os.path.join(outdir, "pars.txt"), "w") as fout: for pname in pta.param_names: fout.write(pname + "\n") # save list of priors with open(os.path.join(outdir, "priors.txt"), "w") as fout: for pp in pta.params: fout.write(pp.__repr__() + "\n") def setup_sampler(pta, outdir='chains', resume=False, empirical_distr=None, groups=None, human=None, save_ext_dists=False, loglkwargs={}, logpkwargs={}): """ Sets up an instance of PTMCMC sampler. We initialize the sampler the likelihood and prior function from the PTA object. We set up an initial jump covariance matrix with fairly small jumps as this will be adapted as the MCMC runs. We will setup an output directory in `outdir` that will contain the chain (first n columns are the samples for the n parameters and last 4 are log-posterior, log-likelihood, acceptance rate, and an indicator variable for parallel tempering but it doesn't matter because we aren't using parallel tempering). We then add several custom jump proposals to the mix based on whether or not certain parameters are in the model. These are all either draws from the prior distribution of parameters or draws from uniform distributions. save_ext_dists: saves distributions that have been extended to cover priors as a pickle to the outdir folder. These can then be loaded later as distributions to save a minute at the start of the run. """ # dimension of parameter space params = pta.param_names ndim = len(params) # initial jump covariance matrix if os.path.exists(outdir+'/cov.npy') and resume: cov = np.load(outdir+'/cov.npy') # check that the one we load is the same shape as our data cov_new = np.diag(np.ones(ndim) * 0.1**2) if cov.shape != cov_new.shape: msg = 'The covariance matrix (cov.npy) in the output folder is ' msg += 'the wrong shape for the parameters given. ' msg += 'Start with a different output directory or ' msg += 'change resume to False to overwrite the run that exists.' raise ValueError(msg) else: cov = np.diag(np.ones(ndim) * 0.1**2) # parameter groupings if groups is None: groups = get_parameter_groups(pta) sampler = ptmcmc(ndim, pta.get_lnlikelihood, pta.get_lnprior, cov, groups=groups, outDir=outdir, resume=resume, loglkwargs=loglkwargs, logpkwargs=logpkwargs) save_runtime_info(pta, sampler.outDir, human) # additional jump proposals jp = JumpProposal(pta, empirical_distr=empirical_distr, save_ext_dists=save_ext_dists, outdir=outdir) sampler.jp = jp # always add draw from prior sampler.addProposalToCycle(jp.draw_from_prior, 5) # try adding empirical proposals if empirical_distr is not None: print('Attempting to add empirical proposals...\n') sampler.addProposalToCycle(jp.draw_from_empirical_distr, 10) # Red noise prior draw if 'red noise' in jp.snames: print('Adding red noise prior draws...\n') sampler.addProposalToCycle(jp.draw_from_red_prior, 10) # DM GP noise prior draw if 'dm_gp' in jp.snames: print('Adding DM GP noise prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dm_gp_prior, 10) # DM annual prior draw if 'dm_s1yr' in jp.snames: print('Adding DM annual prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dm1yr_prior, 10) # DM dip prior draw if 'dmexp' in jp.snames: print('Adding DM exponential dip prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dmexpdip_prior, 10) # DM cusp prior draw if 'dm_cusp' in jp.snames: print('Adding DM exponential cusp prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dmexpcusp_prior, 10) # DMX prior draw if 'dmx_signal' in jp.snames: print('Adding DMX prior draws...\n') sampler.addProposalToCycle(jp.draw_from_dmx_prior, 10) # Ephemeris prior draw if 'd_jupiter_mass' in pta.param_names: print('Adding ephemeris model prior draws...\n') sampler.addProposalToCycle(jp.draw_from_ephem_prior, 10) # GWB uniform distribution draw if np.any([('gw' in par and 'log10_A' in par) for par in pta.param_names]): print('Adding GWB uniform distribution draws...\n') sampler.addProposalToCycle(jp.draw_from_gwb_log_uniform_distribution, 10) # Dipole uniform distribution draw if 'dipole_log10_A' in pta.param_names: print('Adding dipole uniform distribution draws...\n') sampler.addProposalToCycle(jp.draw_from_dipole_log_uniform_distribution, 10) # Monopole uniform distribution draw if 'monopole_log10_A' in pta.param_names: print('Adding monopole uniform distribution draws...\n') sampler.addProposalToCycle(jp.draw_from_monopole_log_uniform_distribution, 10) # Altpol uniform distribution draw if 'log10Apol_tt' in pta.param_names: print('Adding alternative GW-polarization uniform distribution draws...\n') sampler.addProposalToCycle(jp.draw_from_altpol_log_uniform_distribution, 10) # BWM prior draw if 'bwm_log10_A' in pta.param_names: print('Adding BWM prior draws...\n') sampler.addProposalToCycle(jp.draw_from_bwm_prior, 10) # FDM prior draw if 'fdm_log10_A' in pta.param_names: print('Adding FDM prior draws...\n') sampler.addProposalToCycle(jp.draw_from_fdm_prior, 10) # CW prior draw if 'cw_log10_h' in pta.param_names: print('Adding CW strain prior draws...\n') sampler.addProposalToCycle(jp.draw_from_cw_log_uniform_distribution, 10) if 'cw_log10_Mc' in pta.param_names: print('Adding CW prior draws...\n') sampler.addProposalToCycle(jp.draw_from_cw_distribution, 10) # free spectrum prior draw if np.any(['log10_rho' in par for par in pta.param_names]): print('Adding free spectrum prior draws...\n') sampler.addProposalToCycle(jp.draw_from_gw_rho_prior, 25) return sampler
47,414
37.330639
165
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/model_utils.py
import time import matplotlib.pyplot as plt import numpy as np import scipy.stats as scistats try: import acor except ImportError: from emcee.autocorr import integrated_time as acor from enterprise_extensions import models # Log-spaced frequncies def linBinning(T, logmode, f_min, nlin, nlog): """ Get the frequency binning for the low-rank approximations, including log-spaced low-frequency coverage. Credit: van Haasteren & Vallisneri, MNRAS, Vol. 446, Iss. 2 (2015) :param T: Duration experiment :param logmode: From which linear mode to switch to log :param f_min: Down to which frequency we'll sample :param nlin: How many linear frequencies we'll use :param nlog: How many log frequencies we'll use """ if logmode < 0: raise ValueError("Cannot do log-spacing when all frequencies are" "linearly sampled") # First the linear spacing and weights df_lin = 1.0 / T f_min_lin = (1.0 + logmode) / T f_lin = np.linspace(f_min_lin, f_min_lin + (nlin-1)*df_lin, nlin) w_lin = np.sqrt(df_lin * np.ones(nlin)) if nlog > 0: # Now the log-spacing, and weights f_min_log = np.log(f_min) f_max_log = np.log((logmode+0.5)/T) df_log = (f_max_log - f_min_log) / (nlog) f_log = np.exp(np.linspace(f_min_log+0.5*df_log, f_max_log-0.5*df_log, nlog)) w_log = np.sqrt(df_log * f_log) return np.append(f_log, f_lin), np.append(w_log, w_lin) else: return f_lin, w_lin # New filter for different cadences def cadence_filter(psr, start_time=None, end_time=None, cadence=None): """ Filter data for coarser cadences. """ if start_time is None and end_time is None and cadence is None: mask = np.ones(psr._toas.shape, dtype=bool) else: # find start and end indices of cadence filtering start_idx = (np.abs((psr._toas / 86400) - start_time)).argmin() end_idx = (np.abs((psr._toas / 86400) - end_time)).argmin() # make a safe copy of sliced toas tmp_toas = psr._toas[start_idx:end_idx+1].copy() # cumulative sum of time differences cumsum = np.cumsum(np.diff(tmp_toas / 86400)) tspan = (tmp_toas.max() - tmp_toas.min()) / 86400 # find closest indices of sliced toas to desired cadence mask = [] for ii in np.arange(1.0, tspan, cadence): idx = (np.abs(cumsum - ii)).argmin() mask.append(idx) # append start and end segements with cadence-sliced toas mask = np.append(np.arange(start_idx), np.array(mask) + start_idx) mask = np.append(mask, np.arange(end_idx, len(psr._toas))) psr._toas = psr._toas[mask] psr._toaerrs = psr._toaerrs[mask] psr._residuals = psr._residuals[mask] psr._ssbfreqs = psr._ssbfreqs[mask] psr._designmatrix = psr._designmatrix[mask, :] dmx_mask = np.sum(psr._designmatrix, axis=0) != 0.0 psr._designmatrix = psr._designmatrix[:, dmx_mask] for key in psr._flags: psr._flags[key] = psr._flags[key][mask] if psr._planetssb is not None: psr._planetssb = psr.planetssb[mask, :, :] psr.sort_data() def get_tspan(psrs): """ Returns maximum time span for all pulsars. :param psrs: List of pulsar objects """ tmin = np.min([p.toas.min() for p in psrs]) tmax = np.max([p.toas.max() for p in psrs]) return tmax - tmin class PostProcessing(object): def __init__(self, chain, pars, burn_percentage=0.25): burn = int(burn_percentage*chain.shape[0]) self.chain = chain[burn:] self.pars = pars def plot_trace(self, plot_kwargs={}): ndim = len(self.pars) if ndim > 1: ncols = 4 nrows = int(np.ceil(ndim/ncols)) else: ncols, nrows = 1, 1 plt.figure(figsize=(15, 2*nrows)) for ii in range(ndim): plt.subplot(nrows, ncols, ii+1) plt.plot(self.chain[:, ii], **plot_kwargs) plt.title(self.pars[ii], fontsize=8) plt.tight_layout() def plot_hist(self, hist_kwargs={'bins': 50, 'normed': True}): ndim = len(self.pars) if ndim > 1: ncols = 4 nrows = int(np.ceil(ndim/ncols)) else: ncols, nrows = 1, 1 plt.figure(figsize=(15, 2*nrows)) for ii in range(ndim): plt.subplot(nrows, ncols, ii+1) plt.hist(self.chain[:, ii], **hist_kwargs) plt.title(self.pars[ii], fontsize=8) plt.tight_layout() def ul(chain, q=95.0): """ Computes upper limit and associated uncertainty. :param chain: MCMC samples of GWB (or common red noise) amplitude :param q: desired percentile of upper-limit value [out of 100, default=95] :returns: (upper limit, uncertainty on upper limit) """ hist = np.histogram(10.0**chain, bins=100) hist_dist = scistats.rv_histogram(hist) A_ul = 10**np.percentile(chain, q=q) p_ul = hist_dist.pdf(A_ul) Aul_error = np.sqrt((q/100.) * (1.0 - (q/100.0)) / (chain.shape[0]/acor.acor(chain)[0])) / p_ul return A_ul, Aul_error def bayes_fac(samples, ntol=200, logAmin=-18, logAmax=-14): """ Computes the Savage Dickey Bayes Factor and uncertainty. :param samples: MCMCF samples of GWB (or common red noise) amplitude :param ntol: Tolerance on number of samples in bin :returns: (bayes factor, 1-sigma bayes factor uncertainty) """ prior = 1 / (logAmax - logAmin) dA = np.linspace(0.01, 0.1, 100) bf = [] bf_err = [] mask = [] # selecting bins with more than 200 samples for ii, delta in enumerate(dA): n = np.sum(samples <= (logAmin + delta)) N = len(samples) post = n / N / delta bf.append(prior/post) bf_err.append(bf[ii]/np.sqrt(n)) if n > ntol: mask.append(ii) return np.mean(np.array(bf)[mask]), np.std(np.array(bf)[mask]) def odds_ratio(chain, models=[0, 1], uncertainty=True, thin=False): if thin: indep_samples = np.rint(chain.shape[0] / acor.acor(chain)[0]) samples = np.random.choice(chain.copy(), int(indep_samples)) else: samples = chain.copy() mask_top = np.rint(samples) == max(models) mask_bot = np.rint(samples) == min(models) top = float(np.sum(mask_top)) bot = float(np.sum(mask_bot)) if top == 0.0 and bot != 0.0: bf = 1.0 / bot elif bot == 0.0 and top != 0.0: bf = top else: bf = top / bot if uncertainty: if bot == 0. or top == 0.: sigma = 0.0 else: # Counting transitions from model 1 model 2 ct_tb = 0 for ii in range(len(mask_top)-1): if mask_top[ii]: if not mask_top[ii+1]: ct_tb += 1 # Counting transitions from model 2 to model 1 ct_bt = 0 for ii in range(len(mask_bot)-1): if mask_bot[ii]: if not mask_bot[ii+1]: ct_bt += 1 try: sigma = bf * np.sqrt((float(top) - float(ct_tb))/(float(top)*float(ct_tb)) + (float(bot) - float(ct_bt))/(float(bot)*float(ct_bt))) except ZeroDivisionError: sigma = 0.0 return bf, sigma elif not uncertainty: return bf def bic(chain, nobs, log_evidence=False): """ Computes the Bayesian Information Criterion. :param chain: MCMC samples of all parameters, plus meta-data :param nobs: Number of observations in data :param evidence: return evidence estimate too? :returns: (bic, evidence) """ nparams = chain.shape[1] - 4 # removing 4 aux columns maxlnlike = chain[:, -4].max() bic = np.log(nobs)*nparams - 2.0*maxlnlike if log_evidence: return (bic, -0.5*bic) else: return bic def mask_filter(psr, mask): """filter given pulsar data by user defined mask""" psr._toas = psr._toas[mask] psr._toaerrs = psr._toaerrs[mask] psr._residuals = psr._residuals[mask] psr._ssbfreqs = psr._ssbfreqs[mask] psr._designmatrix = psr._designmatrix[mask, :] dmx_mask = np.sum(psr._designmatrix, axis=0) != 0.0 psr._designmatrix = psr._designmatrix[:, dmx_mask] for key in psr._flags: psr._flags[key] = psr._flags[key][mask] if psr._planetssb is not None: psr._planetssb = psr.planetssb[mask, :, :] psr.sort_data() class CompareTimingModels(): """ Compare difference between the usual and marginalized timing models. After instantiating, the __call__() method can be used for sampling for any number of points. To see the results, use the results() method. :param psrs: Pulsar object containing pulsars from model :param model_name: String name of model to test. Model must be defined in enterprise_extensions.models. :param abs_tol: absolute tolerance for error between timing models (default 1e-3), set to None to bypass errors :param rel_tol: relative tolerance for error between timing models (default 1e-6), set to None to bypass errors :param dense: use the dense cholesky algorithm over sparse """ def __init__(self, psrs, model_name='model_1', abs_tol=1e-3, rel_tol=1e-6, dense=True, **kwargs): model = getattr(models, model_name) self.abs_tol = abs_tol self.rel_tol = rel_tol if dense: self.pta_marg = model(psrs, tm_marg=True, dense_like=True, **kwargs) # marginalized model else: self.pta_marg = model(psrs, tm_marg=True, **kwargs) # marginalized model self.pta_norm = model(psrs, **kwargs) # normal model self.tm_correction = 0 for psr in psrs: self.tm_correction -= 0.5 * np.log(1e40) * psr.Mmat.shape[1] self.abs_err = [] self.rel_err = [] self.count = 0 def check_timing(self, number=10_000): print('Timing sample creation...') start = time.time() for __ in range(number): x0 = np.hstack([p.sample() for p in self.pta_marg.params]) end = time.time() sample_time = end - start print('Sampling {0} points took {1} seconds.'.format(number, sample_time)) print('Timing MarginalizedTimingModel...') start = time.time() for __ in range(number): x0 = np.hstack([p.sample() for p in self.pta_marg.params]) self.pta_marg.get_lnlikelihood(x0) end = time.time() time_marg = end - start - sample_time # remove sampling time from total time taken print('Sampling {0} points took {1} seconds.'.format(number, time_marg)) print('Timing TimingModel...') start = time.time() for __ in range(number): x0 = np.hstack([p.sample() for p in self.pta_marg.params]) self.pta_norm.get_lnlikelihood(x0) end = time.time() time_norm = end - start - sample_time # remove sampling time from total time taken print('Sampling {0} points took {1} seconds.'.format(number, time_norm)) res = time_norm / time_marg print('MarginalizedTimingModel is {0} times faster than TimingModel after {1} points.'.format(res, number)) return res def get_sample_point(self): x0 = np.hstack([p.sample() for p in self.pta_marg.params]) return x0 def __call__(self, x0): res_norm = self.pta_norm.get_lnlikelihood(x0) res_marg = self.pta_marg.get_lnlikelihood(x0) abs_err = np.abs(res_marg - res_norm) rel_err = abs_err / res_norm self.abs_err.append(abs_err) self.rel_err.append(rel_err) self.count += 1 if self.abs_tol is not None and abs_err > self.abs_tol: abs_raise = 'Absolute error is {0} at {1} which is larger than abs_tol of {2}.'.format( abs_err, x0, self.abs_tol) raise ValueError(abs_raise) elif self.rel_tol is not None and rel_err > self.rel_tol: rel_raise = 'Relative error is {0} at {1} which is larger than rel_tol of {2}.'.format( rel_err, x0, self.rel_tol) raise ValueError(rel_raise) return res_norm def results(self): print('Number of points evaluated:', self.count) print('Maximum absolute error:', np.max(self.abs_err)) print('Maximum relative error:', np.max(self.rel_err)) return self.abs_err, self.rel_err
12,737
31.914729
115
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/empirical_distr.py
import logging import pickle import numpy as np try: from sklearn.neighbors import KernelDensity sklearn_available=True except ModuleNotFoundError: sklearn_available=False from scipy.interpolate import interp1d, interp2d logger = logging.getLogger(__name__) class EmpiricalDistribution1D(object): """ Class used to define a 1D empirical distribution based on posterior from another MCMC. :param samples: samples for hist :param bins: edges to use for hist (left and right) make sure bins cover whole prior! """ def __init__(self, param_name, samples, bins): self.ndim = 1 self.param_name = param_name self._Nbins = len(bins)-1 hist, x_bins = np.histogram(samples, bins=bins) self._edges = x_bins self._wids = np.diff(x_bins) hist += 1 # add a sample to every bin counts = np.sum(hist) self._pdf = hist / float(counts) / self._wids self._cdf = np.cumsum((self._pdf*self._wids).ravel()) self._logpdf = np.log(self._pdf) def draw(self): draw = np.random.rand() draw_bin = np.searchsorted(self._cdf, draw, side='right') idx = np.unravel_index(draw_bin, self._Nbins)[0] samp = self._edges[idx] + self._wids[idx]*np.random.rand() return np.array(samp) def prob(self, params): ix = np.searchsorted(self._edges, params) - 1 return self._pdf[ix] def logprob(self, params): ix = np.searchsorted(self._edges, params) - 1 return self._logpdf[ix] class EmpiricalDistribution1DKDE(object): def __init__(self, param_name, samples, minval=None, maxval=None, bandwidth=0.1, nbins=40): """ Minvals and maxvals should specify priors for these. Should make these required. """ self.ndim = 1 self.param_name = param_name self.bandwidth = bandwidth # code below relies on samples axes being swapped. but we # want to keep inputs the same # create a 2D KDE from which to evaluate self.kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(samples.reshape((samples.size, 1))) if minval is None: # msg = "minvals for KDE empirical distribution were not supplied. Resulting distribution may not have support over full prior" # logger.warning(msg) # widen these to add support minval = min(samples) maxval = max(samples) # significantly faster probability estimation using interpolation # instead of evaluating KDE every time self.minval = minval self.maxval = maxval xvals = np.linspace(minval, maxval, num=nbins) self._Nbins = nbins scores = np.array([self.kde.score(np.atleast_2d(xval)) for xval in xvals]) # interpolate within prior self._logpdf = interp1d(xvals, scores, kind='linear', fill_value=-1000) def draw(self): params = self.kde.sample(1).T return params.squeeze() # class used to define a 2D empirical distribution # based on posteriors from another MCMC class EmpiricalDistribution2D(object): """ Class used to define a 1D empirical distribution based on posterior from another MCMC. :param samples: samples for hist :param bins: edges to use for hist (left and right) make sure bins cover whole prior! """ def __init__(self, param_names, samples, bins): self.ndim = 2 self.param_names = param_names self._Nbins = [len(b)-1 for b in bins] hist, x_bins, y_bins = np.histogram2d(*samples, bins=bins) self._edges = np.array([x_bins, y_bins]) self._wids = np.diff([x_bins, y_bins]) area = np.outer(*self._wids) hist += 1 # add a sample to every bin counts = np.sum(hist) self._pdf = hist / counts / area self._cdf = np.cumsum((self._pdf*area).ravel()) self._logpdf = np.log(self._pdf) def draw(self): draw = np.random.rand() draw_bin = np.searchsorted(self._cdf, draw) idx = np.unravel_index(draw_bin, self._Nbins) samp = [self._edges[ii, idx[ii]] + self._wids[ii, idx[ii]]*np.random.rand() for ii in range(2)] return np.array(samp) def prob(self, params): ix, iy = [np.searchsorted(self._edges[ii], params[ii]) - 1 for ii in range(2)] return self._pdf[ix, iy] def logprob(self, params): ix, iy = [np.searchsorted(self._edges[ii], params[ii]) - 1 for ii in range(2)] return self._logpdf[ix, iy] class EmpiricalDistribution2DKDE(object): def __init__(self, param_names, samples, minvals=None, maxvals=None, bandwidth=0.1, nbins=40): """ Minvals and maxvals should specify priors for these. Should make these required. :param param_names: 2-element list of parameter names :param samples: samples, with dimension (2 x Nsamples) :return distr: list of empirical distributions """ self.ndim = 2 self.param_names = param_names self.bandwidth = bandwidth # code below relies on samples axes being swapped. but we # want to keep inputs the same # create a 2D KDE from which to evaluate self.kde = KernelDensity(kernel='gaussian', bandwidth=bandwidth).fit(samples.T) if minvals is None: msg = "minvals for KDE empirical distribution were not supplied. Resulting distribution may not have support over full prior" logger.warning(msg) # widen these to add support minvals = (min(samples[0, :]), min(samples[1, :])) maxvals = (max(samples[0, :]), max(samples[1, :])) # significantly faster probability estimation using interpolation # instead of evaluating KDE every time self.minvals = minvals self.maxvals = maxvals xvals = np.linspace(minvals[0], maxvals[0], num=nbins) yvals = np.linspace(minvals[1], maxvals[1], num=nbins) self._Nbins = [yvals.size for ii in range(xvals.size)] scores = np.array([self.kde.score(np.array([xvals[ii], yvals[jj]]).reshape((1, 2))) for ii in range(xvals.size) for jj in range(yvals.size)]) # interpolate within prior self._logpdf = interp2d(xvals, yvals, scores, kind='linear', fill_value=-1000) def draw(self): params = self.kde.sample(1).T return params.squeeze() def prob(self, params): # just in case...make sure to make this zero outside of our prior ranges param1_out = params[0] < self.minvals[0] or params[0] > self.maxvals[0] param2_out = params[1] < self.minvals[1] or params[1] > self.maxvals[1] if param1_out or param2_out: # essentially zero return -1000 else: return np.exp(self._logpdf(*params))[0] def logprob(self, params): return self._logpdf(*params)[0] def make_empirical_distributions(pta, paramlist, params, chain, burn=0, nbins=81, filename='distr.pkl', return_distribution=True, save_dists=True): """ Utility function to construct empirical distributions. :param pta: the pta object used to generate the posteriors :param paramlist: a list of parameter names, either single parameters or pairs of parameters :param chain: MCMC chain from a previous run :param burn: desired number of initial samples to discard :param nbins: number of bins to use for the empirical distributions :return distr: list of empirical distributions """ distr = [] if not save_dists and not return_distribution: msg = "no distribution returned or saved, are you sure??" logger.info(msg) for pl in paramlist: if type(pl) is not list: pl = [pl] if len(pl) == 1: idx = pta.param_names.index(pl[0]) prior_min = pta.params[idx].prior._defaults['pmin'] prior_max = pta.params[idx].prior._defaults['pmax'] # get the bins for the histogram bins = np.linspace(prior_min, prior_max, nbins) new_distr = EmpiricalDistribution1D(pl[0], chain[burn:, idx], bins) distr.append(new_distr) elif len(pl) == 2: # get the parameter indices idx = [pta.param_names.index(pl1) for pl1 in pl] # get the bins for the histogram bins = [np.linspace(pta.params[i].prior._defaults['pmin'], pta.params[i].prior._defaults['pmax'], nbins) for i in idx] new_distr = EmpiricalDistribution2D(pl, chain[burn:, idx].T, bins) distr.append(new_distr) else: msg = 'WARNING: only 1D and 2D empirical distributions are currently allowed.' logger.warning(msg) # save the list of empirical distributions as a pickle file if save_dists: if len(distr) > 0: with open(filename, 'wb') as f: pickle.dump(distr, f) msg = 'The empirical distributions have been pickled to {0}.'.format(filename) logger.info(msg) else: msg = 'WARNING: No empirical distributions were made!' logger.warning(msg) if return_distribution: return distr def make_empirical_distributions_KDE(pta, paramlist, params, chain, burn=0, nbins=41, filename='distr.pkl', bandwidth=0.1, return_distribution=True, save_dists=True): """ Utility function to construct empirical distributions. :param paramlist: a list of parameter names, either single parameters or pairs of parameters :param params: list of all parameter names for the MCMC chain :param chain: MCMC chain from a previous run, has dimensions Nsamples x Nparams :param burn: desired number of initial samples to discard :param nbins: number of bins to use for the empirical distributions :return distr: list of empirical distributions """ distr = [] if not save_dists and not return_distribution: msg = "no distribution returned or saved, are you sure??" logger.info(msg) for pl in paramlist: if type(pl) is not list: pl = [pl] if len(pl) == 1: # get the parameter index idx = pta.param_names.index(pl[0]) prior_min = pta.params[idx].prior._defaults['pmin'] prior_max = pta.params[idx].prior._defaults['pmax'] # get the bins for the histogram new_distr = EmpiricalDistribution1DKDE(pl[0], chain[burn:, idx], bandwidth=bandwidth, minval=prior_min, maxval=prior_max) distr.append(new_distr) elif len(pl) == 2: # get the parameter indices idx = [pta.param_names.index(pl1) for pl1 in pl] # get the bins for the histogram bins = [np.linspace(pta.params[i].prior._defaults['pmin'], pta.params[i].prior._defaults['pmax'], nbins) for i in idx] minvals = [pta.params[0].prior._defaults['pmin'], pta.params[1].prior._defaults['pmin']] maxvals = [pta.params[0].prior._defaults['pmax'], pta.params[1].prior._defaults['pmax']] # get the bins for the histogram if sklearn_available: new_distr = EmpiricalDistribution2DKDE(pl, chain[burn:, idx].T, bandwidth=bandwidth, minvals=minvals, maxvals=maxvals) else: logger.warn('`sklearn` package not available. Fall back to using histgrams for empirical distribution') new_distr = EmpiricalDistribution2D(pl, chain[burn:, idx].T, bins) distr.append(new_distr) else: msg = 'WARNING: only 1D and 2D empirical distributions are currently allowed.' logger.warning(msg) # save the list of empirical distributions as a pickle file if save_dists: if len(distr) > 0: with open(filename, 'wb') as f: pickle.dump(distr, f) msg = 'The empirical distributions have been pickled to {0}.'.format(filename) logger.info(msg) else: msg = 'WARNING: No empirical distributions were made!' logger.warning(msg) if return_distribution: return distr
12,755
35.033898
149
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/sky_scrambles.py
import pickle import sys import time import numpy as np from enterprise.signals import utils def compute_match(orf1, orf1_mag, orf2, orf2_mag): """Computes the match between two different ORFs.""" match = np.abs(np.dot(orf1, orf2))/(orf1_mag*orf2_mag) return match def make_true_orf(psrs): """Computes the ORF by looping over pulsar pairs""" npsr = len(psrs) orf = np.zeros(int(npsr*(npsr-1)/2)) idx = 0 for i in range(npsr): for j in range(i+1, npsr): orf[idx] = utils.hd_orf(psrs[i].pos, psrs[j].pos) idx += 1 return orf def compute_orf(ptheta, pphi): """ Computes the ORF coefficient. Takes different input than utils.hd_orf(). :param ptheta: Array of values of pulsar positions theta :param pphi: Array of values of pulsar positions phi :returns: orf: ORF for the given positions orf_mag: Magnitude of the ORF """ npsr = len(ptheta) pos = [np.array([np.cos(phi)*np.sin(theta), np.sin(phi)*np.sin(theta), np.cos(theta)]) for phi, theta in zip(pphi, ptheta)] x = [] for i in range(npsr): for j in range(i+1, npsr): x.append(np.dot(pos[i], pos[j])) x = np.array(x) orf = 1.5*(1./3. + (1.-x)/2.*(np.log((1.-x)/2.)-1./6.)) return orf, np.sqrt(np.dot(orf, orf)) def get_scrambles(psrs, N=500, Nmax=10000, thresh=0.1, filename='sky_scrambles.npz', resume=False): """ Get sky scramble ORFs and matches. :param psrs: List of pulsar objects :param N: Number of desired sky scrambles :param Nmax: Maximum number of tries to get independent scrambles :param thresh: Threshold value for match statistic. :param filename: Name of the file where the sky scrambles should be saved. Sky scrambles should be saved in `npz` file. :param resume: Whether to resume from an earlier run. """ # compute the unscrambled ORF orf_true = make_true_orf(psrs) orf_true_mag = np.sqrt(np.dot(orf_true, orf_true)) npsr = len(psrs) print('Generating {0} sky scrambles from {1} attempts with threshold {2}...'.format(N, Nmax, thresh)) orf_mags = [] if resume: print('Resuming from earlier run... loading sky scrambles from file {0}'.format(filename)) npzfile = np.load(filename) matches, orfs = npzfile['matches'], npzfile['orfs'] thetas, phis = npzfile['thetas'], npzfile['phis'] print('{0} sky scrambles have already been generated.'.format(len(matches))) for o in orfs: orf_mags.append(np.sqrt(np.dot(o, o))) else: matches, orfs, thetas, phis = [], [], [], [] ct = 0 tstart = time.time() while ct <= Nmax and len(matches) <= N: ptheta = np.arccos(np.random.uniform(-1, 1, npsr)) pphi = np.random.uniform(0, 2*np.pi, npsr) orf_s, orf_s_mag = compute_orf(ptheta, pphi) match = compute_match(orf_true, orf_true_mag, orf_s, orf_s_mag) if thresh == 1.0: if ct == 0: print('There is no threshold! Keep all the sky scrambles') if len(orfs) == 0: orfs.append(orf_s) matches.append(match) orfs = np.array(orfs) matches = np.array(matches) thetas = ptheta[np.newaxis, ...] phis = pphi[np.newaxis, ...] orf_mags.append(np.sqrt(np.dot(orf_s, orf_s))) else: matches = np.append(matches, match) orf_reshape = np.vstack(orf_s).T orfs = np.append(orfs, orf_reshape, axis=0) orf_mags.append(orf_s_mag) thetas = np.concatenate((thetas, [ptheta])) phis = np.concatenate((phis, [pphi])) elif thresh < 1.0 and match <= thresh: if len(orfs) == 0: orfs.append(orf_s) matches.append(match) orfs = np.array(orfs) matches = np.array(matches) thetas = ptheta[np.newaxis, ...] phis = pphi[np.newaxis, ...] orf_mags.append(np.sqrt(np.dot(orf_s, orf_s))) else: check = np.all(map(lambda x, y: compute_match(orf_s, orf_s_mag, x, y)<=thresh, orfs, orf_mags)) if check: matches = np.append(matches, match) orf_reshape = np.vstack(orf_s).T orfs = np.append(orfs, orf_reshape, axis=0) orf_mags.append(orf_s_mag) thetas = np.concatenate((thetas, [ptheta])) phis = np.concatenate((phis, [pphi])) ct += 1 if ct % 1000 == 0: sys.stdout.write('\r') sys.stdout.write('Finished %2.1f percent in %f min' % (float(ct)/N*100, (time.time() - tstart)/60.)) sys.stdout.flush() if len(matches) < N: print('\nGenerated {0} matches rather than the desired {1} matches'.format(len(matches), N)) else: print('\nGenerated the desired {0} matches in {1} attempts'.format(len(matches), ct)) print('Total runtime: {0:.1f} min'.format((time.time()-tstart)/60.)) np.savez(filename, matches=matches, orfs=orfs, thetas=thetas, phis=phis) return (matches, orfs, thetas, phis) if __name__ == '__main__': import argparse parser = argparse.ArgumentParser(description='') parser.add_argument('--picklefile', help='pickle file for the pulsars') parser.add_argument('--threshold', default=0.1, help='threshold for sky scrambles (DEFAULT 0.1)') parser.add_argument('--nscrambles', default=1000, help='number of sky scrambles to generate (DEFAULT 1000)') parser.add_argument('--nmax', default=1000, help='maximum number of attempts (DEFAULT 1000)') parser.add_argument('--savefile', default='../data/scrambles_nano.npz', help='outputfile name') parser.add_argument('--resume', action='store_true', help='resume from existing savefile?') args = parser.parse_args() with open(args.picklefile, 'rb') as f: psrs = pickle.load(f) get_scrambles(psrs, N=int(args.nscrambles), Nmax=int(args.nmax), thresh=float(args.threshold), filename=args.savefile, resume=args.resume)
6,532
33.75
111
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/timing.py
from collections import OrderedDict import numpy as np from enterprise.signals import deterministic_signals, parameter, signal_base # timing model delay @signal_base.function def tm_delay(residuals, t2pulsar, tmparams_orig, tmparams, which='all'): """ Compute difference in residuals due to perturbed timing model. :param residuals: original pulsar residuals from Pulsar object :param t2pulsar: libstempo pulsar object :param tmparams_orig: dictionary of TM parameter tuples, (val, err) :param tmparams: new timing model parameters, rescaled to be in sigmas :param which: option to have all or only named TM parameters varied :return: difference between new and old residuals in seconds """ if which == 'all': keys = tmparams_orig.keys() else: keys = which # grab original timing model parameters and errors in dictionary orig_params = np.array([tmparams_orig[key] for key in keys]) # put varying parameters into dictionary tmparams_rescaled = np.atleast_1d(np.double(orig_params[:, 0] + tmparams * orig_params[:, 1])) tmparams_vary = OrderedDict(zip(keys, tmparams_rescaled)) # set to new values t2pulsar.vals(tmparams_vary) new_res = np.double(t2pulsar.residuals().copy()) # remember to set values back to originals t2pulsar.vals(OrderedDict(zip(keys, np.atleast_1d(np.double(orig_params[:, 0]))))) # Sort the residuals isort = np.argsort(t2pulsar.toas(), kind='mergesort') return residuals[isort] - new_res[isort] # Model component building blocks # def timing_block(tmparam_list=['RAJ', 'DECJ', 'F0', 'F1', 'PMRA', 'PMDEC', 'PX']): """ Returns the timing model block of the model :param tmparam_list: a list of parameters to vary in the model """ # default 5-sigma prior above and below the parfile mean tm_params = parameter.Uniform(-5.0, 5.0, size=len(tmparam_list)) # timing model tm_func = tm_delay(tmparams=tm_params, which=tmparam_list) tm = deterministic_signals.Deterministic(tm_func, name='timing model') return tm
2,236
31.897059
80
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/dropout.py
import enterprise import numpy as np from enterprise import constants as const from enterprise.signals import (deterministic_signals, parameter, signal_base, utils) @signal_base.function def dropout_powerlaw(f, name, log10_A=-16, gamma=5, dropout_psr='B1855+09', k_drop=0.5, k_threshold=0.5): """ Dropout powerlaw for a stochastic process. Switches a stochastic process on or off in a single pulsar depending on whether k_drop exceeds k_threshold. :param dropout_psr: Which pulsar to use a dropout switch on. The value 'all' will use the method on all pulsars. """ df = np.diff(np.concatenate((np.array([0]), f[::2]))) if name == 'all': if k_drop >= k_threshold: k_switch = 1.0 elif k_drop < k_threshold: k_switch = 0.0 return k_switch * ((10**log10_A)**2 / 12.0 / np.pi**2 * const.fyr**(gamma-3) * f**(-gamma) * np.repeat(df, 2)) elif name == dropout_psr: if k_drop >= k_threshold: k_switch = 1.0 elif k_drop < k_threshold: k_switch = 0.0 return k_switch * ((10**log10_A)**2 / 12.0 / np.pi**2 * const.fyr**(gamma-3) * f**(-gamma) * np.repeat(df, 2)) else: return ((10**log10_A)**2 / 12.0 / np.pi**2 * const.fyr**(gamma-3) * f**(-gamma) * np.repeat(df, 2)) @signal_base.function def dropout_physical_ephem_delay(toas, planetssb, pos_t, frame_drift_rate=0, d_jupiter_mass=0, d_saturn_mass=0, d_uranus_mass=0, d_neptune_mass=0, jup_orb_elements=np.zeros(6), sat_orb_elements=np.zeros(6), inc_jupiter_orb=False, jup_orbelxyz=None, jup_mjd=None, inc_saturn_orb=False, sat_orbelxyz=None, sat_mjd=None, equatorial=True, k_drop=0.5, k_threshold=0.5): """ Dropout BayesEphem model. Switches BayesEphem on or off depending on whether k_drop exceeds k_threshold. """ # get dropout switch if k_drop >= k_threshold: k_switch = 1.0 elif k_drop < k_threshold: k_switch = 0.0 # convert toas to MJD mjd = toas / 86400 # grab planet-to-SSB vectors earth = planetssb[:, 2, :3] jupiter = planetssb[:, 4, :3] saturn = planetssb[:, 5, :3] uranus = planetssb[:, 6, :3] neptune = planetssb[:, 7, :3] # do frame rotation earth = utils.ss_framerotate(mjd, earth, 0.0, 0.0, 0.0, frame_drift_rate, offset=None, equatorial=equatorial) # mass perturbations mpert = [(jupiter, d_jupiter_mass), (saturn, d_saturn_mass), (uranus, d_uranus_mass), (neptune, d_neptune_mass)] for planet, dm in mpert: earth += utils.dmass(planet, dm) # jupter orbital element perturbations if inc_jupiter_orb: jup_perturb_tmp = 0.0009547918983127075 * np.einsum( 'i,ijk->jk', jup_orb_elements, jup_orbelxyz) earth += np.array([np.interp(mjd, jup_mjd, jup_perturb_tmp[:, aa]) for aa in range(3)]).T # saturn orbital element perturbations if inc_saturn_orb: sat_perturb_tmp = 0.00028588567008942334 * np.einsum( 'i,ijk->jk', sat_orb_elements, sat_orbelxyz) earth += np.array([np.interp(mjd, sat_mjd, sat_perturb_tmp[:, aa]) for aa in range(3)]).T # construct the true geocenter to barycenter roemer tmp_roemer = np.einsum('ij,ij->i', planetssb[:, 2, :3], pos_t) # create the delay delay = tmp_roemer - np.einsum('ij,ij->i', earth, pos_t) return k_switch * delay def Dropout_PhysicalEphemerisSignal( frame_drift_rate=parameter.Uniform(-1e-9, 1e-9)('frame_drift_rate'), d_jupiter_mass=parameter.Normal(0, 1.54976690e-11)('d_jupiter_mass'), d_saturn_mass=parameter.Normal(0, 8.17306184e-12)('d_saturn_mass'), d_uranus_mass=parameter.Normal(0, 5.71923361e-11)('d_uranus_mass'), d_neptune_mass=parameter.Normal(0, 7.96103855e-11)('d_neptune_mass'), jup_orb_elements=parameter.Uniform(-0.05, 0.05, size=6)('jup_orb_elements'), sat_orb_elements=parameter.Uniform(-0.5, 0.5, size=6)('sat_orb_elements'), inc_jupiter_orb=True, inc_saturn_orb=False, use_epoch_toas=True, k_drop=parameter.Uniform(0.0, 1.0), k_threshold=0.5, name=''): """ Class factory for dropout physical ephemeris model signal.""" # turn off saturn orbital element parameters if not including in signal if not inc_saturn_orb: sat_orb_elements = np.zeros(6) # define waveform jup_mjd, jup_orbelxyz, sat_mjd, sat_orbelxyz = ( utils.get_planet_orbital_elements()) wf = dropout_physical_ephem_delay(frame_drift_rate=frame_drift_rate, d_jupiter_mass=d_jupiter_mass, d_saturn_mass=d_saturn_mass, d_uranus_mass=d_uranus_mass, d_neptune_mass=d_neptune_mass, jup_orb_elements=jup_orb_elements, sat_orb_elements=sat_orb_elements, inc_jupiter_orb=inc_jupiter_orb, jup_orbelxyz=jup_orbelxyz, jup_mjd=jup_mjd, inc_saturn_orb=inc_saturn_orb, sat_orbelxyz=sat_orbelxyz, sat_mjd=sat_mjd, k_drop=k_drop, k_threshold=k_threshold) BaseClass = deterministic_signals.Deterministic(wf, name=name) class Dropout_PhysicalEphemerisSignal(BaseClass): signal_name = 'phys_ephem' signal_id = 'phys_ephem_' + name if name else 'phys_ephem' def __init__(self, psr): # not available for PINT yet if isinstance(psr, enterprise.pulsar.PintPulsar): msg = 'Physical Ephemeris model is not compatible with PINT ' msg += 'at this time.' raise NotImplementedError(msg) super(Dropout_PhysicalEphemerisSignal, self).__init__(psr) if use_epoch_toas: # get quantization matrix and calculate daily average TOAs U, _ = utils.create_quantization_matrix(psr.toas, nmin=1) self.uinds = utils.quant2ind(U) avetoas = np.array([psr.toas[sc].mean() for sc in self.uinds]) self._wf[''].add_kwarg(toas=avetoas) # interpolate ssb planet position vectors to avetoas planetssb = np.zeros((len(avetoas), 9, 3)) for jj in range(9): planetssb[:, jj, :] = np.array([ np.interp(avetoas, psr.toas, psr.planetssb[:, jj, aa]) for aa in range(3)]).T self._wf[''].add_kwarg(planetssb=planetssb) # Inteprolating the pulsar position vectors onto epoch TOAs pos_t = np.array([np.interp(avetoas, psr.toas, psr.pos_t[:, aa]) for aa in range(3)]).T self._wf[''].add_kwarg(pos_t=pos_t) # initialize delay self._delay = np.zeros(len(psr.toas)) @signal_base.cache_call('delay_params') def get_delay(self, params): delay = self._wf[''](params=params) if use_epoch_toas: for slc, val in zip(self.uinds, delay): self._delay[slc] = val return self._delay else: return delay return Dropout_PhysicalEphemerisSignal
8,010
39.872449
87
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/models.py
import functools from collections import OrderedDict import numpy as np from enterprise import constants as const from enterprise.signals import (deterministic_signals, gp_signals, parameter, selections, signal_base, white_signals) from enterprise.signals.signal_base import LogLikelihood from enterprise_extensions import chromatic as chrom from enterprise_extensions import deterministic from enterprise_extensions import dropout as do from enterprise_extensions import model_utils from enterprise_extensions.blocks import (bwm_block, bwm_sglpsr_block, chromatic_noise_block, common_red_noise_block, dm_noise_block, red_noise_block, white_noise_block) from enterprise_extensions.chromatic.solar_wind import solar_wind_block from enterprise_extensions.timing import timing_block # from enterprise.signals.signal_base import LookupLikelihood def model_singlepsr_noise(psr, tm_var=False, tm_linear=False, tmparam_list=None, red_var=True, psd='powerlaw', red_select=None, noisedict=None, tm_svd=False, tm_norm=True, white_vary=True, components=30, upper_limit=False, is_wideband=False, use_dmdata=False, tnequad=False, dmjump_var=False, gamma_val=None, dm_var=False, dm_type='gp', dmgp_kernel='diag', dm_psd='powerlaw', dm_nondiag_kernel='periodic', dmx_data=None, dm_annual=False, gamma_dm_val=None, dm_dt=15, dm_df=200, chrom_gp=False, chrom_gp_kernel='nondiag', chrom_psd='powerlaw', chrom_idx=4, chrom_quad=False, chrom_kernel='periodic', chrom_dt=15, chrom_df=200, dm_expdip=False, dmexp_sign='negative', dm_expdip_idx=2, dm_expdip_tmin=None, dm_expdip_tmax=None, num_dmdips=1, dmdip_seqname=None, dm_cusp=False, dm_cusp_sign='negative', dm_cusp_idx=2, dm_cusp_sym=False, dm_cusp_tmin=None, dm_cusp_tmax=None, num_dm_cusps=1, dm_cusp_seqname=None, dm_dual_cusp=False, dm_dual_cusp_tmin=None, dm_dual_cusp_tmax=None, dm_dual_cusp_sym=False, dm_dual_cusp_idx1=2, dm_dual_cusp_idx2=4, dm_dual_cusp_sign='negative', num_dm_dual_cusps=1, dm_dual_cusp_seqname=None, dm_sw_deter=False, dm_sw_gp=False, swgp_prior=None, swgp_basis=None, coefficients=False, extra_sigs=None, psr_model=False, factorized_like=False, Tspan=None, fact_like_gamma=13./3, gw_components=10, fact_like_logmin=None, fact_like_logmax=None, select='backend', tm_marg=False, dense_like=False, ng_twg_setup=False, wb_efac_sigma=0.25): """ Single pulsar noise model. :param psr: enterprise pulsar object :param tm_var: explicitly vary the timing model parameters :param tm_linear: vary the timing model in the linear approximation :param tmparam_list: an explicit list of timing model parameters to vary :param red_var: include red noise in the model :param psd: red noise psd model :param noisedict: dictionary of noise parameters :param tm_svd: boolean for svd-stabilised timing model design matrix :param tm_norm: normalize the timing model, or provide custom normalization :param white_vary: boolean for varying white noise or keeping fixed :param components: number of modes in Fourier domain processes :param dm_components: number of modes in Fourier domain DM processes :param upper_limit: whether to do an upper-limit analysis :param is_wideband: whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband :param gamma_val: red noise spectral index to fix :param dm_var: whether to explicitly model DM-variations :param dm_type: gaussian process ('gp') or dmx ('dmx') :param dmgp_kernel: diagonal in frequency or non-diagonal :param dm_psd: power-spectral density of DM variations :param dm_nondiag_kernel: type of time-domain DM GP kernel :param dmx_data: supply the DMX data from par files :param dm_annual: include an annual DM signal :param gamma_dm_val: spectral index of power-law DM variations :param dm_dt: time-scale for DM linear interpolation basis (days) :param dm_df: frequency-scale for DM linear interpolation basis (MHz) :param chrom_gp: include general chromatic noise :param chrom_gp_kernel: GP kernel type to use in chrom ['diag','nondiag'] :param chrom_psd: power-spectral density of chromatic noise ['powerlaw','tprocess','free_spectrum'] :param chrom_idx: frequency scaling of chromatic noise :param chrom_kernel: Type of 'nondiag' time-domain chrom GP kernel to use ['periodic', 'sq_exp','periodic_rfband', 'sq_exp_rfband'] :param chrom_quad: Whether to add a quadratic chromatic term. Boolean :param chrom_dt: time-scale for chromatic linear interpolation basis (days) :param chrom_df: frequency-scale for chromatic linear interpolation basis (MHz) :param dm_expdip: inclue a DM exponential dip :param dmexp_sign: set the sign parameter for dip :param dm_expdip_idx: chromatic index of exponential dip :param dm_expdip_tmin: sampling minimum of DM dip epoch :param dm_expdip_tmax: sampling maximum of DM dip epoch :param num_dmdips: number of dm exponential dips :param dmdip_seqname: name of dip sequence :param dm_cusp: include a DM exponential cusp :param dm_cusp_sign: set the sign parameter for cusp :param dm_cusp_idx: chromatic index of exponential cusp :param dm_cusp_tmin: sampling minimum of DM cusp epoch :param dm_cusp_tmax: sampling maximum of DM cusp epoch :param dm_cusp_sym: make exponential cusp symmetric :param num_dm_cusps: number of dm exponential cusps :param dm_cusp_seqname: name of cusp sequence :param dm_dual_cusp: include a DM cusp with two chromatic indices :param dm_dual_cusp_tmin: sampling minimum of DM dual cusp epoch :param dm_dual_cusp_tmax: sampling maximum of DM dual cusp epoch :param dm_dual_cusp_idx1: first chromatic index of DM dual cusp :param dm_dual_cusp_idx2: second chromatic index of DM dual cusp :param dm_dual_cusp_sym: make dual cusp symmetric :param dm_dual_cusp_sign: set the sign parameter for dual cusp :param num_dm_dual_cusps: number of DM dual cusps :param dm_dual_cusp_seqname: name of dual cusp sequence :param dm_scattering: whether to explicitly model DM scattering variations :param dm_sw_deter: use the deterministic solar wind model :param dm_sw_gp: add a Gaussian process perturbation to the deterministic solar wind model. :param swgp_prior: prior is currently set automatically :param swgp_basis: ['powerlaw', 'periodic', 'sq_exp'] :param coefficients: explicitly include latent coefficients in model :param psr_model: Return the enterprise model instantiated on the pulsar rather than an instantiated PTA object, i.e. model(psr) rather than PTA(model(psr)). :param factorized_like: Whether to run a factorized likelihood analyis Boolean :param gw_components: number of modes in Fourier domain for a common process in a factorized likelihood calculation. :param fact_like_gamma: fixed common process spectral index :param fact_like_logmin: specify lower prior for common psd. This is a prior on log10_rho if common_psd is 'spectrum', else it is a prior on log10 amplitude :param fact_like_logmax: specify upper prior for common psd. This is a prior on log10_rho if common_psd is 'spectrum', else it is a prior on log10 amplitude :param Tspan: time baseline used to determine Fourier GP frequencies :param extra_sigs: Any additional `enterprise` signals to be added to the model. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :return s: single pulsar noise model """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # timing model if not tm_var: if (is_wideband and use_dmdata): if dmjump_var: dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmjump = parameter.Constant() if white_vary: if ng_twg_setup: dmefac = parameter.Normal(1.0, wb_efac_sigma) else: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection( selections.by_backend), dmjump_selection=selections.Selection( selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd, normed=tm_norm, coefficients=coefficients) else: # create new attribute for enterprise pulsar object psr.tmparams_orig = OrderedDict.fromkeys(psr.t2pulsar.pars()) for key in psr.tmparams_orig: psr.tmparams_orig[key] = (psr.t2pulsar[key].val, psr.t2pulsar[key].err) if not tm_linear: s = timing_block(tmparam_list=tmparam_list) else: pass # red noise and common process if factorized_like: if Tspan is None: msg = 'Must Timespan to match amongst all pulsars when doing ' msg += 'a factorized likelihood analysis.' raise ValueError(msg) s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=gw_components, gamma_val=fact_like_gamma, delta_val=None, orf=None, name='gw', coefficients=coefficients, pshift=False, pseed=None, logmin=fact_like_logmin, logmax=fact_like_logmax) if red_var: s += red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_val, coefficients=coefficients, select=red_select) # DM variations if dm_var: if dm_type == 'gp': if dmgp_kernel == 'diag': s += dm_noise_block(gp_kernel=dmgp_kernel, psd=dm_psd, prior=amp_prior, components=components, gamma_val=gamma_dm_val, coefficients=coefficients) elif dmgp_kernel == 'nondiag': s += dm_noise_block(gp_kernel=dmgp_kernel, nondiag_kernel=dm_nondiag_kernel, dt=dm_dt, df=dm_df, coefficients=coefficients) elif dm_type == 'dmx': s += chrom.dmx_signal(dmx_data=dmx_data[psr.name]) if dm_annual: s += chrom.dm_annual_signal() if chrom_gp: s += chromatic_noise_block(gp_kernel=chrom_gp_kernel, psd=chrom_psd, idx=chrom_idx, components=components, nondiag_kernel=chrom_kernel, dt=chrom_dt, df=chrom_df, include_quadratic=chrom_quad, coefficients=coefficients) if dm_expdip: if dm_expdip_tmin is None and dm_expdip_tmax is None: tmin = [psr.toas.min() / const.day for ii in range(num_dmdips)] tmax = [psr.toas.max() / const.day for ii in range(num_dmdips)] else: tmin = (dm_expdip_tmin if isinstance(dm_expdip_tmin, list) else [dm_expdip_tmin]) tmax = (dm_expdip_tmax if isinstance(dm_expdip_tmax, list) else [dm_expdip_tmax]) if dmdip_seqname is not None: dmdipname_base = (['dmexp_' + nm for nm in dmdip_seqname] if isinstance(dmdip_seqname, list) else ['dmexp_' + dmdip_seqname]) else: dmdipname_base = ['dmexp_{0}'.format(ii+1) for ii in range(num_dmdips)] dm_expdip_idx = (dm_expdip_idx if isinstance(dm_expdip_idx, list) else [dm_expdip_idx]) for dd in range(num_dmdips): s += chrom.dm_exponential_dip(tmin=tmin[dd], tmax=tmax[dd], idx=dm_expdip_idx[dd], sign=dmexp_sign, name=dmdipname_base[dd]) if dm_cusp: if dm_cusp_tmin is None and dm_cusp_tmax is None: tmin = [psr.toas.min() / const.day for ii in range(num_dm_cusps)] tmax = [psr.toas.max() / const.day for ii in range(num_dm_cusps)] else: tmin = (dm_cusp_tmin if isinstance(dm_cusp_tmin, list) else [dm_cusp_tmin]) tmax = (dm_cusp_tmax if isinstance(dm_cusp_tmax, list) else [dm_cusp_tmax]) if dm_cusp_seqname is not None: cusp_name_base = 'dm_cusp_'+dm_cusp_seqname+'_' else: cusp_name_base = 'dm_cusp_' dm_cusp_idx = (dm_cusp_idx if isinstance(dm_cusp_idx, list) else [dm_cusp_idx]) dm_cusp_sign = (dm_cusp_sign if isinstance(dm_cusp_sign, list) else [dm_cusp_sign]) for dd in range(1, num_dm_cusps+1): s += chrom.dm_exponential_cusp(tmin=tmin[dd-1], tmax=tmax[dd-1], idx=dm_cusp_idx[dd-1], sign=dm_cusp_sign[dd-1], symmetric=dm_cusp_sym, name=cusp_name_base+str(dd)) if dm_dual_cusp: if dm_dual_cusp_tmin is None and dm_cusp_tmax is None: tmin = psr.toas.min() / const.day tmax = psr.toas.max() / const.day else: tmin = dm_dual_cusp_tmin tmax = dm_dual_cusp_tmax if dm_dual_cusp_seqname is not None: dual_cusp_name_base = 'dm_dual_cusp_'+dm_cusp_seqname+'_' else: dual_cusp_name_base = 'dm_dual_cusp_' for dd in range(1, num_dm_dual_cusps+1): s += chrom.dm_dual_exp_cusp(tmin=tmin, tmax=tmax, idx1=dm_dual_cusp_idx1, idx2=dm_dual_cusp_idx2, sign=dm_dual_cusp_sign, symmetric=dm_dual_cusp_sym, name=dual_cusp_name_base+str(dd)) if dm_sw_deter: Tspan = psr.toas.max() - psr.toas.min() s += solar_wind_block(ACE_prior=True, include_swgp=dm_sw_gp, swgp_prior=swgp_prior, swgp_basis=swgp_basis, Tspan=Tspan) if extra_sigs is not None: s += extra_sigs # adding white-noise, and acting on psr objects if ('NANOGrav' in psr.flags['pta'] or 'CHIME' in psr.flags['f']) and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) model = s2(psr) if psr_model: Model = s2 else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select, ng_twg_setup=ng_twg_setup, wb_efac_sigma=wb_efac_sigma) model = s3(psr) if psr_model: Model = s3 if psr_model: return Model else: # set up PTA if dense_like: pta = signal_base.PTA([model], lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA([model]) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_1(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, upper_limit=False, bayesephem=False, tnequad=False, be_type='orbel', is_wideband=False, use_dmdata=False, Tspan=None, select='backend', tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with only white and red noise: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. Optional physical ephemeris modeling. :param psd: Choice of PSD function [e.g. powerlaw (default), turnover, tprocess] :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_2a(psrs, psd='powerlaw', noisedict=None, components=30, n_rnfreqs=None, n_gwbfreqs=None, gamma_common=None, delta_common=None, upper_limit=False, bayesephem=False, be_type='setIII', white_vary=False, is_wideband=False, use_dmdata=False, Tspan=None, select='backend', tnequad=False, pshift=False, pseed=None, psr_models=False, tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2A from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1.Common red noise modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param psr_models: Return list of psr models rather than signal_base.PTA object. :param n_rnfreqs: Number of frequencies to use in achromatic rednoise model. :param n_gwbfreqs: Number of frequencies to use in the GWB model. :param pshift: Option to use a random phase shift in design matrix. For testing the null hypothesis. :param pseed: Option to provide a seed for the random phase shift. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) if n_gwbfreqs is None: n_gwbfreqs = components if n_rnfreqs is None: n_rnfreqs = components # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=n_rnfreqs) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=n_gwbfreqs, gamma_val=gamma_common, delta_val=delta_common, name='gw', pshift=pshift, pseed=pseed) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) if psr_models: return models else: # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_general(psrs, tm_var=False, tm_linear=False, tmparam_list=None, tm_svd=False, tm_norm=True, noisedict=None, white_vary=False, Tspan=None, modes=None, wgts=None, logfreq=False, nmodes_log=10, common_psd='powerlaw', common_components=30, tnequad=False, log10_A_common=None, gamma_common=None, common_logmin=None, common_logmax=None, orf='crn', orf_names=None, orf_ifreq=0, leg_lmax=5, upper_limit_common=None, upper_limit=False, red_var=True, red_psd='powerlaw', red_components=30, upper_limit_red=None, red_select=None, red_breakflat=False, red_breakflat_fq=None, bayesephem=False, be_type='setIII_1980', is_wideband=False, use_dmdata=False, dm_var=False, dm_type='gp', dm_psd='powerlaw', dm_components=30, upper_limit_dm=None, dm_annual=False, dm_chrom=False, dmchrom_psd='powerlaw', dmchrom_idx=4, gequad=False, coefficients=False, pshift=False, select='backend', tm_marg=False, dense_like=False, delta_common=None): """ Reads in list of enterprise Pulsar instances and returns a PTA object instantiated with user-supplied options. :param tm_var: boolean to vary timing model coefficients. [default = False] :param tm_linear: boolean to vary timing model under linear approximation. [default = False] :param tmparam_list: list of timing model parameters to vary. [default = None] :param tm_svd: stabilize timing model designmatrix with SVD. [default = False] :param tm_norm: normalize the timing model design matrix, or provide custom normalization. Alternative to 'tm_svd'. [default = True] :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. [default = None] :param white_vary: boolean for varying white noise or keeping fixed. [default = False] :param Tspan: timespan assumed for describing stochastic processes, in units of seconds. If None provided will find span of pulsars. [default = None] :param modes: list of frequencies on which to describe red processes. [default = None] :param wgts: sqrt summation weights for each frequency bin, i.e. sqrt(delta f). [default = None] :param logfreq: boolean for including log-spaced bins. [default = False] :param nmodes_log: number of log-spaced bins below 1/T. [default = 10] :param common_psd: psd of common process. ['powerlaw', 'spectrum', 'turnover', 'turnover_knee,', 'broken_powerlaw'] [default = 'powerlaw'] :param common_components: number of frequencies starting at 1/T for common process. [default = 30] :param log10_A_common: value of fixed log10_A_common parameter for fixed amplitude analyses. [default = None] :param gamma_common: fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. [default = None] :param common_logmin: specify lower prior for common psd. This is a prior on log10_rho if common_psd is 'spectrum', else it is a prior on log amplitude :param common_logmax: specify upper prior for common psd. This is a prior on log10_rho if common_psd is 'spectrum', else it is a prior on log amplitude :param orf: comma de-limited string of multiple common processes with different orfs. [default = crn] :param orf_names: comma de-limited string of process names for different orfs. Manual control of these names is useful for embedding model_general within a hypermodel analysis for a process with and without hd correlations where we want to avoid parameter duplication. [default = None] :param orf_ifreq: Frequency bin at which to start the Hellings & Downs function with numbering beginning at 0. Currently only works with freq_hd orf. [default = 0] :param leg_lmax: Maximum multipole of a Legendre polynomial series representation of the overlap reduction function. [default = 5] :param upper_limit_common: perform upper limit on common red noise amplitude. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. [default = False] :param upper_limit: apply upper limit priors to all red processes. [default = False] :param red_var: boolean to switch on/off intrinsic red noise. [default = True] :param red_psd: psd of intrinsic red process. ['powerlaw', 'spectrum', 'turnover', 'tprocess', 'tprocess_adapt'] [default = 'powerlaw'] :param red_components: number of frequencies starting at 1/T for intrinsic red process. [default = 30] :param upper_limit_red: perform upper limit on intrinsic red noise amplitude. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. [default = False] :param red_select: selection properties for intrinsic red noise. ['backend', 'band', 'band+', None] [default = None] :param red_breakflat: break red noise spectrum and make flat above certain frequency. [default = False] :param red_breakflat_fq: break frequency for 'red_breakflat'. [default = None] :param bayesephem: boolean to include BayesEphem model. [default = False] :param be_type: flavor of bayesephem model based on how partials are computed. ['orbel', 'orbel-v2', 'setIII', 'setIII_1980'] [default = 'setIII_1980'] :param is_wideband: boolean for whether input TOAs are wideband TOAs. Will exclude ecorr from the white noise model. [default = False] :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. [default = False] :param dm_var: boolean for explicitly searching for DM variations. [default = False] :param dm_type: type of DM variations. ['gp', other choices selected with additional options; see below] [default = 'gp'] :param dm_psd: psd of DM GP. ['powerlaw', 'spectrum', 'turnover', 'tprocess', 'tprocess_adapt'] [default = 'powerlaw'] :param dm_components: number of frequencies starting at 1/T for DM GP. [default = 30] :param upper_limit_dm: perform upper limit on DM GP. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. [default = False] :param dm_annual: boolean to search for an annual DM trend. [default = False] :param dm_chrom: boolean to search for a generic chromatic GP. [default = False] :param dmchrom_psd: psd of generic chromatic GP. ['powerlaw', 'spectrum', 'turnover'] [default = 'powerlaw'] :param dmchrom_idx: spectral index of generic chromatic GP. [default = 4] :param gequad: boolean to search for a global EQUAD. [default = False] :param coefficients: boolean to form full hierarchical PTA object; (no analytic latent-coefficient marginalization) [default = False] :param pshift: boolean to add random phase shift to red noise Fourier design matrices for false alarm rate studies. [default = False] :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood Default PTA object composition: 1. fixed EFAC per backend/receiver system (per pulsar) 2. fixed EQUAD per backend/receiver system (per pulsar) 3. fixed ECORR per backend/receiver system (per pulsar) 4. Red noise modeled as a power-law with 30 sampling frequencies (per pulsar) 5. Linear timing model (per pulsar) 6. Common-spectrum uncorrelated process modeled as a power-law with 30 sampling frequencies. (global) """ amp_prior = 'uniform' if upper_limit else 'log-uniform' gp_priors = [upper_limit_red, upper_limit_dm, upper_limit_common] if all(ii is None for ii in gp_priors): amp_prior_red = amp_prior amp_prior_dm = amp_prior amp_prior_common = amp_prior else: amp_prior_red = 'uniform' if upper_limit_red else 'log-uniform' amp_prior_dm = 'uniform' if upper_limit_dm else 'log-uniform' amp_prior_common = 'uniform' if upper_limit_common else 'log-uniform' # timing model if not tm_var and not use_dmdata: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd, normed=tm_norm, coefficients=coefficients) elif not tm_var and use_dmdata: dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: # create new attribute for enterprise pulsar object for p in psrs: p.tmparams_orig = OrderedDict.fromkeys(p.t2pulsar.pars()) for key in p.tmparams_orig: p.tmparams_orig[key] = (p.t2pulsar[key].val, p.t2pulsar[key].err) if not tm_linear: s = timing_block(tmparam_list=tmparam_list) else: pass # find the maximum time span to set GW frequency sampling if Tspan is not None: Tspan = Tspan else: Tspan = model_utils.get_tspan(psrs) if logfreq: fmin = 10.0 modes, wgts = model_utils.linBinning(Tspan, nmodes_log, 1.0 / fmin / Tspan, common_components, nmodes_log) wgts = wgts**2.0 # red noise if red_var: s += red_noise_block(psd=red_psd, prior=amp_prior_red, Tspan=Tspan, components=red_components, modes=modes, wgts=wgts, coefficients=coefficients, select=red_select, break_flat=red_breakflat, break_flat_fq=red_breakflat_fq) # common red noise block crn = [] if orf_names is None: orf_names = orf for elem, elem_name in zip(orf.split(','), orf_names.split(',')): if elem == 'zero_diag_bin_orf' or elem == 'zero_diag_legendre_orf': log10_A_val = log10_A_common else: log10_A_val = None crn.append(common_red_noise_block(psd=common_psd, prior=amp_prior_common, Tspan=Tspan, components=common_components, log10_A_val=log10_A_val, gamma_val=gamma_common, delta_val=None, orf=elem, name='gw_{}'.format(elem_name), orf_ifreq=orf_ifreq, leg_lmax=leg_lmax, coefficients=coefficients, pshift=pshift, pseed=None, logmin=common_logmin, logmax=common_logmax)) # orf_ifreq only affects freq_hd model. # leg_lmax only affects (zero_diag_)legendre_orf model. crn = functools.reduce((lambda x, y: x+y), crn) s += crn # DM variations if dm_var: if dm_type == 'gp': s += dm_noise_block(gp_kernel='diag', psd=dm_psd, prior=amp_prior_dm, components=dm_components, gamma_val=None, coefficients=coefficients) if dm_annual: s += chrom.dm_annual_signal() if dm_chrom: s += chromatic_noise_block(psd=dmchrom_psd, idx=dmchrom_idx, name='chromatic', components=dm_components, coefficients=coefficients) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) if gequad: s2 += white_signals.EquadNoise(log10_equad=parameter.Uniform(-8.5, -5), selection=selections.Selection(selections.no_selection), name='gequad') if '1713' in p.name and dm_var: tmin = p.toas.min() / const.day tmax = p.toas.max() / const.day s3 = s2 + chrom.dm_exponential_dip(tmin=tmin, tmax=tmax, idx=2, sign=False, name='dmexp') models.append(s3(p)) else: models.append(s2(p)) else: s4 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) if gequad: s4 += white_signals.TNEquadNoise(log10_tnequad=parameter.Uniform(-8.5, -5), selection=selections.Selection(selections.no_selection), name='gequad') if '1713' in p.name and dm_var: tmin = p.toas.min() / const.day tmax = p.toas.max() / const.day s5 = s4 + chrom.dm_exponential_dip(tmin=tmin, tmax=tmax, idx=2, sign=False, name='dmexp') models.append(s5(p)) else: models.append(s4(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_2b(psrs, psd='powerlaw', noisedict=None, white_vary=False, bayesephem=False, be_type='orbel', is_wideband=False, components=30, use_dmdata=False, Tspan=None, select='backend', pshift=False, tnequad=False, tm_marg=False, dense_like=False, tm_svd=False, upper_limit=False, gamma_common=None): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2B from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. Dipole spatially correlated signal modeled with PSD. Default PSD is powerlaw. Available options ['powerlaw', 'turnover', 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # dipole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='dipole', name='dipole', pshift=pshift) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_2c(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, gamma_common=None, upper_limit=False, tnequad=False, bayesephem=False, be_type='orbel', is_wideband=False, use_dmdata=False, Tspan=None, select='backend', tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2C from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. Dipole spatially correlated signal modeled with PSD. Default PSD is powerlaw. Available options ['powerlaw', 'turnover', 'spectrum'] 2. Monopole spatially correlated signal modeled with PSD. Default PSD is powerlaw. Available options ['powerlaw', 'turnover', 'spectrum'] 3. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # dipole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='dipole', name='dipole') # monopole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='monopole', name='monopole') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_2d(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, n_rnfreqs=None, n_gwbfreqs=None, gamma_common=None, upper_limit=False, tnequad=False, bayesephem=False, be_type='orbel', is_wideband=False, use_dmdata=False, Tspan=None, select='backend', pshift=False, tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2D from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. Monopole spatially correlated signal modeled with PSD. Default PSD is powerlaw. Available options ['powerlaw', 'turnover', 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) if n_gwbfreqs is None: n_gwbfreqs = components if n_rnfreqs is None: n_rnfreqs = components # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=n_rnfreqs) # monopole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=n_gwbfreqs, gamma_val=gamma_common, orf='monopole', name='monopole', pshift=pshift) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_3a(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, n_rnfreqs=None, n_gwbfreqs=None, gamma_common=None, delta_common=None, upper_limit=False, bayesephem=False, be_type='setIII', is_wideband=False, use_dmdata=False, Tspan=None, select='backend', tnequad=False, pshift=False, pseed=None, psr_models=False, tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 3A from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. GWB with HD correlations modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum'] 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param delta_common: Fixed common red process spectral index value for higher frequencies in broken power law model. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param pshift: Option to use a random phase shift in design matrix. For testing the null hypothesis. :param pseed: Option to provide a seed for the random phase shift. :param psr_models: Return list of psr models rather than signal_base.PTA object. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) if n_gwbfreqs is None: n_gwbfreqs = components if n_rnfreqs is None: n_rnfreqs = components # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(psd='powerlaw', prior=amp_prior, Tspan=Tspan, components=n_rnfreqs) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=n_gwbfreqs, gamma_val=gamma_common, delta_val=delta_common, orf='hd', name='gw', pshift=pshift, pseed=pseed) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) if psr_models: return models else: # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_3b(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, gamma_common=None, upper_limit=False, tnequad=False, bayesephem=False, be_type='setIII', is_wideband=False, use_dmdata=False, Tspan=None, select='backend', tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 3B from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. GWB with HD correlations modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Dipole signal modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 3. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum'] 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='hd', name='gw') # dipole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='dipole', name='dipole') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_3c(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, gamma_common=None, upper_limit=False, tnequad=False, bayesephem=False, be_type='orbel', is_wideband=False, use_dmdata=False, Tspan=None, select='backend', tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 3C from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. GWB with HD correlations modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Dipole signal modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 3. Monopole signal modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 4. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum'] 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) # timing model if is_wideband and use_dmdata: dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='hd', name='gw') # dipole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='dipole', name='dipole') # monopole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='monopole', name='monopole') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_3d(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, gamma_common=None, upper_limit=False, tnequad=False, bayesephem=False, be_type='orbel', is_wideband=False, use_dmdata=False, Tspan=None, select='backend', tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 3D from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. GWB with HD correlations modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Monopole signal modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 3. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum'] 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param be_type: orbel, orbel-v2, setIII :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param Tspan: time baseline used to determine Fourier GP frequencies; derived from data if not specified :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling if Tspan is None: Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='hd', name='gw') # monopole s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, orf='monopole', name='monopole') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True, model=be_type) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad, select=select) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad, select=select) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_2a_drop_be(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, gamma_common=None, upper_limit=False, is_wideband=False, use_dmdata=False, k_threshold=0.5, pshift=False, tm_marg=False, dense_like=False, tm_svd=False, tnequad=False,): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2A from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1.Common red noise modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param k_threshold: Define threshold for dropout parameter 'k'. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, name='gw', pshift=pshift) # ephemeris model s += do.Dropout_PhysicalEphemerisSignal(use_epoch_toas=True, k_threshold=k_threshold) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_2a_drop_crn(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, gamma_common=None, upper_limit=False, bayesephem=False, is_wideband=False, use_dmdata=False, k_threshold=0.5, pshift=False, tm_marg=False, dense_like=False, tm_svd=False, tnequad=False,): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2A from the analysis paper: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1.Common red noise modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block amp_name = '{}_log10_A'.format('gw') if amp_prior == 'uniform': log10_Agw = parameter.LinearExp(-18, -11)(amp_name) elif amp_prior == 'log-uniform' and gamma_common is not None: if np.abs(gamma_common - 4.33) < 0.1: log10_Agw = parameter.Uniform(-18, -14)(amp_name) else: log10_Agw = parameter.Uniform(-18, -11)(amp_name) else: log10_Agw = parameter.Uniform(-18, -11)(amp_name) gam_name = '{}_gamma'.format('gw') if gamma_common is not None: gamma_gw = parameter.Constant(gamma_common)(gam_name) else: gamma_gw = parameter.Uniform(0, 7)(gam_name) k_drop = parameter.Uniform(0.0, 1.0) # per-pulsar drop_pl = do.dropout_powerlaw(log10_A=log10_Agw, gamma=gamma_gw, k_drop=k_drop, k_threshold=k_threshold) crn = gp_signals.FourierBasisGP(drop_pl, components=components, Tspan=Tspan, name='gw', pshift=pshift) s += crn # ephemeris model s += do.Dropout_PhysicalEphemerisSignal(use_epoch_toas=True) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta # Does not yet work with IPTA datasets due to white-noise modeling issues. def model_chromatic(psrs, psd='powerlaw', noisedict=None, white_vary=False, components=30, gamma_common=None, upper_limit=False, bayesephem=False, is_wideband=False, use_dmdata=False, pshift=False, idx=4, chromatic_psd='powerlaw', c_psrs=['J1713+0747'], tm_marg=False, dense_like=False, tm_svd=False, tnequad=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with model 2A from the analysis paper + additional chromatic noise for given pulsars per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. 6. Chromatic noise for given pulsar list global: 1.Common red noise modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] 2. Optional physical ephemeris modeling. :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param bayesephem: Include BayesEphem model. Set to False by default :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param idx: Index of chromatic process (i.e DM is 2, scattering would be 4). If set to `vary` then will vary from 0 - 6 (This will be VERY slow!) :param chromatic_psd: PSD to use for chromatic noise. Available options are ['powerlaw', 'turnover' 'spectrum']. 'powerlaw' is default value. :param c_psrs: List of pulsars to use chromatic noise. 'all' will use all pulsars :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling Tspan = model_utils.get_tspan(psrs) # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # white noise s += white_noise_block(vary=white_vary, inc_ecorr=not is_wideband, tnequad=tnequad) # red noise s += red_noise_block(prior=amp_prior, Tspan=Tspan, components=components) # common red noise block s += common_red_noise_block(psd=psd, prior=amp_prior, Tspan=Tspan, components=components, gamma_val=gamma_common, name='gw', pshift=pshift) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # chromatic noise sc = chromatic_noise_block(psd=chromatic_psd, idx=idx) if c_psrs == 'all': s += sc models = [s(psr) for psr in psrs] elif len(c_psrs) > 0: models = [] for psr in psrs: if psr.name in c_psrs: print('Adding chromatic model to PSR {}'.format(psr.name)) snew = s + sc models.append(snew(psr)) else: models.append(s(psr)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_bwm(psrs, likelihood=LogLikelihood, lookupdir=None, noisedict=None, tm_svd=False, Tmin_bwm=None, Tmax_bwm=None, skyloc=None, logmin=None, logmax=None, burst_logmin=-17, burst_logmax=-12, red_psd='powerlaw', components=30, dm_var=False, dm_psd='powerlaw', dm_annual=False, tnequad=False, upper_limit=False, bayesephem=False, wideband=False, tm_marg=False, dense_like=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with BWM model: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system (if NG channelized) 4. Red noise modeled by a specified psd 5. Linear timing model. 6. Optional DM-variation modeling global: 1. Deterministic GW burst with memory signal. 2. Optional physical ephemeris modeling. :param psrs: list of enterprise.Pulsar objects for PTA :param noisedict: Dictionary of pulsar noise properties for fixed white noise. Can provide manually, or the code will attempt to find it. :param tm_svd: boolean for svd-stabilised timing model design matrix :param Tmin_bwm: Min time to search for BWM (MJD). If omitted, uses first TOA. :param Tmax_bwm: Max time to search for BWM (MJD). If omitted, uses last TOA. :param skyloc: Fixed sky location of BWM signal search as [cos(theta), phi]. Search over sky location if ``None`` given. :param logmin: Lower bound on log10_A of the red noise process in each pulsar` :param logmax: Upper bound on log10_A of the red noise process in each pulsar :param burst_logmin: Lower bound on the log10_A of the burst amplitude in each pulsar :param burst_logmax: Upper boudn on the log10_A of the burst amplitude in each pulsar :param red_psd: PSD to use for per pulsar red noise. Available options are ['powerlaw', 'turnover', tprocess, 'spectrum']. :param components: number of modes in Fourier domain processes (red noise, DM variations, etc) :param dm_var: include gaussian process DM variations :param dm_psd: power-spectral density for gp DM variations :param dm_annual: include a yearly period DM variation :param upper_limit: Perform upper limit on BWM amplitude. By default this is set to False for a 'detection' run. :param bayesephem: Include BayesEphem model. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :return: instantiated enterprise.PTA object """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set frequency sampling tmin = np.min([p.toas.min() for p in psrs]) tmax = np.max([p.toas.max() for p in psrs]) Tspan = tmax - tmin if Tmin_bwm is None: Tmin_bwm = tmin/const.day if Tmax_bwm is None: Tmax_bwm = tmax/const.day if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, psd=red_psd, Tspan=Tspan, components=components, logmin=logmin, logmax=logmax) # DM variations if dm_var: s += dm_noise_block(psd=dm_psd, prior=amp_prior, components=components, gamma_val=None) if dm_annual: s += chrom.dm_annual_signal() # DM exponential dip for J1713's DM event dmexp = chrom.dm_exponential_dip(tmin=54500, tmax=54900) # GW BWM signal block s += bwm_block(Tmin_bwm, Tmax_bwm, logmin=burst_logmin, logmax=burst_logmax, amp_prior=amp_prior, skyloc=skyloc, name='bwm') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not wideband: s2 = s + white_noise_block(vary=False, inc_ecorr=True, tnequad=tnequad) if dm_var and 'J1713+0747' == p.name: s2 += dmexp models.append(s2(p)) else: s3 = s + white_noise_block(vary=False, inc_ecorr=False, tnequad=tnequad) if dm_var and 'J1713+0747' == p.name: s3 += dmexp models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_bwm_sglpsr(psr, likelihood=LogLikelihood, lookupdir=None, noisedict=None, tm_svd=False, tnequad=False, Tmin_bwm=None, Tmax_bwm=None, burst_logmin=-17, burst_logmax=-12, fixed_sign=None, red_psd='powerlaw', logmin=None, logmax=None, components=30, dm_var=False, dm_psd='powerlaw', dm_annual=False, upper_limit=False, bayesephem=False, wideband=False, tm_marg=False, dense_like=False): """ Burst-With-Memory model for single pulsar runs Because all of the geometric parameters (pulsar_position, source_position, gw_pol) are all degenerate with each other in a single pulsar BWM search, this model can only search over burst epoch and residual-space ramp amplitude (t0, ramp_amplitude) Reads in list of enterprise Pulsar instance and returns a PTA instantiated with single-pulsar BWM model (called a ramp): per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system (if NG channelized) 4. Red noise modeled by a specified psd 5. Linear timing model. 6. Optional DM-variation modeling 7. Deterministic GW burst with memory signal for this pulsar :param psr: enterprise.Pulsar objects for PTA. This model is only for one pulsar at a time. :param likelihood: The likelihood function to use. The options are [enterprise.signals.signal_base.LogLikelihood, enterprise.signals.signal_base.LookupLikelihood] :param noisedict: Dictionary of pulsar noise properties for fixed white noise. Can provide manually, or the code will attempt to find it. :param tm_svd: boolean for svd-stabilised timing model design matrix :param Tmin_bwm: Min time to search for BWM (MJD). If omitted, uses first TOA. :param Tmax_bwm: Max time to search for BWM (MJD). If omitted, uses last TOA. :param red_psd: PSD to use for per pulsar red noise. Available options are ['powerlaw', 'turnover', tprocess, 'spectrum']. :param components: number of modes in Fourier domain processes (red noise, DM variations, etc) :param dm_var: include gaussian process DM variations :param dm_psd: power-spectral density for gp DM variations :param dm_annual: include a yearly period DM variation :param upper_limit: Perform upper limit on BWM amplitude. By default this is set to False for a 'detection' run. :param bayesephem: Include BayesEphem model. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :return: instantiated enterprise.PTA object """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set frequency sampling tmin = psr.toas.min() tmax = psr.toas.max() Tspan = tmax - tmin if Tmin_bwm is None: Tmin_bwm = tmin/const.day if Tmax_bwm is None: Tmax_bwm = tmax/const.day if tm_marg: s = gp_signals.MarginalizingTimingModel() else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, psd=red_psd, Tspan=Tspan, components=components, logmin=logmin, logmax=logmax) # DM variations if dm_var: s += dm_noise_block(psd=dm_psd, prior=amp_prior, components=components, gamma_val=None) if dm_annual: s += chrom.dm_annual_signal() # DM exponential dip for J1713's DM event dmexp = chrom.dm_exponential_dip(tmin=54500, tmax=54900) # GW BWM signal block s += bwm_sglpsr_block(Tmin_bwm, Tmax_bwm, amp_prior=amp_prior, name='ramp', logmin=burst_logmin, logmax=burst_logmax, fixed_sign=fixed_sign) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # adding white-noise, and acting on psr objects models = [] if 'NANOGrav' in psr.flags['pta'] and not wideband: s2 = s + white_noise_block(vary=False, inc_ecorr=True, tnequad=tnequad) if dm_var and 'J1713+0747' == psr.name: s2 += dmexp models.append(s2(psr)) else: s3 = s + white_noise_block(vary=False, inc_ecorr=False, tnequad=tnequad) if dm_var and 'J1713+0747' == psr.name: s3 += dmexp models.append(s3(psr)) # set up PTA # TODO: decide on a way to handle likelihood if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_fdm(psrs, noisedict=None, white_vary=False, tm_svd=False, Tmin_fdm=None, Tmax_fdm=None, gw_psd='powerlaw', red_psd='powerlaw', components=30, n_rnfreqs=None, n_gwbfreqs=None, gamma_common=None, delta_common=None, dm_var=False, dm_psd='powerlaw', dm_annual=False, upper_limit=False, bayesephem=False, wideband=False, pshift=False, pseed=None, model_CRN=False, amp_upper=-11, amp_lower=-18, tnequad=False, freq_upper=-7, freq_lower=-9, use_fixed_freq=False, fixed_freq=-8, tm_marg=False, dense_like=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with FDM model: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system (if NG channelized) 4. Red noise modeled by a specified psd 5. Linear timing model. 6. Optional DM-variation modeling 7. The pulsar phase term. global: 1. Deterministic GW FDM signal. 2. Optional physical ephemeris modeling. :param psrs: list of enterprise.Pulsar objects for PTA :param noisedict: Dictionary of pulsar noise properties for fixed white noise. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param tm_svd: boolean for svd-stabilised timing model design matrix :param Tmin_fdm: Min time to search for FDM (MJD). If omitted, uses first TOA. :param Tmax_fdm: Max time to search for FDM (MJD). If omitted, uses last TOA. :param gw_psd: PSD to use for the per pulsar GWB. :param red_psd: PSD to use for per pulsar red noise. Available options are ['powerlaw', 'turnover', tprocess, 'spectrum']. :param components: number of modes in Fourier domain processes (red noise, DM variations, etc) :param n_rnfreqs: Number of frequencies to use in achromatic rednoise model. :param n_gwbfreqs: Number of frequencies to use in the GWB model. :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param dm_var: include gaussian process DM variations :param dm_psd: power-spectral density for gp DM variations :param dm_annual: include a yearly period DM variation :param upper_limit: Perform upper limit on FDM amplitude. By default this is set to False for a 'detection' run. :param bayesephem: Include BayesEphem model. :param wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param pshift: Option to use a random phase shift in design matrix. For testing the null hypothesis. :param pseed: Option to provide a seed for the random phase shift. :param model_CRN: Option to model the common red process in addition to the FDM signal. :param amp_upper, amp_lower, freq_upper, freq_lower: The log-space bounds on the amplitude and frequency priors. :param use_fixed_freq: Whether to do a fixed-frequency run and not search over the frequency. :param fixed_freq: The frequency value to do a fixed-frequency run with. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :return: instantiated enterprise.PTA object """ amp_prior = 'uniform' if upper_limit else 'log-uniform' if n_gwbfreqs is None: n_gwbfreqs = components if n_rnfreqs is None: n_rnfreqs = components # find the maximum time span to set frequency sampling tmin = np.min([p.toas.min() for p in psrs]) tmax = np.max([p.toas.max() for p in psrs]) Tspan = tmax - tmin if Tmin_fdm is None: Tmin_fdm = tmin/const.day if Tmax_fdm is None: Tmax_fdm = tmax/const.day # timing model if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, psd=red_psd, Tspan=Tspan, components=n_rnfreqs) # DM variations if dm_var: s += dm_noise_block(psd=dm_psd, prior=amp_prior, components=components, gamma_val=None) if dm_annual: s += chrom.dm_annual_signal() # DM exponential dip for J1713's DM event dmexp = chrom.dm_exponential_dip(tmin=54500, tmax=54900) if model_CRN is True: # common red noise block s += common_red_noise_block(psd=gw_psd, prior=amp_prior, Tspan=Tspan, components=n_gwbfreqs, gamma_val=gamma_common, delta_val=delta_common, name='gw', pshift=pshift, pseed=pseed) # GW FDM signal block s += deterministic.fdm_block(Tmin_fdm, Tmax_fdm, amp_prior=amp_prior, name='fdm', amp_lower=amp_lower, amp_upper=amp_upper, freq_lower=freq_lower, freq_upper=freq_upper, use_fixed_freq=use_fixed_freq, fixed_freq=fixed_freq) # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not wideband: s2 = s + white_noise_block(vary=False, inc_ecorr=True, tnequad=tnequad) if dm_var and 'J1713+0747' == p.name: s2 += dmexp models.append(s2(p)) else: s3 = s + white_noise_block(vary=False, inc_ecorr=False, tnequad=tnequad) if dm_var and 'J1713+0747' == p.name: s3 += dmexp models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta def model_cw(psrs, upper_limit=False, rn_psd='powerlaw', noisedict=None, white_vary=False, components=30, bayesephem=False, skyloc=None, log10_F=None, ecc=False, psrTerm=False, is_wideband=False, use_dmdata=False, gp_ecorr='basis_ecorr', tnequad=False, tm_marg=False, dense_like=False, tm_svd=False): """ Reads in list of enterprise Pulsar instance and returns a PTA instantiated with CW model: per pulsar: 1. fixed EFAC per backend/receiver system 2. fixed EQUAD per backend/receiver system 3. fixed ECORR per backend/receiver system 4. Red noise modeled as a power-law with 30 sampling frequencies 5. Linear timing model. global: 1. Deterministic CW signal. 2. Optional physical ephemeris modeling. :param upper_limit: Perform upper limit on common red noise amplitude. By default this is set to False. Note that when perfoming upper limits it is recommended that the spectral index also be fixed to a specific value. :param rn_psd: psd to use in red_noise_block() :param noisedict: Dictionary of pulsar noise properties. Can provide manually, or the code will attempt to find it. :param white_vary: boolean for varying white noise or keeping fixed. :param bayesephem: Include BayesEphem model. Set to False by default :param skyloc: Fixed sky location of CW signal search as [cos(theta), phi]. Search over sky location if ``None`` given. :param log10_F: Fixed frequency of CW signal search. Search over frequency if ``None`` given. :param ecc: boolean or float if boolean: include/exclude eccentricity in search if float: use fixed eccentricity with eccentric model :psrTerm: boolean, include/exclude pulsar term in search :param is_wideband: Whether input TOAs are wideband TOAs; will exclude ecorr from the white noise model. :param use_dmdata: whether to use DM data (WidebandTimingModel) if is_wideband. :param tm_marg: Use marginalized timing model. In many cases this will speed up the likelihood calculation significantly. :param dense_like: Use dense or sparse functions to evalute lnlikelihood :param tm_svd: boolean for svd-stabilised timing model design matrix """ amp_prior = 'uniform' if upper_limit else 'log-uniform' # find the maximum time span to set GW frequency sampling tmin = np.min([p.toas.min() for p in psrs]) tmax = np.max([p.toas.max() for p in psrs]) Tspan = tmax - tmin # timing model if (is_wideband and use_dmdata): dmjump = parameter.Constant() if white_vary: dmefac = parameter.Uniform(pmin=0.1, pmax=10.0) log10_dmequad = parameter.Uniform(pmin=-7.0, pmax=0.0) # dmjump = parameter.Uniform(pmin=-0.005, pmax=0.005) else: dmefac = parameter.Constant() log10_dmequad = parameter.Constant() # dmjump = parameter.Constant() s = gp_signals.WidebandTimingModel(dmefac=dmefac, log10_dmequad=log10_dmequad, dmjump=dmjump, selection=selections.Selection(selections.by_backend), dmjump_selection=selections.Selection(selections.by_frontend)) else: if tm_marg: s = gp_signals.MarginalizingTimingModel(use_svd=tm_svd) else: s = gp_signals.TimingModel(use_svd=tm_svd) # red noise s += red_noise_block(prior=amp_prior, psd=rn_psd, Tspan=Tspan, components=components) # GW CW signal block if not ecc: s += deterministic.cw_block_circ(amp_prior=amp_prior, skyloc=skyloc, log10_fgw=log10_F, psrTerm=psrTerm, tref=tmin, name='cw') else: if type(ecc) is not float: ecc = None s += deterministic.cw_block_ecc(amp_prior=amp_prior, skyloc=skyloc, log10_F=log10_F, ecc=ecc, psrTerm=psrTerm, tref=tmin, name='cw') # ephemeris model if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta'] and not is_wideband: if gp_ecorr: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, gp_ecorr=True, name=gp_ecorr, tnequad=tnequad) else: s2 = s + white_noise_block(vary=white_vary, inc_ecorr=True, tnequad=tnequad) models.append(s2(p)) else: s3 = s + white_noise_block(vary=white_vary, inc_ecorr=False, tnequad=tnequad) models.append(s3(p)) # set up PTA if dense_like: pta = signal_base.PTA(models, lnlikelihood=signal_base.LogLikelihoodDenseCholesky) else: pta = signal_base.PTA(models) # set white noise parameters if not white_vary or (is_wideband and use_dmdata): if noisedict is None: print('No noise dictionary provided!...') else: noisedict = noisedict pta.set_default_params(noisedict) return pta
122,774
41.973399
152
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/blocks.py
import types import numpy as np from enterprise import constants as const from enterprise.signals import deterministic_signals from enterprise.signals import gp_bases as gpb from enterprise.signals import gp_priors as gpp from enterprise.signals import (gp_signals, parameter, selections, utils, white_signals) from enterprise_extensions import deterministic as ee_deterministic from . import chromatic as chrom from . import dropout as drop from . import gp_kernels as gpk from . import model_orfs __all__ = ['white_noise_block', 'red_noise_block', 'bwm_block', 'bwm_sglpsr_block', 'dm_noise_block', 'chromatic_noise_block', 'common_red_noise_block', ] def channelized_backends(backend_flags): """Selection function to split by channelized backend flags only. For ECORR""" flagvals = np.unique(backend_flags) ch_b = ['ASP', 'GASP', 'GUPPI', 'PUPPI', 'YUPPI', 'CHIME'] flagvals = filter(lambda x: any(map(lambda y: y in x, ch_b)), flagvals) return {flagval: backend_flags == flagval for flagval in flagvals} def white_noise_block(vary=False, inc_ecorr=False, gp_ecorr=False, efac1=False, select='backend', tnequad=False, name=None, ng_twg_setup=False, wb_efac_sigma=0.25): """ Returns the white noise block of the model: 1. EFAC per backend/receiver system 2. EQUAD per backend/receiver system 3. ECORR per backend/receiver system :param vary: If set to true we vary these parameters with uniform priors. Otherwise they are set to constants with values to be set later. :param inc_ecorr: include ECORR, needed for NANOGrav channelized TOAs :param gp_ecorr: whether to use the Gaussian process model for ECORR :param efac1: use a strong prior on EFAC = Normal(mu=1, stdev=0.1) :param tnequad: Whether to use the TempoNest definition of EQUAD. Defaults to False to follow Tempo, Tempo2 and Pint definition. """ if select == 'backend': # define selection by observing backend backend = selections.Selection(selections.by_backend) # define selection by nanograv backends backend_ng = selections.Selection(selections.nanograv_backends) # backend_ch = selections.Selection(channelized_backends) else: # define no selection backend = selections.Selection(selections.no_selection) # white noise parameters if vary: if efac1: efac = parameter.Normal(1.0, 0.1) elif ng_twg_setup: efac = parameter.Normal(1.0, wb_efac_sigma) else: efac = parameter.Uniform(0.01, 10.0) equad = parameter.Uniform(-8.5, -5) if inc_ecorr: ecorr = parameter.Uniform(-8.5, -5) else: efac = parameter.Constant() equad = parameter.Constant() if inc_ecorr: ecorr = parameter.Constant() # white noise signals if tnequad: efeq = white_signals.MeasurementNoise(efac=efac, selection=backend, name=name) efeq += white_signals.TNEquadNoise(log10_tnequad=equad, selection=backend, name=name) else: efeq = white_signals.MeasurementNoise(efac=efac, log10_t2equad=equad, selection=backend, name=name) if inc_ecorr: if gp_ecorr: if name is None: ec = gp_signals.EcorrBasisModel(log10_ecorr=ecorr, selection=backend_ng) else: ec = gp_signals.EcorrBasisModel(log10_ecorr=ecorr, selection=backend_ng, name=name) else: ec = white_signals.EcorrKernelNoise(log10_ecorr=ecorr, selection=backend_ng, name=name) # combine signals if inc_ecorr: s = efeq + ec elif not inc_ecorr: s = efeq return s def red_noise_block(psd='powerlaw', prior='log-uniform', Tspan=None, components=30, gamma_val=None, coefficients=False, select=None, modes=None, wgts=None, combine=True, break_flat=False, break_flat_fq=None, logmin=None, logmax=None, dropout=False, k_threshold=0.5): """ Returns red noise model: Red noise modeled as a power-law with 30 sampling frequencies :param psd: PSD function [e.g. powerlaw (default), turnover, spectrum, tprocess] :param prior: Prior on log10_A. Default if "log-uniform". Use "uniform" for upper limits. :param Tspan: Sets frequency sampling f_i = i / Tspan. Default will use overall time span for indivicual pulsar. :param components: Number of frequencies in sampling of red noise :param gamma_val: If given, this is the fixed slope of the power-law for powerlaw, turnover, or tprocess red noise :param coefficients: include latent coefficients in GP model? :param dropout: Use a dropout analysis for intrinsic red noise models. Currently only supports power law option. :param k_threshold: Threshold for dropout analysis. """ # red noise parameters that are common if psd in ['powerlaw', 'powerlaw_genmodes', 'turnover', 'tprocess', 'tprocess_adapt']: # parameters shared by PSD functions if logmin is not None and logmax is not None: if prior == 'uniform': log10_A = parameter.LinearExp(logmin, logmax) elif prior == 'log-uniform': log10_A = parameter.Uniform(logmin, logmax) else: if prior == 'uniform': log10_A = parameter.LinearExp(-20, -11) elif prior == 'log-uniform' and gamma_val is not None: if np.abs(gamma_val - 4.33) < 0.1: log10_A = parameter.Uniform(-20, -11) else: log10_A = parameter.Uniform(-20, -11) else: log10_A = parameter.Uniform(-20, -11) if gamma_val is not None: gamma = parameter.Constant(gamma_val) else: gamma = parameter.Uniform(0, 7) # different PSD function parameters if psd == 'powerlaw' and dropout: k_drop = parameter.Uniform(0, 1) pl = drop.dropout_powerlaw(log10_A=log10_A, gamma=gamma, dropout_psr='all', k_drop=k_drop, k_threshold=k_threshold) elif psd == 'powerlaw': pl = utils.powerlaw(log10_A=log10_A, gamma=gamma) elif psd == 'powerlaw_genmodes': pl = gpp.powerlaw_genmodes(log10_A=log10_A, gamma=gamma, wgts=wgts) elif psd == 'turnover': kappa = parameter.Uniform(0, 7) lf0 = parameter.Uniform(-9, -7) pl = utils.turnover(log10_A=log10_A, gamma=gamma, lf0=lf0, kappa=kappa) elif psd == 'tprocess': df = 2 alphas = gpp.InvGamma(df/2, df/2, size=components) pl = gpp.t_process(log10_A=log10_A, gamma=gamma, alphas=alphas) elif psd == 'tprocess_adapt': df = 2 alpha_adapt = gpp.InvGamma(df/2, df/2, size=1) nfreq = parameter.Uniform(-0.5, 10-0.5) pl = gpp.t_process_adapt(log10_A=log10_A, gamma=gamma, alphas_adapt=alpha_adapt, nfreq=nfreq) if psd == 'spectrum': if prior == 'uniform': log10_rho = parameter.LinearExp(-10, -4, size=components) elif prior == 'log-uniform': log10_rho = parameter.Uniform(-10, -4, size=components) pl = gpp.free_spectrum(log10_rho=log10_rho) if select == 'backend': # define selection by observing backend selection = selections.Selection(selections.by_backend) elif select == 'band' or select == 'band+': # define selection by observing band selection = selections.Selection(selections.by_band) else: # define no selection selection = selections.Selection(selections.no_selection) if break_flat: log10_A_flat = parameter.Uniform(-20, -11) gamma_flat = parameter.Constant(0) pl_flat = utils.powerlaw(log10_A=log10_A_flat, gamma=gamma_flat) freqs = 1.0 * np.arange(1, components+1) / Tspan components_low = sum(f < break_flat_fq for f in freqs) if components_low < 1.5: components_low = 2 rn = gp_signals.FourierBasisGP(pl, components=components_low, Tspan=Tspan, coefficients=coefficients, combine=combine, selection=selection) rn_flat = gp_signals.FourierBasisGP(pl_flat, modes=freqs[components_low:], coefficients=coefficients, selection=selection, combine=combine, name='red_noise_hf') rn = rn + rn_flat else: rn = gp_signals.FourierBasisGP(pl, components=components, Tspan=Tspan, combine=combine, coefficients=coefficients, selection=selection, modes=modes) if select == 'band+': # Add the common component as well rn = rn + gp_signals.FourierBasisGP(pl, components=components, Tspan=Tspan, combine=combine, coefficients=coefficients) return rn def bwm_block(Tmin, Tmax, amp_prior='log-uniform', skyloc=None, logmin=-18, logmax=-11, name='bwm'): """ Returns deterministic GW burst with memory model: 1. Burst event parameterized by time, sky location, polarization angle, and amplitude :param Tmin: Min time to search, probably first TOA (MJD). :param Tmax: Max time to search, probably last TOA (MJD). :param amp_prior: Prior on log10_A. Default if "log-uniform". Use "uniform" for upper limits. :param skyloc: Fixed sky location of BWM signal search as [cos(theta), phi]. Search over sky location if ``None`` given. :param logmin: log of minimum BWM amplitude for prior (log10) :param logmax: log of maximum BWM amplitude for prior (log10) :param name: Name of BWM signal. """ # BWM parameters amp_name = '{}_log10_A'.format(name) if amp_prior == 'uniform': log10_A_bwm = parameter.LinearExp(logmin, logmax)(amp_name) elif amp_prior == 'log-uniform': log10_A_bwm = parameter.Uniform(logmin, logmax)(amp_name) pol_name = '{}_pol'.format(name) pol = parameter.Uniform(0, np.pi)(pol_name) t0_name = '{}_t0'.format(name) t0 = parameter.Uniform(Tmin, Tmax)(t0_name) costh_name = '{}_costheta'.format(name) phi_name = '{}_phi'.format(name) if skyloc is None: costh = parameter.Uniform(-1, 1)(costh_name) phi = parameter.Uniform(0, 2*np.pi)(phi_name) else: costh = parameter.Constant(skyloc[0])(costh_name) phi = parameter.Constant(skyloc[1])(phi_name) # BWM signal bwm_wf = ee_deterministic.bwm_delay(log10_h=log10_A_bwm, t0=t0, cos_gwtheta=costh, gwphi=phi, gwpol=pol) bwm = deterministic_signals.Deterministic(bwm_wf, name=name) return bwm def bwm_sglpsr_block(Tmin, Tmax, amp_prior='log-uniform', logmin=-17, logmax=-12, name='ramp', fixed_sign=None): if fixed_sign is None: sign = parameter.Uniform(-1, 1)("sign") else: sign = np.sign(fixed_sign) amp_name = '{}_log10_A'.format(name) if amp_prior == 'uniform': log10_A_ramp = parameter.LinearExp(logmin, logmax)(amp_name) elif amp_prior == 'log-uniform': log10_A_ramp = parameter.Uniform(logmin, logmax)(amp_name) t0_name = '{}_t0'.format(name) t0 = parameter.Uniform(Tmin, Tmax)(t0_name) ramp_wf = ee_deterministic.bwm_sglpsr_delay(log10_A=log10_A_ramp, t0=t0, sign=sign) ramp = deterministic_signals.Deterministic(ramp_wf, name=name) return ramp def dm_noise_block(gp_kernel='diag', psd='powerlaw', nondiag_kernel='periodic', prior='log-uniform', dt=15, df=200, Tspan=None, components=30, gamma_val=None, coefficients=False): """ Returns DM noise model: 1. DM noise modeled as a power-law with 30 sampling frequencies :param psd: PSD function [e.g. powerlaw (default), spectrum, tprocess] :param prior: Prior on log10_A. Default if "log-uniform". Use "uniform" for upper limits. :param dt: time-scale for linear interpolation basis (days) :param df: frequency-scale for linear interpolation basis (MHz) :param Tspan: Sets frequency sampling f_i = i / Tspan. Default will use overall time span for indivicual pulsar. :param components: Number of frequencies in sampling of DM-variations. :param gamma_val: If given, this is the fixed slope of the power-law for powerlaw, turnover, or tprocess DM-variations """ # dm noise parameters that are common if gp_kernel == 'diag': if psd in ['powerlaw', 'turnover', 'tprocess', 'tprocess_adapt']: # parameters shared by PSD functions if prior == 'uniform': log10_A_dm = parameter.LinearExp(-20, -11) elif prior == 'log-uniform' and gamma_val is not None: if np.abs(gamma_val - 4.33) < 0.1: log10_A_dm = parameter.Uniform(-20, -11) else: log10_A_dm = parameter.Uniform(-20, -11) else: log10_A_dm = parameter.Uniform(-20, -11) if gamma_val is not None: gamma_dm = parameter.Constant(gamma_val) else: gamma_dm = parameter.Uniform(0, 7) # different PSD function parameters if psd == 'powerlaw': dm_prior = utils.powerlaw(log10_A=log10_A_dm, gamma=gamma_dm) elif psd == 'turnover': kappa_dm = parameter.Uniform(0, 7) lf0_dm = parameter.Uniform(-9, -7) dm_prior = utils.turnover(log10_A=log10_A_dm, gamma=gamma_dm, lf0=lf0_dm, kappa=kappa_dm) elif psd == 'tprocess': df = 2 alphas_dm = gpp.InvGamma(df/2, df/2, size=components) dm_prior = gpp.t_process(log10_A=log10_A_dm, gamma=gamma_dm, alphas=alphas_dm) elif psd == 'tprocess_adapt': df = 2 alpha_adapt_dm = gpp.InvGamma(df/2, df/2, size=1) nfreq_dm = parameter.Uniform(-0.5, 10-0.5) dm_prior = gpp.t_process_adapt(log10_A=log10_A_dm, gamma=gamma_dm, alphas_adapt=alpha_adapt_dm, nfreq=nfreq_dm) if psd == 'spectrum': if prior == 'uniform': log10_rho_dm = parameter.LinearExp(-10, -4, size=components) elif prior == 'log-uniform': log10_rho_dm = parameter.Uniform(-10, -4, size=components) dm_prior = gpp.free_spectrum(log10_rho=log10_rho_dm) dm_basis = utils.createfourierdesignmatrix_dm(nmodes=components, Tspan=Tspan) elif gp_kernel == 'nondiag': if nondiag_kernel == 'periodic': # Periodic GP kernel for DM log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) log10_p = parameter.Uniform(-4, 1) log10_gam_p = parameter.Uniform(-3, 2) dm_basis = gpk.linear_interp_basis_dm(dt=dt*const.day) dm_prior = gpk.periodic_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_gam_p=log10_gam_p, log10_p=log10_p) elif nondiag_kernel == 'periodic_rfband': # Periodic GP kernel for DM with RQ radio-frequency dependence log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) log10_ell2 = parameter.Uniform(2, 7) log10_alpha_wgt = parameter.Uniform(-4, 1) log10_p = parameter.Uniform(-4, 1) log10_gam_p = parameter.Uniform(-3, 2) dm_basis = gpk.get_tf_quantization_matrix(df=df, dt=dt*const.day, dm=True) dm_prior = gpk.tf_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_gam_p=log10_gam_p, log10_p=log10_p, log10_alpha_wgt=log10_alpha_wgt, log10_ell2=log10_ell2) elif nondiag_kernel == 'sq_exp': # squared-exponential GP kernel for DM log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) dm_basis = gpk.linear_interp_basis_dm(dt=dt*const.day) dm_prior = gpk.se_dm_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell) elif nondiag_kernel == 'sq_exp_rfband': # Sq-Exp GP kernel for DM with RQ radio-frequency dependence log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) log10_ell2 = parameter.Uniform(2, 7) log10_alpha_wgt = parameter.Uniform(-4, 1) dm_basis = gpk.get_tf_quantization_matrix(df=df, dt=dt*const.day, dm=True) dm_prior = gpk.sf_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_alpha_wgt=log10_alpha_wgt, log10_ell2=log10_ell2) elif nondiag_kernel == 'dmx_like': # DMX-like signal log10_sigma = parameter.Uniform(-10, -4) dm_basis = gpk.linear_interp_basis_dm(dt=dt*const.day) dm_prior = gpk.dmx_ridge_prior(log10_sigma=log10_sigma) dmgp = gp_signals.BasisGP(dm_prior, dm_basis, name='dm_gp', coefficients=coefficients) return dmgp def chromatic_noise_block(gp_kernel='nondiag', psd='powerlaw', nondiag_kernel='periodic', prior='log-uniform', dt=15, df=200, idx=4, include_quadratic=False, Tspan=None, name='chrom', components=30, coefficients=False): """ Returns GP chromatic noise model : 1. Chromatic modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] :param gp_kernel: Whether to use a diagonal kernel for the GP. ['diag','nondiag'] :param nondiag_kernel: Which nondiagonal kernel to use for the GP. ['periodic','sq_exp','periodic_rfband','sq_exp_rfband'] :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum'] :param prior: What type of prior to use for amplitudes. ['log-uniform','uniform'] :param dt: time-scale for linear interpolation basis (days) :param df: frequency-scale for linear interpolation basis (MHz) :param idx: Index of radio frequency dependence (i.e. DM is 2). Any float will work. :param include_quadratic: Whether to include a quadratic fit. :param name: Name of signal :param Tspan: Tspan from which to calculate frequencies for PSD-based GPs. :param components: Number of frequencies to use in 'diag' GPs. :param coefficients: Whether to keep coefficients of the GP. """ if gp_kernel == 'diag': chm_basis = gpb.createfourierdesignmatrix_chromatic(nmodes=components, Tspan=Tspan) if psd in ['powerlaw', 'turnover']: if prior == 'uniform': log10_A = parameter.LinearExp(-18, -11) elif prior == 'log-uniform': log10_A = parameter.Uniform(-18, -11) gamma = parameter.Uniform(0, 7) # PSD if psd == 'powerlaw': chm_prior = utils.powerlaw(log10_A=log10_A, gamma=gamma) elif psd == 'turnover': kappa = parameter.Uniform(0, 7) lf0 = parameter.Uniform(-9, -7) chm_prior = utils.turnover(log10_A=log10_A, gamma=gamma, lf0=lf0, kappa=kappa) if psd == 'spectrum': if prior == 'uniform': log10_rho = parameter.LinearExp(-10, -4, size=components) elif prior == 'log-uniform': log10_rho = parameter.Uniform(-10, -4, size=components) chm_prior = gpp.free_spectrum(log10_rho=log10_rho) elif gp_kernel == 'nondiag': if nondiag_kernel == 'periodic': # Periodic GP kernel for DM log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) log10_p = parameter.Uniform(-4, 1) log10_gam_p = parameter.Uniform(-3, 2) chm_basis = gpk.linear_interp_basis_chromatic(dt=dt*const.day) chm_prior = gpk.periodic_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_gam_p=log10_gam_p, log10_p=log10_p) elif nondiag_kernel == 'periodic_rfband': # Periodic GP kernel for DM with RQ radio-frequency dependence log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) log10_ell2 = parameter.Uniform(2, 7) log10_alpha_wgt = parameter.Uniform(-4, 1) log10_p = parameter.Uniform(-4, 1) log10_gam_p = parameter.Uniform(-3, 2) chm_basis = gpk.get_tf_quantization_matrix(df=df, dt=dt*const.day, dm=True, dm_idx=idx) chm_prior = gpk.tf_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_gam_p=log10_gam_p, log10_p=log10_p, log10_alpha_wgt=log10_alpha_wgt, log10_ell2=log10_ell2) elif nondiag_kernel == 'sq_exp': # squared-exponential kernel for DM log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) chm_basis = gpk.linear_interp_basis_chromatic(dt=dt*const.day, idx=idx) chm_prior = gpk.se_dm_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell) elif nondiag_kernel == 'sq_exp_rfband': # Sq-Exp GP kernel for Chrom with RQ radio-frequency dependence log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) log10_ell2 = parameter.Uniform(2, 7) log10_alpha_wgt = parameter.Uniform(-4, 1) chm_basis = gpk.get_tf_quantization_matrix(df=df, dt=dt*const.day, dm=True, dm_idx=idx) chm_prior = gpk.sf_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_alpha_wgt=log10_alpha_wgt, log10_ell2=log10_ell2) cgp = gp_signals.BasisGP(chm_prior, chm_basis, name=name+'_gp', coefficients=coefficients) if include_quadratic: # quadratic piece basis_quad = chrom.chromatic_quad_basis(idx=idx) prior_quad = chrom.chromatic_quad_prior() cquad = gp_signals.BasisGP(prior_quad, basis_quad, name=name+'_quad') cgp += cquad return cgp def common_red_noise_block(psd='powerlaw', prior='log-uniform', Tspan=None, components=30, combine=True, log10_A_val=None, gamma_val=None, delta_val=None, logmin=None, logmax=None, orf=None, orf_ifreq=0, leg_lmax=5, name='gw', coefficients=False, pshift=False, pseed=None): """ Returns common red noise model: 1. Red noise modeled with user defined PSD with 30 sampling frequencies. Available PSDs are ['powerlaw', 'turnover' 'spectrum'] :param psd: PSD to use for common red noise signal. Available options are ['powerlaw', 'turnover' 'spectrum', 'broken_powerlaw'] :param prior: Prior on log10_A. Default if "log-uniform". Use "uniform" for upper limits. :param Tspan: Sets frequency sampling f_i = i / Tspan. Default will use overall time span for individual pulsar. :param log10_A_val: Value of log10_A parameter for fixed amplitude analyses. :param gamma_val: Value of spectral index for power-law and turnover models. By default spectral index is varied of range [0,7] :param delta_val: Value of spectral index for high frequencies in broken power-law and turnover models. By default spectral index is varied in range [0,7].\ :param logmin: Specify the lower bound of the prior on the amplitude for all psd but 'spectrum'. If psd=='spectrum', then this specifies the lower prior on log10_rho_gw :param logmax: Specify the lower bound of the prior on the amplitude for all psd but 'spectrum'. If psd=='spectrum', then this specifies the lower prior on log10_rho_gw :param orf: String representing which overlap reduction function to use. By default we do not use any spatial correlations. Permitted values are ['hd', 'dipole', 'monopole']. :param orf_ifreq: Frequency bin at which to start the Hellings & Downs function with numbering beginning at 0. Currently only works with freq_hd orf. :param leg_lmax: Maximum multipole of a Legendre polynomial series representation of the overlap reduction function [default=5] :param pshift: Option to use a random phase shift in design matrix. For testing the null hypothesis. :param pseed: Option to provide a seed for the random phase shift. :param name: Name of common red process """ orfs = {'crn': None, 'hd': model_orfs.hd_orf(), 'gw_monopole': model_orfs.gw_monopole_orf(), 'gw_dipole': model_orfs.gw_dipole_orf(), 'st': model_orfs.st_orf(), 'gt': model_orfs.gt_orf(tau=parameter.Uniform(-1.5, 1.5)('tau')), 'dipole': model_orfs.dipole_orf(), 'monopole': model_orfs.monopole_orf(), 'param_hd': model_orfs.param_hd_orf(a=parameter.Uniform(-1.5, 3.0)('gw_orf_param0'), b=parameter.Uniform(-1.0, 0.5)('gw_orf_param1'), c=parameter.Uniform(-1.0, 1.0)('gw_orf_param2')), 'spline_orf': model_orfs.spline_orf(params=parameter.Uniform(-0.9, 0.9, size=7)('gw_orf_spline')), 'bin_orf': model_orfs.bin_orf(params=parameter.Uniform(-1.0, 1.0, size=7)('gw_orf_bin')), 'zero_diag_hd': model_orfs.zero_diag_hd(), 'zero_diag_bin_orf': model_orfs.zero_diag_bin_orf(params=parameter.Uniform( -1.0, 1.0, size=7)('gw_orf_bin_zero_diag')), 'freq_hd': model_orfs.freq_hd(params=[components, orf_ifreq]), 'legendre_orf': model_orfs.legendre_orf(params=parameter.Uniform( -1.0, 1.0, size=leg_lmax+1)('gw_orf_legendre')), 'zero_diag_legendre_orf': model_orfs.zero_diag_legendre_orf(params=parameter.Uniform( -1.0, 1.0, size=leg_lmax+1)('gw_orf_legendre_zero_diag'))} # common red noise parameters if psd in ['powerlaw', 'turnover', 'turnover_knee', 'broken_powerlaw']: amp_name = '{}_log10_A'.format(name) if log10_A_val is not None: log10_Agw = parameter.Constant(log10_A_val)(amp_name) if logmin is not None and logmax is not None: if prior == 'uniform': log10_Agw = parameter.LinearExp(logmin, logmax)(amp_name) elif prior == 'log-uniform' and gamma_val is not None: if np.abs(gamma_val - 4.33) < 0.1: log10_Agw = parameter.Uniform(logmin, logmax)(amp_name) else: log10_Agw = parameter.Uniform(logmin, logmax)(amp_name) else: log10_Agw = parameter.Uniform(logmin, logmax)(amp_name) else: if prior == 'uniform': log10_Agw = parameter.LinearExp(-18, -11)(amp_name) elif prior == 'log-uniform' and gamma_val is not None: if np.abs(gamma_val - 4.33) < 0.1: log10_Agw = parameter.Uniform(-18, -14)(amp_name) else: log10_Agw = parameter.Uniform(-18, -11)(amp_name) else: log10_Agw = parameter.Uniform(-18, -11)(amp_name) gam_name = '{}_gamma'.format(name) if gamma_val is not None: gamma_gw = parameter.Constant(gamma_val)(gam_name) else: gamma_gw = parameter.Uniform(0, 7)(gam_name) # common red noise PSD if psd == 'powerlaw': cpl = utils.powerlaw(log10_A=log10_Agw, gamma=gamma_gw) elif psd == 'broken_powerlaw': delta_name = '{}_delta'.format(name) kappa_name = '{}_kappa'.format(name) log10_fb_name = '{}_log10_fb'.format(name) kappa_gw = parameter.Uniform(0.01, 0.5)(kappa_name) log10_fb_gw = parameter.Uniform(-10, -7)(log10_fb_name) if delta_val is not None: delta_gw = parameter.Constant(delta_val)(delta_name) else: delta_gw = parameter.Uniform(0, 7)(delta_name) cpl = gpp.broken_powerlaw(log10_A=log10_Agw, gamma=gamma_gw, delta=delta_gw, log10_fb=log10_fb_gw, kappa=kappa_gw) elif psd == 'turnover': kappa_name = '{}_kappa'.format(name) lf0_name = '{}_log10_fbend'.format(name) kappa_gw = parameter.Uniform(0, 7)(kappa_name) lf0_gw = parameter.Uniform(-9, -7)(lf0_name) cpl = utils.turnover(log10_A=log10_Agw, gamma=gamma_gw, lf0=lf0_gw, kappa=kappa_gw) elif psd == 'turnover_knee': kappa_name = '{}_kappa'.format(name) lfb_name = '{}_log10_fbend'.format(name) delta_name = '{}_delta'.format(name) lfk_name = '{}_log10_fknee'.format(name) kappa_gw = parameter.Uniform(0, 7)(kappa_name) lfb_gw = parameter.Uniform(-9.3, -8)(lfb_name) delta_gw = parameter.Uniform(-2, 0)(delta_name) lfk_gw = parameter.Uniform(-8, -7)(lfk_name) cpl = gpp.turnover_knee(log10_A=log10_Agw, gamma=gamma_gw, lfb=lfb_gw, lfk=lfk_gw, kappa=kappa_gw, delta=delta_gw) if psd == 'spectrum': rho_name = '{}_log10_rho'.format(name) # checking if priors specified, otherwise give default values if logmin is None: logmin = -9 if logmax is None: logmax = -4 if prior == 'uniform': log10_rho_gw = parameter.LinearExp(logmin, logmax, size=components)(rho_name) elif prior == 'log-uniform': log10_rho_gw = parameter.Uniform(logmin, logmax, size=components)(rho_name) cpl = gpp.free_spectrum(log10_rho=log10_rho_gw) if orf is None: crn = gp_signals.FourierBasisGP(cpl, coefficients=coefficients, combine=combine, components=components, Tspan=Tspan, name=name, pshift=pshift, pseed=pseed) elif orf in orfs.keys(): if orf == 'crn': crn = gp_signals.FourierBasisGP(cpl, coefficients=coefficients, combine=combine, components=components, Tspan=Tspan, name=name, pshift=pshift, pseed=pseed) else: crn = gp_signals.FourierBasisCommonGP(cpl, orfs[orf], components=components, combine=combine, Tspan=Tspan, name=name, pshift=pshift, pseed=pseed) elif isinstance(orf, types.FunctionType): crn = gp_signals.FourierBasisCommonGP(cpl, orf, components=components, combine=combine, Tspan=Tspan, name=name, pshift=pshift, pseed=pseed) else: raise ValueError('ORF {} not recognized'.format(orf)) return crn
34,848
42.506866
119
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/chromatic/chromatic.py
import numpy as np from enterprise import constants as const from enterprise.signals import deterministic_signals, parameter, signal_base __all__ = ['chrom_exp_decay', 'chrom_exp_cusp', 'chrom_dual_exp_cusp', 'chrom_yearly_sinusoid', 'chromatic_quad_basis', 'chromatic_quad_prior', 'dmx_delay', 'dm_exponential_dip', 'dm_exponential_cusp', 'dm_dual_exp_cusp', 'dmx_signal', 'dm_annual_signal', ] @signal_base.function def chrom_exp_decay(toas, freqs, log10_Amp=-7, sign_param=-1.0, t0=54000, log10_tau=1.7, idx=2): """ Chromatic exponential-dip delay term in TOAs. :param t0: time of exponential minimum [MJD] :param tau: 1/e time of exponential [s] :param log10_Amp: amplitude of dip :param sign_param: sign of waveform :param idx: index of chromatic dependence :return wf: delay time-series [s] """ t0 *= const.day tau = 10**log10_tau * const.day ind = np.where(toas > t0)[0] wf = 10**log10_Amp * np.heaviside(toas - t0, 1) wf[ind] *= np.exp(- (toas[ind] - t0) / tau) return np.sign(sign_param) * wf * (1400 / freqs) ** idx @signal_base.function def chrom_exp_cusp(toas, freqs, log10_Amp=-7, sign_param=-1.0, t0=54000, log10_tau_pre=1.7, log10_tau_post=1.7, symmetric=False, idx=2): """ Chromatic exponential-cusp delay term in TOAs. :param t0: time of exponential minimum [MJD] :param tau_pre: 1/e time of exponential before peak [s] :param tau_post: 1/e time of exponential after peak[s] :param symmetric: whether or not tau_pre = tau_post :param log10_Amp: amplitude of cusp :param sign_param: sign of waveform :param idx: index of chromatic dependence :return wf: delay time-series [s] """ t0 *= const.day if symmetric: tau = 10**log10_tau_pre * const.day ind_pre = np.where(toas < t0)[0] ind_post = np.where(toas > t0)[0] wf_pre = 10**log10_Amp * (1 - np.heaviside(toas - t0, 1)) wf_pre[ind_pre] *= np.exp(- (t0 - toas[ind_pre]) / tau) wf_post = 10**log10_Amp * np.heaviside(toas - t0, 1) wf_post[ind_post] *= np.exp(- (toas[ind_post] - t0) / tau) wf = wf_pre + wf_post else: tau_pre = 10**log10_tau_pre * const.day tau_post = 10**log10_tau_post * const.day ind_pre = np.where(toas < t0)[0] ind_post = np.where(toas > t0)[0] wf_pre = 10**log10_Amp * (1 - np.heaviside(toas - t0, 1)) wf_pre[ind_pre] *= np.exp(- (t0 - toas[ind_pre]) / tau_pre) wf_post = 10**log10_Amp * np.heaviside(toas - t0, 1) wf_post[ind_post] *= np.exp(- (toas[ind_post] - t0) / tau_post) wf = wf_pre + wf_post return np.sign(sign_param) * wf * (1400 / freqs) ** idx @signal_base.function def chrom_dual_exp_cusp(toas, freqs, t0=54000, sign_param=-1.0, log10_Amp_1=-7, log10_tau_pre_1=1.7, log10_tau_post_1=1.7, log10_Amp_2=-7, log10_tau_pre_2=1.7, log10_tau_post_2=1.7, symmetric=False, idx1=2, idx2=4): """ Chromatic exponential-cusp delay term in TOAs. :param t0: time of exponential minimum [MJD] :param tau_pre: 1/e time of exponential before peak [s] :param tau_post: 1/e time of exponential after peak[s] :param symmetric: whether or not tau_pre = tau_post :param log10_Amp: amplitude of cusp :param sign_param: sign of waveform :param idx: index of chromatic dependence :return wf: delay time-series [s] """ t0 *= const.day ind_pre = np.where(toas < t0)[0] ind_post = np.where(toas > t0)[0] if symmetric: tau_1 = 10**log10_tau_pre_1 * const.day wf_1_pre = 10**log10_Amp_1 * (1 - np.heaviside(toas - t0, 1)) wf_1_pre[ind_pre] *= np.exp(- (t0 - toas[ind_pre]) / tau_1) wf_1_post = 10**log10_Amp_1 * np.heaviside(toas - t0, 1) wf_1_post[ind_post] *= np.exp(- (toas[ind_post] - t0) / tau_1) wf_1 = wf_1_pre + wf_1_post tau_2 = 10**log10_tau_pre_2 * const.day wf_2_pre = 10**log10_Amp_2 * (1 - np.heaviside(toas - t0, 1)) wf_2_pre[ind_pre] *= np.exp(- (t0 - toas[ind_pre]) / tau_2) wf_2_post = 10**log10_Amp_2 * np.heaviside(toas - t0, 1) wf_2_post[ind_post] *= np.exp(- (toas[ind_post] - t0) / tau_2) wf_2 = wf_2_pre + wf_2_post else: tau_1_pre = 10**log10_tau_pre_1 * const.day tau_1_post = 10**log10_tau_post_1 * const.day wf_1_pre = 10**log10_Amp_1 * (1 - np.heaviside(toas - t0, 1)) wf_1_pre[ind_pre] *= np.exp(- (t0 - toas[ind_pre]) / tau_1_pre) wf_1_post = 10**log10_Amp_1 * np.heaviside(toas - t0, 1) wf_1_post[ind_post] *= np.exp(- (toas[ind_post] - t0) / tau_1_post) wf_1 = wf_1_pre + wf_1_post tau_2_pre = 10**log10_tau_pre_2 * const.day tau_2_post = 10**log10_tau_post_2 * const.day wf_2_pre = 10**log10_Amp_2 * (1 - np.heaviside(toas - t0, 1)) wf_2_pre[ind_pre] *= np.exp(- (t0 - toas[ind_pre]) / tau_2_pre) wf_2_post = 10**log10_Amp_2 * np.heaviside(toas - t0, 1) wf_2_post[ind_post] *= np.exp(- (toas[ind_post] - t0) / tau_2_post) wf_2 = wf_2_pre + wf_2_post return np.sign(sign_param) * (wf_1 * (1400 / freqs) ** idx1 + wf_2 * (1400 / freqs) ** idx2) @signal_base.function def chrom_yearly_sinusoid(toas, freqs, log10_Amp=-7, phase=0, idx=2): """ Chromatic annual sinusoid. :param log10_Amp: amplitude of sinusoid :param phase: initial phase of sinusoid :param idx: index of chromatic dependence :return wf: delay time-series [s] """ wf = 10**log10_Amp * np.sin(2 * np.pi * const.fyr * toas + phase) return wf * (1400 / freqs) ** idx @signal_base.function def chromatic_quad_basis(toas, freqs, idx=4): """ Basis for chromatic quadratic function. :param idx: index of chromatic dependence :return ret: normalized quadratic basis matrix [Ntoa, 3] """ ret = np.zeros((len(toas), 3)) t0 = (toas.max() + toas.min()) / 2 for ii in range(3): ret[:, ii] = (toas-t0) ** (ii) * (1400/freqs) ** idx norm = np.sqrt(np.sum(ret**2, axis=0)) return ret/norm, np.ones(3) @signal_base.function def chromatic_quad_prior(toas): """ Prior for chromatic quadratic function. :return prior: prior-range for quadratic coefficients """ return np.ones(3) * 1e80 @signal_base.function def dmx_delay(toas, freqs, dmx_ids, **kwargs): """ Delay in DMX model of DM variations. :param dmx_ids: dictionary of DMX data for each pulsar from parfile :param kwargs: dictionary of enterprise DMX parameters :return wf: DMX signal """ wf = np.zeros(len(toas)) dmx = kwargs for dmx_id in dmx_ids: mask = np.logical_and(toas >= (dmx_ids[dmx_id]['DMX_R1'] - 0.01) * 86400., toas <= (dmx_ids[dmx_id]['DMX_R2'] + 0.01) * 86400.) wf[mask] += dmx[dmx_id] / freqs[mask]**2 / const.DM_K / 1e12 return wf def dm_exponential_dip(tmin, tmax, idx=2, sign='negative', name='dmexp'): """ Returns chromatic exponential dip (i.e. TOA advance): :param tmin, tmax: search window for exponential dip time. :param idx: index of radio frequency dependence (i.e. DM is 2). If this is set to 'vary' then the index will vary from 1 - 6 :param sign: set sign of dip: 'positive', 'negative', or 'vary' :param name: Name of signal :return dmexp: chromatic exponential dip waveform. """ t0_dmexp = parameter.Uniform(tmin, tmax) log10_Amp_dmexp = parameter.Uniform(-10, -2) log10_tau_dmexp = parameter.Uniform(0, 2.5) if sign == 'vary': sign_param = parameter.Uniform(-1.0, 1.0) elif sign == 'positive': sign_param = 1.0 else: sign_param = -1.0 wf = chrom_exp_decay(log10_Amp=log10_Amp_dmexp, t0=t0_dmexp, log10_tau=log10_tau_dmexp, sign_param=sign_param, idx=idx) dmexp = deterministic_signals.Deterministic(wf, name=name) return dmexp def dm_exponential_cusp(tmin, tmax, idx=2, sign='negative', symmetric=False, name='dm_cusp'): """ Returns chromatic exponential cusp (i.e. TOA advance): :param tmin, tmax: search window for exponential cusp time. :param idx: index of radio frequency dependence (i.e. DM is 2). If this is set to 'vary' then the index will vary from 1 - 6 :param sign: set sign of dip: 'positive', 'negative', or 'vary' :param name: Name of signal :return dmexp: chromatic exponential dip waveform. """ t0_dm_cusp = parameter.Uniform(tmin, tmax) log10_Amp_dm_cusp = parameter.Uniform(-10, -2) log10_tau_dm_cusp_pre = parameter.Uniform(0, 2.5) if sign == 'vary': sign_param = parameter.Uniform(-1.0, 1.0) elif sign == 'positive': sign_param = 1.0 else: sign_param = -1.0 if symmetric: log10_tau_dm_cusp_post = 1 else: log10_tau_dm_cusp_post = parameter.Uniform(0, 2.5) wf = chrom_exp_cusp(log10_Amp=log10_Amp_dm_cusp, sign_param=sign_param, t0=t0_dm_cusp, log10_tau_pre=log10_tau_dm_cusp_pre, log10_tau_post=log10_tau_dm_cusp_post, symmetric=symmetric, idx=idx) dm_cusp = deterministic_signals.Deterministic(wf, name=name) return dm_cusp def dm_dual_exp_cusp(tmin, tmax, idx1=2, idx2=4, sign='negative', symmetric=False, name='dual_dm_cusp'): """ Returns chromatic exponential cusp (i.e. TOA advance): :param tmin, tmax: search window for exponential cusp time. :param idx: index of radio frequency dependence (i.e. DM is 2). If this is set to 'vary' then the index will vary from 1 - 6 :param sign: set sign of dip: 'positive', 'negative', or 'vary' :param name: Name of signal :return dmexp: chromatic exponential dip waveform. """ t0_dual_cusp = parameter.Uniform(tmin, tmax) log10_Amp_dual_cusp_1 = parameter.Uniform(-10, -2) log10_Amp_dual_cusp_2 = parameter.Uniform(-10, -2) log10_tau_dual_cusp_pre_1 = parameter.Uniform(0, 2.5) log10_tau_dual_cusp_pre_2 = parameter.Uniform(0, 2.5) if sign == 'vary': sign_param = parameter.Uniform(-1.0, 1.0) elif sign == 'positive': sign_param = 1.0 else: sign_param = -1.0 if symmetric: log10_tau_dual_cusp_post_1 = 1 log10_tau_dual_cusp_post_2 = 1 else: log10_tau_dual_cusp_post_1 = parameter.Uniform(0, 2.5) log10_tau_dual_cusp_post_2 = parameter.Uniform(0, 2.5) wf = chrom_dual_exp_cusp(t0=t0_dual_cusp, sign_param=sign_param, symmetric=symmetric, log10_Amp_1=log10_Amp_dual_cusp_1, log10_tau_pre_1=log10_tau_dual_cusp_pre_1, log10_tau_post_1=log10_tau_dual_cusp_post_1, log10_Amp_2=log10_Amp_dual_cusp_2, log10_tau_pre_2=log10_tau_dual_cusp_pre_2, log10_tau_post_2=log10_tau_dual_cusp_post_2, idx1=idx1, idx2=idx2) dm_cusp = deterministic_signals.Deterministic(wf, name=name) return dm_cusp def dmx_signal(dmx_data, name='dmx_signal'): """ Returns DMX signal: :param dmx_data: dictionary of DMX data for each pulsar from parfile. :param name: Name of signal. :return dmx_sig: dmx signal waveform. """ dmx = {} for dmx_id in sorted(dmx_data): dmx_data_tmp = dmx_data[dmx_id] dmx.update({dmx_id: parameter.Normal(mu=dmx_data_tmp['DMX_VAL'], sigma=dmx_data_tmp['DMX_ERR'])}) wf = dmx_delay(dmx_ids=dmx_data, **dmx) dmx_sig = deterministic_signals.Deterministic(wf, name=name) return dmx_sig def dm_annual_signal(idx=2, name='dm_s1yr'): """ Returns chromatic annual signal (i.e. TOA advance): :param idx: index of radio frequency dependence (i.e. DM is 2). If this is set to 'vary' then the index will vary from 1 - 6 :param name: Name of signal :return dm1yr: chromatic annual waveform. """ log10_Amp_dm1yr = parameter.Uniform(-10, -2) phase_dm1yr = parameter.Uniform(0, 2*np.pi) wf = chrom_yearly_sinusoid(log10_Amp=log10_Amp_dm1yr, phase=phase_dm1yr, idx=idx) dm1yr = deterministic_signals.Deterministic(wf, name=name) return dm1yr
12,928
33.569519
96
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/chromatic/solar_wind.py
import os import numpy as np import scipy.stats as sps import scipy.special as spsf from enterprise import constants as const from enterprise.signals import (deterministic_signals, gp_signals, parameter, signal_base, utils) from .. import gp_kernels as gpk defpath = os.path.dirname(__file__) yr_in_sec = 365.25*24*3600 @signal_base.function def solar_wind(toas, freqs, planetssb, sunssb, pos_t, n_earth=5, n_earth_bins=None, t_init=None, t_final=None): """ Construct DM-Solar Model fourier design matrix. :param toas: vector of time series in seconds :param planetssb: solar system bayrcenter positions :param pos_t: pulsar position as 3-vector :param freqs: radio frequencies of observations [MHz] :param n_earth: The electron density from the solar wind at 1 AU. :param n_earth_bins: Number of binned values of n_earth for which to fit or an array or list of bin edges to use for binned n_Earth values. In the latter case the first and last edges must encompass all TOAs and in all cases it must match the size (number of elements) of n_earth. :param t_init: Initial time of earliest TOA in entire dataset, including all pulsars. :param t_final: Final time of last TOA in entire dataset, including all pulsars. :return dt_DM: Chromatic time delay due to solar wind """ if n_earth_bins is None: theta, R_earth, _, _ = theta_impact(planetssb, sunssb, pos_t) dm_sol_wind = dm_solar(n_earth, theta, R_earth) dt_DM = (dm_sol_wind) * 4.148808e3 / freqs**2 else: if isinstance(n_earth_bins, int) and (t_init is None or t_final is None): err_msg = 'Need to enter t_init and t_final ' err_msg += 'to make binned n_earth values.' raise ValueError(err_msg) elif isinstance(n_earth_bins, int): edges, step = np.linspace(t_init, t_final, n_earth_bins, endpoint=True, retstep=True) elif isinstance(n_earth_bins, list) or isinstance(n_earth_bins, np.ndarray): edges = n_earth_bins dt_DM = [] for ii, bin in enumerate(edges[:-1]): bin_mask = np.logical_and(toas >= bin, toas <= edges[ii + 1]) theta, R_earth, _, _ = theta_impact(planetssb, sunssb, pos_t) dm_sol_wind = dm_solar(n_earth[ii], theta[bin_mask], R_earth[bin_mask]) if dm_sol_wind.size != 0: dt_DM.extend((dm_sol_wind) * 4.148808e3 / freqs[bin_mask]**2) else: pass dt_DM = np.array(dt_DM) if dt_DM.size!=toas.size: err_msg = 'dt_DM ({0}) does not '.format(dt_DM.size) err_msg +='match number of TOAs ({0})!!!'.format(toas.size) raise ValueError(err_msg) return dt_DM @signal_base.function def solar_wind_r_to_p(toas, freqs, planetssb, sunssb, pos_t, n_earth=5, power=4.39, log10_ne=False): """ Construct DM-Solar Model fourier design matrix. :param toas: vector of time series in seconds :param planetssb: solar system bayrcenter positions :param pos_t: pulsar position as 3-vector :param freqs: radio frequencies of observations [MHz] :param n_earth: The electron density from the solar wind at 1 AU. :param power: Negative power of the density profile for the solar wind, r^-p. :param log10_ne: Whether the provided value is log10 of the electron density for this term. Suggested to set True for power much larger than normal. :return dt_DM: Chromatic time delay due to solar wind """ if log10_ne: n_earth = 10**n_earth theta, _, b, z_earth = theta_impact(planetssb, sunssb, pos_t) dm_sol_wind = dm_solar_r_to_p(n_earth, theta, b, z_earth, power) dt_DM = (dm_sol_wind) * 4.148808e3 / freqs**2 dt_DM = np.array(dt_DM) return dt_DM # linear interpolation basis in time with nu^-2 scaling @signal_base.function def linear_interp_basis_sw_dm(toas, freqs, planetssb, sunssb, pos_t, dt=7*86400): # get linear interpolation basis in time U, avetoas = utils.linear_interp_basis(toas, dt=dt) # scale with radio frequency theta, R_earth, _, _ = theta_impact(planetssb, sunssb, pos_t) dm_sol_wind = dm_solar(1.0, theta, R_earth) dt_DM = dm_sol_wind * 4.148808e3 / (freqs**2) return U * dt_DM[:, None], avetoas @signal_base.function def createfourierdesignmatrix_solar_dm(toas, freqs, planetssb, sunssb, pos_t, modes=None, nmodes=30, Tspan=None, logf=True, fmin=None, fmax=None): """ Construct DM-Solar Model fourier design matrix. :param toas: vector of time series in seconds :param planetssb: solar system bayrcenter positions :param pos_t: pulsar position as 3-vector :param nmodes: number of fourier coefficients to use :param freqs: radio frequencies of observations [MHz] :param Tspan: option to some other Tspan :param logf: use log frequency spacing :param fmin: lower sampling frequency :param fmax: upper sampling frequency :return: F: SW DM-variation fourier design matrix :return: f: Sampling frequencies """ # get base fourier design matrix and frequencies F, Ffreqs = utils.createfourierdesignmatrix_red(toas, nmodes=nmodes, modes=modes, Tspan=Tspan, logf=logf, fmin=fmin, fmax=fmax) theta, R_earth, _, _ = theta_impact(planetssb, sunssb, pos_t) dm_sol_wind = dm_solar(1.0, theta, R_earth) dt_DM = dm_sol_wind * 4.148808e3 /(freqs**2) return F * dt_DM[:, None], Ffreqs def solar_wind_block(n_earth=None, ACE_prior=False, include_swgp=True, swgp_prior=None, swgp_basis=None, Tspan=None): """ Returns Solar Wind DM noise model. Best model from Hazboun, et al (in prep) Contains a single mean electron density with an auxiliary perturbation modeled using a gaussian process. The GP has common prior parameters between all pulsars, but the realizations are different for all pulsars. Solar Wind DM noise modeled as a power-law with 30 sampling frequencies :param n_earth: Solar electron density at 1 AU. :param ACE_prior: Whether to use the ACE SWEPAM data as an astrophysical prior. :param swgp_prior: Prior function for solar wind Gaussian process. Default is a power law. :param swgp_basis: Basis to be used for solar wind Gaussian process. Options includes ['powerlaw'.'periodic','sq_exp'] :param Tspan: Sets frequency sampling f_i = i / Tspan. Default will use overall time span for individual pulsar. Default is to use 15 frequencies (1/Tspan,15/Tspan). """ if n_earth is None and not ACE_prior: n_earth = parameter.Uniform(0, 30)('n_earth') elif n_earth is None and ACE_prior: n_earth = ACE_SWEPAM_Parameter()('n_earth') else: pass deter_sw = solar_wind(n_earth=n_earth) mean_sw = deterministic_signals.Deterministic(deter_sw, name='n_earth') sw_model = mean_sw if include_swgp: if swgp_basis == 'powerlaw': # dm noise parameters that are common log10_A_sw = parameter.Uniform(-10, 1) gamma_sw = parameter.Uniform(-2, 1) sw_prior = utils.powerlaw(log10_A=log10_A_sw, gamma=gamma_sw) if Tspan is not None: freqs = np.linspace(1/Tspan, 30/Tspan, 30) freqs = freqs[1/freqs > 1.5*yr_in_sec] sw_basis = createfourierdesignmatrix_solar_dm(modes=freqs) else: sw_basis = createfourierdesignmatrix_solar_dm(nmodes=15, Tspan=Tspan) elif swgp_basis == 'periodic': # Periodic GP kernel for DM log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) log10_p = parameter.Uniform(-4, 1) log10_gam_p = parameter.Uniform(-3, 2) sw_basis = gpk.linear_interp_basis_dm(dt=6*86400) sw_prior = gpk.periodic_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell, log10_gam_p=log10_gam_p, log10_p=log10_p) elif swgp_basis == 'sq_exp': # squared-exponential GP kernel for DM log10_sigma = parameter.Uniform(-10, -4) log10_ell = parameter.Uniform(1, 4) sw_basis = gpk.linear_interp_basis_dm(dt=6*86400) sw_prior = gpk.se_dm_kernel(log10_sigma=log10_sigma, log10_ell=log10_ell) gp_sw = gp_signals.BasisGP(sw_prior, sw_basis, name='gp_sw') sw_model += gp_sw return sw_model AU_light_sec = const.AU / const.c # 1 AU in light seconds AU_pc = const.AU / const.pc # 1 AU in parsecs (for DM normalization) def _dm_solar_close(n_earth, r_earth): return (n_earth * AU_light_sec * AU_pc / r_earth) def _dm_solar(n_earth, theta, r_earth): return ((np.pi - theta) * (n_earth * AU_light_sec * AU_pc / (r_earth * np.sin(theta)))) def dm_solar(n_earth, theta, r_earth): """ Calculates Dispersion measure due to 1/r^2 solar wind density model. ::param :n_earth Solar wind proto/electron density at Earth (1/cm^3) ::param :theta: angle between sun and line-of-sight to pulsar (rad) ::param :r_earth :distance from Earth to Sun in (light seconds). See You et al. 2007 for more details. """ return np.where(np.pi - theta >= 1e-5, _dm_solar(n_earth, theta, r_earth), _dm_solar_close(n_earth, r_earth)) def dm_solar_r_to_p(n_earth, theta, b, z_earth, p): """ Calculates Dispersion measure due to 1/r^p solar wind density model. ::param :n_earth Solar wind proton/electron density at Earth (1/cm^3) ::param :theta: angle between sun and line-of-sight to pulsar (rad) ::param :r_earth :distance from Earth to Sun in (light seconds). See You et al. 20007 for more details. """ return _dm_solar_r_to_p(n_earth, b, z_earth, p) def _dm_solar_close_r_to_p(n, z, p): return n * (AU_light_sec / z)**(p - 1) * (AU_pc / p) def _dm_solar_r_to_p(n, b, z, p): return (n * (AU_light_sec / b)**p * b / const.pc * const.c * (_dm_p_int(b, 1e14, p) - _dm_p_int(b, -z, p))) def _dm_p_int(b, z, p): return z / b * spsf.hyp2f1(0.5, p/2., 1.5, -z**2 / b**2) def theta_impact(planetssb, sunssb, pos_t): """ Use the attributes of an enterprise Pulsar object to calculate the solar impact angle. ::param :planetssb Solar system barycenter time series supplied with enterprise.Pulsar objects. ::param :sunssb Solar system sun-to-barycenter timeseries supplied with enterprise.Pulsar objects. ::param :pos_t Unit vector to pulsar position over time in ecliptic coordinates. Supplied with enterprise.Pulsar objects. returns: Solar impact angle (rad), Distance to Earth (R_earth), impact distance (b), perpendicular distance (z_earth) """ earth = planetssb[:, 2, :3] sun = sunssb[:, :3] earthsun = earth - sun R_earth = np.sqrt(np.einsum('ij,ij->i', earthsun, earthsun)) Re_cos_theta_impact = np.einsum('ij,ij->i', earthsun, pos_t) theta_impact = np.arccos(-Re_cos_theta_impact / R_earth) b = np.sqrt(R_earth**2 - Re_cos_theta_impact**2) return theta_impact, R_earth, b, -Re_cos_theta_impact def sw_mask(psrs, angle_cutoff=None): """ Convenience function for masking TOAs lower than a certain solar impact angle. param:: :psrs list of enterprise.Pulsar objects param:: :angle_cutoff (degrees) Mask TOAs within this angle returns:: dictionary of masks for each pulsar """ solar_wind_mask = {} angle_cutoff = np.deg2rad(angle_cutoff) for ii, p in enumerate(psrs): impact_ang, _, _, _ = theta_impact(p) solar_wind_mask[p.name] = np.where(impact_ang > angle_cutoff, True, False) return solar_wind_mask # ACE Solar Wind Monitoring data prior for SW electron data. # Using proton density as a stand in. def ACE_SWEPAM_Prior(value): """Prior function for ACE SWEPAM parameters.""" return ACE_RV.pdf(value) def ACE_SWEPAM_Sampler(size=None): """Sampling function for Uniform parameters.""" return ACE_RV.rvs(size=size) def ACE_SWEPAM_Parameter(size=None): """Class factory for ACE SWEPAM parameters.""" class ACE_SWEPAM_Parameter(parameter.Parameter): _size = size _typename = parameter._argrepr('ACE_SWEPAM') _prior = parameter.Function(ACE_SWEPAM_Prior) _sampler = staticmethod(ACE_SWEPAM_Sampler) return ACE_SWEPAM_Parameter data_file = defpath + '/ACE_SWEPAM_daily_proton_density_1998_2018_MJD_cm-3.txt' proton_density = np.loadtxt(data_file) ne_hist = np.histogram(proton_density[:, 1], bins=100, density=True) ACE_RV = sps.rv_histogram(ne_hist)
13,958
35.637795
81
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/frequentist/optimal_statistic.py
import warnings import numpy as np import scipy.linalg as sl from enterprise.signals import gp_priors, signal_base, utils from enterprise_extensions import model_orfs, models # Define the output to be on a single line. def warning_on_one_line(message, category, filename, lineno, file=None, line=None): return '%s:%s: %s: %s\n' % (filename, lineno, category.__name__, message) # Override default format. warnings.formatwarning = warning_on_one_line class OptimalStatistic(object): """ Class for the Optimal Statistic as used in the analysis paper. This class can be used for both standard ML or noise-marginalized OS. :param psrs: List of `enterprise` Pulsar instances. :param bayesephem: Include BayesEphem model. Default=True :param gamma_common: Fixed common red process spectral index value. By default we vary the spectral index over the range [0, 7]. :param orf: String representing which overlap reduction function to use. By default we do not use any spatial correlations. Permitted values are ['hd', 'dipole', 'monopole']. """ def __init__(self, psrs, bayesephem=True, gamma_common=4.33, orf='hd', wideband=False, select=None, noisedict=None, pta=None): # initialize standard model with fixed white noise and if pta is None: self.pta = models.model_2a(psrs, psd='powerlaw', bayesephem=bayesephem, gamma_common=gamma_common, is_wideband=wideband, select='backend', noisedict=noisedict) else: if np.any(['marginalizing_linear_timing' in sig for sig in pta.signals]): msg = "Can't run optimal statistic with `enterprise.gp_signals.MarginalizingTimingModel`." msg += " Try creating PTA with `enterprise.gp_signals.TimingModel`, or if using `enterprise_extensions`" msg += " set `tm_marg=False`." raise ValueError(msg) self.pta = pta self.gamma_common = gamma_common # get frequencies here self.freqs = self._get_freqs(psrs) # set up cache self._set_cache_parameters() # pulsar locations self.psrlocs = [p.pos for p in psrs] # overlap reduction function if orf == 'hd': self.orf = model_orfs.hd_orf elif orf == 'dipole': self.orf = model_orfs.dipole_orf elif orf == 'monopole': self.orf = model_orfs.monopole_orf elif orf == 'gw_monopole': self.orf = model_orfs.gw_monopole_orf elif orf == 'gw_dipole': self.orf = model_orfs.gw_dipole_orf elif orf == 'st': self.orf = model_orfs.st_orf else: raise ValueError('Unknown ORF!') def compute_os(self, params=None, psd='powerlaw', fgw=None): """ Computes the optimal statistic values given an `enterprise` parameter dictionary. :param params: `enterprise` parameter dictionary. :param psd: choice of cross-power psd [powerlaw,spectrum] :fgw: frequency of GW spectrum to probe, in Hz [default=None] :returns: xi: angular separation [rad] for each pulsar pair rho: correlation coefficient for each pulsar pair sig: 1-sigma uncertainty on correlation coefficient for each pulsar pair. OS: Optimal statistic value (units of A_gw^2) OS_sig: 1-sigma uncertainty on OS .. note:: SNR is computed as OS / OS_sig. In the case of a 'spectrum' model the OS variable will be the PSD(fgw) * Tspan value at the relevant fgw bin. """ if params is None: params = {name: par.sample() for name, par in zip(self.pta.param_names, self.pta.params)} else: # check to see that the params dictionary includes values # for all of the parameters in the model for p in self.pta.param_names: if p not in params.keys(): msg = '{0} is not included '.format(p) msg += 'in the parameter dictionary. ' msg += 'Drawing a random value.' warnings.warn(msg) # get matrix products TNrs = self.get_TNr(params=params) TNTs = self.get_TNT(params=params) FNrs = self.get_FNr(params=params) FNFs = self.get_FNF(params=params) FNTs = self.get_FNT(params=params) phiinvs = self.pta.get_phiinv(params, logdet=False) X, Z = [], [] for TNr, TNT, FNr, FNF, FNT, phiinv in zip(TNrs, TNTs, FNrs, FNFs, FNTs, phiinvs): Sigma = TNT + (np.diag(phiinv) if phiinv.ndim == 1 else phiinv) try: cf = sl.cho_factor(Sigma) SigmaTNr = sl.cho_solve(cf, TNr) SigmaTNF = sl.cho_solve(cf, FNT.T) except np.linalg.LinAlgError: SigmaTNr = np.linalg.solve(Sigma, TNr) SigmaTNF = np.linalg.solve(Sigma, FNT.T) FNTSigmaTNr = np.dot(FNT, SigmaTNr) X.append(FNr - FNTSigmaTNr) Z.append(FNF - np.dot(FNT, SigmaTNF)) npsr = len(self.pta._signalcollections) rho, sig, ORF, xi = [], [], [], [] for ii in range(npsr): for jj in range(ii+1, npsr): if psd == 'powerlaw': if self.gamma_common is None and 'gw_gamma' in params.keys(): phiIJ = utils.powerlaw(self.freqs, log10_A=0, gamma=params['gw_gamma']) else: phiIJ = utils.powerlaw(self.freqs, log10_A=0, gamma=self.gamma_common) elif psd == 'spectrum': Sf = -np.inf * np.ones(int(len(self.freqs)/2)) idx = (np.abs(np.unique(self.freqs) - fgw)).argmin() Sf[idx] = 0.0 phiIJ = gp_priors.free_spectrum(self.freqs, log10_rho=Sf) top = np.dot(X[ii], phiIJ * X[jj]) bot = np.trace(np.dot(Z[ii]*phiIJ[None, :], Z[jj]*phiIJ[None, :])) # cross correlation and uncertainty rho.append(top / bot) sig.append(1 / np.sqrt(bot)) # Overlap reduction function for PSRs ii, jj ORF.append(self.orf(self.psrlocs[ii], self.psrlocs[jj])) # angular separation xi.append(np.arccos(np.dot(self.psrlocs[ii], self.psrlocs[jj]))) rho = np.array(rho) sig = np.array(sig) ORF = np.array(ORF) xi = np.array(xi) OS = (np.sum(rho*ORF / sig ** 2) / np.sum(ORF ** 2 / sig ** 2)) OS_sig = 1 / np.sqrt(np.sum(ORF ** 2 / sig ** 2)) return xi, rho, sig, OS, OS_sig def compute_noise_marginalized_os(self, chain, param_names=None, N=10000): """ Compute noise marginalized OS. :param chain: MCMC chain from Bayesian run. :param param_names: list of parameter names for the chain file :param N: number of iterations to run. :returns: (os, snr) array of OS and SNR values for each iteration. """ # check that the chain file has the same number of parameters as the model if chain.shape[1] - 4 != len(self.pta.param_names): msg = 'MCMC chain does not have the same number of parameters ' msg += 'as the model.' warnings.warn(msg) opt, sig = np.zeros(N), np.zeros(N) rho, rho_sig = [], [] setpars = {} for ii in range(N): idx = np.random.randint(0, chain.shape[0]) # if param_names is not specified, the parameter dictionary # parameters in the pta object if param_names is None: setpars.update(self.pta.map_params(chain[idx, :-4])) else: setpars = dict(zip(param_names, chain[idx, :-4])) xi, rho_tmp, rho_sig_tmp, opt[ii], sig[ii] = self.compute_os(params=setpars) rho.append(rho_tmp) rho_sig.append(rho_sig_tmp) return (np.array(xi), np.array(rho), np.array(rho_sig), opt, opt/sig) def compute_noise_maximized_os(self, chain, param_names=None): """ Compute noise maximized OS. :param chain: MCMC chain from Bayesian run. :returns: xi: angular separation [rad] for each pulsar pair rho: correlation coefficient for each pulsar pair sig: 1-sigma uncertainty on correlation coefficient for each pulsar pair. OS: Optimal statistic value (units of A_gw^2) SNR: OS / OS_sig """ # check that the chain file has the same number of parameters as the model if chain.shape[1] - 4 != len(self.pta.param_names): msg = 'MCMC chain does not have the same number of parameters ' msg += 'as the model.' warnings.warn(msg) idx = np.argmax(chain[:, -4]) # if param_names is not specified, the parameter dictionary # parameters in the pta object if param_names is None: setpars = (self.pta.map_params(chain[idx, :-4])) else: setpars = dict(zip(param_names, chain[idx, :-4])) xi, rho, sig, Opt, Sig = self.compute_os(params=setpars) return (xi, rho, sig, Opt, Opt/Sig) def compute_multiple_corr_os(self, params=None, psd='powerlaw', fgw=None, correlations=['monopole', 'dipole', 'hd']): """ Fits the correlations to multiple spatial correlation functions :param params: `enterprise` parameter dictionary. :param psd: choice of cross-power psd [powerlaw,spectrum] :param fgw: frequency of GW spectrum to probe, in Hz [default=None] :param correlations: list of correlation functions :returns: xi: angular separation [rad] for each pulsar pair rho: correlation coefficient for each pulsar pair sig: 1-sigma uncertainty on correlation coefficient for each pulsar pair. A: An array of correlation amplitudes OS_sig: An array of 1-sigma uncertainties on the correlation amplitudes """ xi, rho, sig, _, _ = self.compute_os(params=params, psd='powerlaw', fgw=None) # construct a list of all the ORFs to be fit simultaneously ORFs = [] for corr in correlations: if corr == 'hd': orf_func = model_orfs.hd_orf elif corr == 'dipole': orf_func = model_orfs.dipole_orf elif corr == 'monopole': orf_func = model_orfs.monopole_orf elif corr == 'gw_monopole': orf_func = model_orfs.gw_monopole_orf elif corr == 'gw_dipole': orf_func = model_orfs.gw_dipole_orf elif corr == 'st': orf_func = model_orfs.st_orf else: raise ValueError('Unknown ORF!') ORF = [] npsr = len(self.pta._signalcollections) for ii in range(npsr): for jj in range(ii+1, npsr): ORF.append(orf_func(self.psrlocs[ii], self.psrlocs[jj])) ORFs.append(np.array(ORF)) Bmat = np.array([[np.sum(ORFs[i]*ORFs[j]/sig**2) for i in range(len(ORFs))] for j in range(len(ORFs))]) Bmatinv = np.linalg.inv(Bmat) Cmat = np.array([np.sum(rho*ORFs[i]/sig**2) for i in range(len(ORFs))]) A = np.dot(Bmatinv, Cmat) A_err = np.array([np.sqrt(Bmatinv[i, i]) for i in range(len(ORFs))]) return xi, rho, sig, A, A_err def compute_noise_marginalized_multiple_corr_os(self, chain, param_names=None, N=10000, correlations=['monopole', 'dipole', 'hd']): """ Noise-marginalized fitting of the correlations to multiple spatial correlation functions :param correlations: list of correlation functions :param chain: MCMC chain from Bayesian run. :param param_names: list of parameter names for the chain file :param N: number of iterations to run. :returns: xi: angular separation [rad] for each pulsar pair rho: correlation coefficient for each pulsar pair and for each noise realization sig: 1-sigma uncertainty on correlation coefficient for each pulsar pair and for each noise realization A: An array of correlation amplitudes for each noise realization OS_sig: An array of 1-sigma uncertainties on the correlation amplitudes for each noise realization """ # check that the chain file has the same number of parameters as the model if chain.shape[1] - 4 != len(self.pta.param_names): msg = 'MCMC chain does not have the same number of parameters ' msg += 'as the model.' warnings.warn(msg) rho, sig, A, A_err = [], [], [], [] setpars = {} for ii in range(N): idx = np.random.randint(0, chain.shape[0]) # if param_names is not specified, the parameter dictionary # parameters in the pta object if param_names is None: setpars.update(self.pta.map_params(chain[idx, :-4])) else: setpars = dict(zip(param_names, chain[idx, :-4])) xi, rho_tmp, sig_tmp, A_tmp, A_err_tmp = self.compute_multiple_corr_os(params=setpars, correlations=correlations) rho.append(rho_tmp) sig.append(sig_tmp) A.append(A_tmp) A_err.append(A_err_tmp) return np.array(xi), np.array(rho), np.array(sig), np.array(A), np.array(A_err) @signal_base.cache_call(['basis_params']) def get_Fmats(self, params={}): """Kind of a hack to get F-matrices""" Fmats = [] for sc in self.pta._signalcollections: ind = [] for signal, idx in sc._idx.items(): if 'red noise' in signal.signal_name and signal.signal_id in ['gw', 'gw_crn']: ind.append(idx) ix = np.unique(np.concatenate(ind)) Fmats.append(sc.get_basis(params=params)[:, ix]) return Fmats def _get_freqs(self, psrs): """Hackish way to get frequency vector.""" for sig in self.pta._signalcollections[0]._signals: if 'red noise' in sig.signal_name and sig.signal_id in ['gw', 'gw_crn']: # make sure the basis is created _ = sig.get_basis() if isinstance(sig._labels, np.ndarray): return sig._labels else: return sig._labels[''] raise ValueError("No frequency basis in pulsar models") def _set_cache_parameters(self): """ Set cache parameters for efficiency. """ self.white_params = list(set(par for sc in self.pta._signalcollections for par in sc.white_params)) self.basis_params = list(set(par for sc in self.pta._signalcollections for par in sc.basis_params)) self.delay_params = list(set(par for sc in self.pta._signalcollections for par in sc.delay_params)) def get_TNr(self, params={}): return self.pta.get_TNr(params=params) @signal_base.cache_call(['white_params', 'delay_params', 'basis_params']) def get_FNr(self, params={}): FNrs = [] for ct, sc in enumerate(self.pta._signalcollections): N = sc.get_ndiag(params=params) F = self.get_Fmats(params)[ct] res = sc.get_detres(params=params) FNrs.append(N.solve(res, left_array=F)) return FNrs @signal_base.cache_call(['white_params', 'basis_params']) def get_FNF(self, params={}): FNFs = [] for ct, sc in enumerate(self.pta._signalcollections): N = sc.get_ndiag(params=params) F = self.get_Fmats(params)[ct] FNFs.append(N.solve(F, left_array=F)) return FNFs def get_TNT(self, params={}): return self.pta.get_TNT(params=params) @signal_base.cache_call(['white_params', 'basis_params']) def get_FNT(self, params={}): FNTs = [] for ct, sc in enumerate(self.pta._signalcollections): N = sc.get_ndiag(params=params) F = self.get_Fmats(params)[ct] T = sc.get_basis(params=params) FNTs.append(N.solve(T, left_array=F)) return FNTs
17,367
38.205418
120
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/frequentist/Fe_statistic.py
import numpy as np import scipy.linalg as sl from enterprise.signals import (gp_signals, parameter, signal_base, utils, white_signals) class FeStat(object): """ Class for the Fe-statistic. :param psrs: List of `enterprise` Pulsar instances. :param params: Dictionary of noise parameters. """ def __init__(self, psrs, params=None): print('Initializing the model...') efac = parameter.Constant() equad = parameter.Constant() ef = white_signals.MeasurementNoise(efac=efac) eq = white_signals.EquadNoise(log10_equad=equad) tm = gp_signals.TimingModel(use_svd=True) s = eq + ef + tm model = [] for p in psrs: model.append(s(p)) self.pta = signal_base.PTA(model) # set white noise parameters if params is None: print('No noise dictionary provided!...') else: self.pta.set_default_params(params) self.psrs = psrs self.params = params self.Nmats = None def get_Nmats(self): '''Makes the Nmatrix used in the fstatistic''' TNTs = self.pta.get_TNT(self.params) phiinvs = self.pta.get_phiinv(self.params, logdet=False, method='partition') # Get noise parameters for pta toaerr**2 Nvecs = self.pta.get_ndiag(self.params) # Get the basis matrix Ts = self.pta.get_basis(self.params) Nmats = [make_Nmat(phiinv, TNT, Nvec, T) for phiinv, TNT, Nvec, T in zip(phiinvs, TNTs, Nvecs, Ts)] return Nmats def compute_Fe(self, f0, gw_skyloc, brave=False, maximized_parameters=False): """ Computes the Fe-statistic (see Ellis, Siemens, Creighton 2012). :param f0: GW frequency :param gw_skyloc: 2x{number of sky locations} array containing [theta, phi] for each queried sky location, where theta=pi/2-DEC, phi=RA, for singlge sky location use gw_skyloc= np.array([[theta,],[phi,]]) :param brave: Skip sanity checks in linalg for speedup if True. :param maximized_parameters: Calculate maximized extrinsic parameters if True. :returns: fstat: value of the Fe-statistic :if maximized_parameters=True also returns: inc_max: Maximized value of inclination psi_max: Maximized value of polarization angle phase0_max: Maximized value of initial fhase h_max: Maximized value of amplitude """ tref=53000*86400 phiinvs = self.pta.get_phiinv(self.params, logdet=False) TNTs = self.pta.get_TNT(self.params) Ts = self.pta.get_basis() if self.Nmats is None: self.Nmats = self.get_Nmats() n_psr = len(self.psrs) N = np.zeros((n_psr, 4)) M = np.zeros((n_psr, 4, 4)) for idx, (psr, Nmat, TNT, phiinv, T) in enumerate(zip(self.psrs, self.Nmats, TNTs, phiinvs, Ts)): Sigma = TNT + (np.diag(phiinv) if phiinv.ndim == 1 else phiinv) ntoa = len(psr.toas) A = np.zeros((4, ntoa)) A[0, :] = 1 / f0 ** (1 / 3) * np.sin(2 * np.pi * f0 * (psr.toas-tref)) A[1, :] = 1 / f0 ** (1 / 3) * np.cos(2 * np.pi * f0 * (psr.toas-tref)) A[2, :] = 1 / f0 ** (1 / 3) * np.sin(2 * np.pi * f0 * (psr.toas-tref)) A[3, :] = 1 / f0 ** (1 / 3) * np.cos(2 * np.pi * f0 * (psr.toas-tref)) ip1 = innerProduct_rr(A[0, :], psr.residuals, Nmat, T, Sigma, brave=brave) ip2 = innerProduct_rr(A[1, :], psr.residuals, Nmat, T, Sigma, brave=brave) ip3 = innerProduct_rr(A[2, :], psr.residuals, Nmat, T, Sigma, brave=brave) ip4 = innerProduct_rr(A[3, :], psr.residuals, Nmat, T, Sigma, brave=brave) N[idx, :] = np.array([ip1, ip2, ip3, ip4]) # define M matrix M_ij=(A_i|A_j) for jj in range(4): for kk in range(4): M[idx, jj, kk] = innerProduct_rr(A[jj, :], A[kk, :], Nmat, T, Sigma, brave=brave) fstat = np.zeros(gw_skyloc.shape[1]) if maximized_parameters: inc_max = np.zeros(gw_skyloc.shape[1]) psi_max = np.zeros(gw_skyloc.shape[1]) phase0_max = np.zeros(gw_skyloc.shape[1]) h_max = np.zeros(gw_skyloc.shape[1]) for j, gw_pos in enumerate(gw_skyloc.T): NN = np.copy(N) MM = np.copy(M) for idx, psr in enumerate(self.psrs): F_p, F_c, _ = utils.create_gw_antenna_pattern(psr.pos, gw_pos[0], gw_pos[1]) NN[idx, :] *= np.array([F_p, F_p, F_c, F_c]) MM[idx, :, :] *= np.array([[F_p**2, F_p**2, F_p*F_c, F_p*F_c], [F_p**2, F_p**2, F_p*F_c, F_p*F_c], [F_p*F_c, F_p*F_c, F_c**2, F_c**2], [F_p*F_c, F_p*F_c, F_c**2, F_c**2]]) N_sum = np.sum(NN, axis=0) M_sum = np.sum(MM, axis=0) # take inverse of M Minv = np.linalg.pinv(M_sum) fstat[j] = 0.5 * np.dot(N_sum, np.dot(Minv, N_sum)) if maximized_parameters: a_hat = np.dot(Minv, N_sum) A_p = (np.sqrt((a_hat[0]+a_hat[3])**2 + (a_hat[1]-a_hat[2])**2) + np.sqrt((a_hat[0]-a_hat[3])**2 + (a_hat[1]+a_hat[2])**2)) A_c = (np.sqrt((a_hat[0]+a_hat[3])**2 + (a_hat[1]-a_hat[2])**2) - np.sqrt((a_hat[0]-a_hat[3])**2 + (a_hat[1]+a_hat[2])**2)) AA = A_p + np.sqrt(A_p**2 - A_c**2) # AA = A_p + np.sqrt(A_p**2 + A_c**2) # inc_max[j] = np.arccos(-A_c/AA) inc_max[j] = np.arccos(A_c/AA) two_psi_max = np.arctan2((A_p*a_hat[3] - A_c*a_hat[0]), (A_c*a_hat[2] + A_p*a_hat[1])) psi_max[j]=0.5*np.arctan2(np.sin(two_psi_max), -np.cos(two_psi_max)) # convert from [-pi, pi] convention to [0,2*pi] convention if psi_max[j]<0: psi_max[j]+=np.pi # correcting weird problem of degeneracy (psi-->pi-psi/2 and phi0-->2pi-phi0 keep everything the same) if psi_max[j]>np.pi/2: psi_max[j]+= -np.pi/2 half_phase0 = -0.5*np.arctan2(A_p*a_hat[3] - A_c*a_hat[0], A_c*a_hat[1] + A_p*a_hat[2]) phase0_max[j] = np.arctan2(-np.sin(2*half_phase0), np.cos(2*half_phase0)) # convert from [-pi, pi] convention to [0,2*pi] convention if phase0_max[j]<0: phase0_max[j]+=2*np.pi zeta = np.abs(AA)/4 # related to amplitude, zeta=M_chirp^(5/3)/D h_max[j] = zeta * 2 * (np.pi*f0)**(2/3)*np.pi**(1/3) if maximized_parameters: return fstat, inc_max, psi_max, phase0_max, h_max else: return fstat def innerProduct_rr(x, y, Nmat, Tmat, Sigma, TNx=None, TNy=None, brave=False): r""" Compute inner product using rank-reduced approximations for red noise/jitter Compute: x^T N^{-1} y - x^T N^{-1} T \Sigma^{-1} T^T N^{-1} y :param x: vector timeseries 1 :param y: vector timeseries 2 :param Nmat: white noise matrix :param Tmat: Modified design matrix including red noise/jitter :param Sigma: Sigma matrix (\varphi^{-1} + T^T N^{-1} T) :param TNx: T^T N^{-1} x precomputed :param TNy: T^T N^{-1} y precomputed :return: inner product (x|y) """ # white noise term Ni = Nmat xNy = np.dot(np.dot(x, Ni), y) Nx, Ny = np.dot(Ni, x), np.dot(Ni, y) if TNx is None and TNy is None: TNx = np.dot(Tmat.T, Nx) TNy = np.dot(Tmat.T, Ny) if brave: cf = sl.cho_factor(Sigma, check_finite=False) SigmaTNy = sl.cho_solve(cf, TNy, check_finite=False) else: cf = sl.cho_factor(Sigma) SigmaTNy = sl.cho_solve(cf, TNy) ret = xNy - np.dot(TNx, SigmaTNy) return ret def make_Nmat(phiinv, TNT, Nvec, T): Sigma = TNT + (np.diag(phiinv) if phiinv.ndim == 1 else phiinv) cf = sl.cho_factor(Sigma) # Nshape = np.shape(T)[0] # Not currently used in code TtN = np.multiply((1/Nvec)[:, None], T).T # Put pulsar's autoerrors in a diagonal matrix Ndiag = np.diag(1/Nvec) expval2 = sl.cho_solve(cf, TtN) # TtNt = np.transpose(TtN) # Not currently used in code # An Ntoa by Ntoa noise matrix to be used in expand dense matrix calculations earlier return Ndiag - np.dot(TtN.T, expval2)
8,981
35.661224
118
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/frequentist/F_statistic.py
import numpy as np import scipy.special from enterprise.signals import deterministic_signals, gp_signals, signal_base from enterprise_extensions import blocks, deterministic def get_xCy(Nvec, T, sigmainv, x, y): """Get x^T C^{-1} y""" TNx = Nvec.solve(x, left_array=T) TNy = Nvec.solve(y, left_array=T) xNy = Nvec.solve(y, left_array=x) return xNy - TNx @ sigmainv @ TNy def get_TCy(Nvec, T, y, sigmainv, TNT): """Get T^T C^{-1} y""" TNy = Nvec.solve(y, left_array=T) return TNy - TNT @ sigmainv @ TNy def innerprod(Nvec, T, sigmainv, TNT, x, y): """Get the inner product between x and y""" xCy = get_xCy(Nvec, T, sigmainv, x, y) TCy = get_TCy(Nvec, T, y, sigmainv, TNT) TCx = get_TCy(Nvec, T, x, sigmainv, TNT) return xCy - TCx.T @ sigmainv @ TCy class FpStat(object): """ Class for the Fp-statistic. :param psrs: List of `enterprise` Pulsar instances. :param noisedict: Dictionary of white noise parameter values. Default=None :param psrTerm: Include the pulsar term in the CW signal model. Default=True :param bayesephem: Include BayesEphem model. Default=True """ def __init__(self, psrs, noisedict=None, psrTerm=True, bayesephem=True, pta=None, tnequad=False): if pta is None: # initialize standard model with fixed white noise # uses the implementation of ECORR in gp_signals print('Initializing the model...') tmin = np.min([p.toas.min() for p in psrs]) tmax = np.max([p.toas.max() for p in psrs]) Tspan = tmax - tmin s = gp_signals.TimingModel(use_svd=True) s += deterministic.cw_block_circ(amp_prior='log-uniform', psrTerm=psrTerm, tref=tmin, name='cw') s += blocks.red_noise_block(prior='log-uniform', psd='powerlaw', Tspan=Tspan, components=30) if bayesephem: s += deterministic_signals.PhysicalEphemerisSignal(use_epoch_toas=True) # adding white-noise, and acting on psr objects models = [] for p in psrs: if 'NANOGrav' in p.flags['pta']: s2 = s + blocks.white_noise_block(vary=False, inc_ecorr=True, gp_ecorr=True, tnequad=tnequad) models.append(s2(p)) else: s3 = s + blocks.white_noise_block(vary=False, inc_ecorr=False, tnequad=tnequad) models.append(s3(p)) pta = signal_base.PTA(models) # set white noise parameters if noisedict is None: print('No noise dictionary provided!') else: pta.set_default_params(noisedict) self.pta = pta else: # user can specify their own pta object # if ECORR is included, use the implementation in gp_signals self.pta = pta self.psrs = psrs self.noisedict = noisedict # precompute important bits: self.phiinvs = self.pta.get_phiinv(noisedict) self.TNTs = self.pta.get_TNT(noisedict) self.Nvecs = self.pta.get_ndiag(noisedict) self.Ts = self.pta.get_basis(noisedict) # self.cf_TNT = [sl.cho_factor(TNT + np.diag(phiinv)) for TNT, phiinv in zip(self.TNTs, self.phiinvs)] self.sigmainvs = [np.linalg.pinv(TNT + np.diag(phiinv)) for TNT, phiinv in zip(self.TNTs, self.phiinvs)] def compute_Fp(self, fgw): """ Computes the Fp-statistic. :param fgw: GW frequency :returns: fstat: value of the Fp-statistic at the given frequency """ N = np.zeros(2) M = np.zeros((2, 2)) fstat = 0 for psr, Nvec, TNT, T, sigmainv in zip(self.psrs, self.Nvecs, self.TNTs, self.Ts, self.sigmainvs): ntoa = len(psr.toas) A = np.zeros((2, ntoa)) A[0, :] = 1 / fgw ** (1 / 3) * np.sin(2 * np.pi * fgw * psr.toas) A[1, :] = 1 / fgw ** (1 / 3) * np.cos(2 * np.pi * fgw * psr.toas) ip1 = innerprod(Nvec, T, sigmainv, TNT, A[0, :], psr.residuals) # logger.info(ip1) ip2 = innerprod(Nvec, T, sigmainv, TNT, A[1, :], psr.residuals) # logger.info(ip2) N = np.array([ip1, ip2]) # define M matrix M_ij=(A_i|A_j) for jj in range(2): for kk in range(2): M[jj, kk] = innerprod(Nvec, T, sigmainv, TNT, A[jj, :], A[kk, :]) # take inverse of M Minv = np.linalg.pinv(M) fstat += 0.5 * np.dot(N, np.dot(Minv, N)) return fstat def compute_fap(self, fgw): """ Compute false alarm rate for Fp-Statistic. We calculate the log of the FAP and then exponentiate it in order to avoid numerical precision problems :param fgw: GW frequency :returns: False alarm probability as defined in Eq (64) of Ellis, Seiemens, Creighton (2012) """ fp0 = self.compute_Fp(fgw) N = len(self.psrs) n = np.arange(0, N) return np.sum(np.exp(n*np.log(fp0)-fp0-np.log(scipy.special.gamma(n+1))))
5,418
33.297468
112
py
enterprise_extensions
enterprise_extensions-master/enterprise_extensions/frequentist/chi_squared.py
import numpy as np import scipy.linalg as sl def get_chi2(pta, xs): """Compute generalize chisq for pta: chisq = y^T (N + F phi F^T)^-1 y = y^T N^-1 y - y^T N^-1 F (F^T N^-1 F + phi^-1)^-1 F^T N^-1 y """ params = xs if isinstance(xs, dict) else pta.map_params(xs) # chisq = y^T (N + F phi F^T)^-1 y # = y^T N^-1 y - y^T N^-1 F (F^T N^-1 F + phi^-1)^-1 F^T N^-1 y TNrs = pta.get_TNr(params) TNTs = pta.get_TNT(params) phiinvs = pta.get_phiinv(params, logdet=True, method='cliques') chi2 = np.sum(ell[0] for ell in pta.get_rNr_logdet(params)) if pta._commonsignals: raise NotImplementedError("get_chi2 does not support correlated signals") else: for TNr, TNT, pl in zip(TNrs, TNTs, phiinvs): if TNr is None: continue phiinv, _ = pl Sigma = TNT + (np.diag(phiinv) if phiinv.ndim == 1 else phiinv) try: cf = sl.cho_factor(Sigma) expval = sl.cho_solve(cf, TNr) except sl.LinAlgError: # pragma: no cover return -np.inf chi2 = chi2 - np.dot(TNr, expval) return chi2 def get_reduced_chi2(pta, xs): """ Compute Generalized Reduced Chi Square for PTA using degrees of freedom (DOF), defined by dof= NTOAs - N Timing Parameters - N Model Params. """ keys = [ky for ky in pta._signal_dict.keys() if 'timing_model' in ky] chi2 = get_chi2(pta, xs) degs = np.array([pta._signal_dict[ky].get_basis().shape for ky in keys]) dof = np.sum(degs[:, 0]) - np.sum(degs[:, 1]) dof -= len(pta.param_names) return chi2/dof
1,704
29.446429
81
py
Graph-Unlearning
Graph-Unlearning-main/main.py
import logging import torch from exp.exp_graph_partition import ExpGraphPartition from exp.exp_node_edge_unlearning import ExpNodeEdgeUnlearning from exp.exp_unlearning import ExpUnlearning from exp.exp_attack_unlearning import ExpAttackUnlearning from parameter_parser import parameter_parser def config_logger(save_name): # create logger logger = logging.getLogger() logger.setLevel(logging.DEBUG) formatter = logging.Formatter('%(levelname)s:%(asctime)s: - %(name)s - : %(message)s') # create console handler ch = logging.StreamHandler() ch.setLevel(logging.DEBUG) ch.setFormatter(formatter) logger.addHandler(ch) def main(args, exp): # config the logger logger_name = "_".join((exp, args['dataset_name'], args['partition_method'], str(args['num_shards']), str(args['test_ratio']))) config_logger(logger_name) logging.info(logger_name) torch.set_num_threads(args["num_threads"]) torch.cuda.set_device(args["cuda"]) os.environ["CUDA_VISIBLE_DEVICES"] = str(args["cuda"]) # subroutine entry for different methods if exp == 'partition': ExpGraphPartition(args) elif exp == 'unlearning': ExpUnlearning(args) elif exp == 'node_edge_unlearning': ExpNodeEdgeUnlearning(args) elif exp == 'attack_unlearning': ExpAttackUnlearning(args) else: raise Exception('unsupported attack') if __name__ == "__main__": args = parameter_parser() main(args, args['exp'])
1,499
27.846154
131
py
Graph-Unlearning
Graph-Unlearning-main/lib_node_embedding/node_embedding.py
import logging import config from lib_gnn_model.graphsage.graphsage import SAGE from lib_dataset.data_store import DataStore class NodeEmbedding: def __init__(self, args, graph, data): super(NodeEmbedding, self) self.logger = logging.getLogger(__name__) self.args = args self.graph = graph self.data = data self.data_store = DataStore(self.args) def sage_encoder(self): if self.args['is_gen_embedding']: self.logger.info("generating node embeddings with GraphSage...") node_to_embedding = {} # run sage self.target_model = SAGE(self.data.num_features, len(self.data.y.unique()), self.data) # self.target_model.train_model(50) # load a pretrained GNN model for generating node embeddings target_model_name = '_'.join((self.args['target_model'], 'random_1', str(self.args['shard_size_delta']), str(self.args['ratio_deleted_edges']), '0_0_1')) target_model_file = config.MODEL_PATH + self.args['dataset_name'] + '/' + target_model_name self.target_model.load_model(target_model_file) logits = self.target_model.generate_embeddings().detach().cpu().numpy() for node in self.graph.nodes: node_to_embedding[node] = logits[node] self.data_store.save_embeddings(node_to_embedding) else: node_to_embedding = self.data_store.load_embeddings() return node_to_embedding
1,606
34.711111
103
py
Graph-Unlearning
Graph-Unlearning-main/lib_node_embedding/ge/walker.py
import itertools import math import random import numpy as np import pandas as pd from joblib import Parallel, delayed from tqdm import trange from .alias import alias_sample, create_alias_table from .utils import partition_num class RandomWalker: def __init__(self, G, p=1, q=1, use_rejection_sampling=0): """ :param G: :param p: Return parameter,controls the likelihood of immediately revisiting a node in the walk. :param q: In-out parameter,allows the search to differentiate between “inward” and “outward” nodes :param use_rejection_sampling: Whether to use the rejection sampling strategy in node2vec. """ self.G = G self.p = p self.q = q self.use_rejection_sampling = use_rejection_sampling def deepwalk_walk(self, walk_length, start_node): walk = [start_node] while len(walk) < walk_length: cur = walk[-1] cur_nbrs = list(self.G.neighbors(cur)) if len(cur_nbrs) > 0: walk.append(random.choice(cur_nbrs)) else: break return walk def node2vec_walk(self, walk_length, start_node): G = self.G alias_nodes = self.alias_nodes alias_edges = self.alias_edges walk = [start_node] while len(walk) < walk_length: cur = walk[-1] cur_nbrs = list(G.neighbors(cur)) if len(cur_nbrs) > 0: if len(walk) == 1: walk.append( cur_nbrs[alias_sample(alias_nodes[cur][0], alias_nodes[cur][1])]) else: prev = walk[-2] edge = (prev, cur) next_node = cur_nbrs[alias_sample(alias_edges[edge][0], alias_edges[edge][1])] walk.append(next_node) else: break return walk def node2vec_walk2(self, walk_length, start_node): """ Reference: KnightKing: A Fast Distributed Graph Random Walk Engine http://madsys.cs.tsinghua.edu.cn/publications/SOSP19-yang.pdf """ def rejection_sample(inv_p, inv_q, nbrs_num): upper_bound = max(1.0, max(inv_p, inv_q)) lower_bound = min(1.0, min(inv_p, inv_q)) shatter = 0 second_upper_bound = max(1.0, inv_q) if (inv_p > second_upper_bound): shatter = second_upper_bound / nbrs_num upper_bound = second_upper_bound + shatter return upper_bound, lower_bound, shatter G = self.G alias_nodes = self.alias_nodes inv_p = 1.0 / self.p inv_q = 1.0 / self.q walk = [start_node] while len(walk) < walk_length: cur = walk[-1] cur_nbrs = list(G.neighbors(cur)) if len(cur_nbrs) > 0: if len(walk) == 1: walk.append( cur_nbrs[alias_sample(alias_nodes[cur][0], alias_nodes[cur][1])]) else: upper_bound, lower_bound, shatter = rejection_sample( inv_p, inv_q, len(cur_nbrs)) prev = walk[-2] prev_nbrs = set(G.neighbors(prev)) while True: prob = random.random() * upper_bound if (prob + shatter >= upper_bound): next_node = prev break next_node = cur_nbrs[alias_sample( alias_nodes[cur][0], alias_nodes[cur][1])] if (prob < lower_bound): break if (prob < inv_p and next_node == prev): break _prob = 1.0 if next_node in prev_nbrs else inv_q if (prob < _prob): break walk.append(next_node) else: break return walk def simulate_walks(self, num_walks, walk_length, workers=1, verbose=0): G = self.G nodes = list(G.nodes()) results = Parallel(n_jobs=workers, verbose=verbose, )( delayed(self._simulate_walks)(nodes, num, walk_length) for num in partition_num(num_walks, workers)) walks = list(itertools.chain(*results)) return walks def _simulate_walks(self, nodes, num_walks, walk_length,): walks = [] for _ in range(num_walks): random.shuffle(nodes) for v in nodes: if self.p == 1 and self.q == 1: walks.append(self.deepwalk_walk( walk_length=walk_length, start_node=v)) elif self.use_rejection_sampling: walks.append(self.node2vec_walk2( walk_length=walk_length, start_node=v)) else: walks.append(self.node2vec_walk( walk_length=walk_length, start_node=v)) return walks def get_alias_edge(self, t, v): """ compute unnormalized transition probability between nodes v and its neighbors give the previous visited node t. :param t: :param v: :return: """ G = self.G p = self.p q = self.q unnormalized_probs = [] for x in G.neighbors(v): weight = G[v][x].get('weight', 1.0) # w_vx if x == t: # d_tx == 0 unnormalized_probs.append(weight/p) elif G.has_edge(x, t): # d_tx == 1 unnormalized_probs.append(weight) else: # d_tx > 1 unnormalized_probs.append(weight/q) norm_const = sum(unnormalized_probs) normalized_probs = [ float(u_prob)/norm_const for u_prob in unnormalized_probs] return create_alias_table(normalized_probs) def preprocess_transition_probs(self): """ Preprocessing of transition probabilities for guiding the random walks. """ G = self.G alias_nodes = {} for node in G.nodes(): unnormalized_probs = [G[node][nbr].get('weight', 1.0) for nbr in G.neighbors(node)] norm_const = sum(unnormalized_probs) normalized_probs = [ float(u_prob)/norm_const for u_prob in unnormalized_probs] alias_nodes[node] = create_alias_table(normalized_probs) if not self.use_rejection_sampling: alias_edges = {} for edge in G.edges(): alias_edges[edge] = self.get_alias_edge(edge[0], edge[1]) if not G.is_directed(): alias_edges[(edge[1], edge[0])] = self.get_alias_edge(edge[1], edge[0]) self.alias_edges = alias_edges self.alias_nodes = alias_nodes return class BiasedWalker: def __init__(self, idx2node, temp_path): self.idx2node = idx2node self.idx = list(range(len(self.idx2node))) self.temp_path = temp_path pass def simulate_walks(self, num_walks, walk_length, stay_prob=0.3, workers=1, verbose=0): layers_adj = pd.read_pickle(self.temp_path+'layers_adj.pkl') layers_alias = pd.read_pickle(self.temp_path+'layers_alias.pkl') layers_accept = pd.read_pickle(self.temp_path+'layers_accept.pkl') gamma = pd.read_pickle(self.temp_path+'gamma.pkl') walks = [] initialLayer = 0 nodes = self.idx # list(self.g.nodes()) results = Parallel(n_jobs=workers, verbose=verbose, )( delayed(self._simulate_walks)(nodes, num, walk_length, stay_prob, layers_adj, layers_accept, layers_alias, gamma) for num in partition_num(num_walks, workers)) walks = list(itertools.chain(*results)) return walks def _simulate_walks(self, nodes, num_walks, walk_length, stay_prob, layers_adj, layers_accept, layers_alias, gamma): walks = [] for _ in range(num_walks): random.shuffle(nodes) for v in nodes: walks.append(self._exec_random_walk(layers_adj, layers_accept, layers_alias, v, walk_length, gamma, stay_prob)) return walks def _exec_random_walk(self, graphs, layers_accept, layers_alias, v, walk_length, gamma, stay_prob=0.3): initialLayer = 0 layer = initialLayer path = [] path.append(self.idx2node[v]) while len(path) < walk_length: r = random.random() if(r < stay_prob): # same layer v = chooseNeighbor(v, graphs, layers_alias, layers_accept, layer) path.append(self.idx2node[v]) else: # different layer r = random.random() try: x = math.log(gamma[layer][v] + math.e) p_moveup = (x / (x + 1)) except: print(layer, v) raise ValueError() if(r > p_moveup): if(layer > initialLayer): layer = layer - 1 else: if((layer + 1) in graphs and v in graphs[layer + 1]): layer = layer + 1 return path def chooseNeighbor(v, graphs, layers_alias, layers_accept, layer): v_list = graphs[layer][v] idx = alias_sample(layers_accept[layer][v], layers_alias[layer][v]) v = v_list[idx] return v
9,789
34.34296
136
py
Graph-Unlearning
Graph-Unlearning-main/lib_node_embedding/ge/classify.py
from __future__ import print_function import numpy from sklearn.metrics import f1_score, accuracy_score from sklearn.multiclass import OneVsRestClassifier from sklearn.preprocessing import MultiLabelBinarizer class TopKRanker(OneVsRestClassifier): def predict(self, X, top_k_list): probs = numpy.asarray(super(TopKRanker, self).predict_proba(X)) all_labels = [] for i, k in enumerate(top_k_list): probs_ = probs[i, :] labels = self.classes_[probs_.argsort()[-k:]].tolist() probs_[:] = 0 probs_[labels] = 1 all_labels.append(probs_) return numpy.asarray(all_labels) class Classifier(object): def __init__(self, embeddings, clf): self.embeddings = embeddings self.clf = TopKRanker(clf) self.binarizer = MultiLabelBinarizer(sparse_output=True) def train(self, X, Y, Y_all): self.binarizer.fit(Y_all) X_train = [self.embeddings[x] for x in X] Y = self.binarizer.transform(Y) self.clf.fit(X_train, Y) def evaluate(self, X, Y): top_k_list = [len(l) for l in Y] Y_ = self.predict(X, top_k_list) Y = self.binarizer.transform(Y) averages = ["micro", "macro", "samples", "weighted"] results = {} for average in averages: results[average] = f1_score(Y, Y_, average=average) results['acc'] = accuracy_score(Y,Y_) print('-------------------') print(results) return results print('-------------------') def predict(self, X, top_k_list): X_ = numpy.asarray([self.embeddings[x] for x in X]) Y = self.clf.predict(X_, top_k_list=top_k_list) return Y def split_train_evaluate(self, X, Y, train_precent, seed=0): state = numpy.random.get_state() training_size = int(train_precent * len(X)) numpy.random.seed(seed) shuffle_indices = numpy.random.permutation(numpy.arange(len(X))) X_train = [X[shuffle_indices[i]] for i in range(training_size)] Y_train = [Y[shuffle_indices[i]] for i in range(training_size)] X_test = [X[shuffle_indices[i]] for i in range(training_size, len(X))] Y_test = [Y[shuffle_indices[i]] for i in range(training_size, len(X))] self.train(X_train, Y_train, Y) numpy.random.set_state(state) return self.evaluate(X_test, Y_test) def read_node_label(filename, skip_head=False): fin = open(filename, 'r') X = [] Y = [] while 1: if skip_head: fin.readline() l = fin.readline() if l == '': break vec = l.strip().split(' ') X.append(vec[0]) Y.append(vec[1:]) fin.close() return X, Y
2,772
31.244186
78
py
Graph-Unlearning
Graph-Unlearning-main/lib_node_embedding/ge/alias.py
import numpy as np def create_alias_table(area_ratio): """ :param area_ratio: sum(area_ratio)=1 :return: accept,alias """ l = len(area_ratio) accept, alias = [0] * l, [0] * l small, large = [], [] area_ratio_ = np.array(area_ratio) * l for i, prob in enumerate(area_ratio_): if prob < 1.0: small.append(i) else: large.append(i) while small and large: small_idx, large_idx = small.pop(), large.pop() accept[small_idx] = area_ratio_[small_idx] alias[small_idx] = large_idx area_ratio_[large_idx] = area_ratio_[large_idx] - \ (1 - area_ratio_[small_idx]) if area_ratio_[large_idx] < 1.0: small.append(large_idx) else: large.append(large_idx) while large: large_idx = large.pop() accept[large_idx] = 1 while small: small_idx = small.pop() accept[small_idx] = 1 return accept, alias def alias_sample(accept, alias): """ :param accept: :param alias: :return: sample index """ N = len(accept) i = int(np.random.random()*N) r = np.random.random() if r < accept[i]: return i else: return alias[i]
1,261
21.945455
59
py
Graph-Unlearning
Graph-Unlearning-main/lib_node_embedding/ge/utils.py
def preprocess_nxgraph(graph): node2idx = {} idx2node = [] node_size = 0 for node in graph.nodes(): node2idx[node] = node_size idx2node.append(node) node_size += 1 return idx2node, node2idx def partition_dict(vertices, workers): batch_size = (len(vertices) - 1) // workers + 1 part_list = [] part = [] count = 0 for v1, nbs in vertices.items(): part.append((v1, nbs)) count += 1 if count % batch_size == 0: part_list.append(part) part = [] if len(part) > 0: part_list.append(part) return part_list def partition_list(vertices, workers): batch_size = (len(vertices) - 1) // workers + 1 part_list = [] part = [] count = 0 for v1, nbs in enumerate(vertices): part.append((v1, nbs)) count += 1 if count % batch_size == 0: part_list.append(part) part = [] if len(part) > 0: part_list.append(part) return part_list def partition_num(num, workers): if num % workers == 0: return [num//workers]*workers else: return [num//workers]*workers + [num % workers]
1,191
23.326531
55
py
Graph-Unlearning
Graph-Unlearning-main/lib_utils/utils.py
import os import errno import numpy as np import pandas as pd import networkx as nx import torch from scipy.sparse import coo_matrix from tqdm import tqdm def graph_reader(path): """ Function to read the graph from the path. :param path: Path to the edge list. :return graph: NetworkX object returned. """ graph = nx.from_edgelist(pd.read_csv(path).values.tolist()) return graph def feature_reader(path): """ Reading the sparse feature matrix stored as csv from the disk. :param path: Path to the csv file. :return features: Dense matrix of features. """ features = pd.read_csv(path) node_index = features["node_id"].values.tolist() feature_index = features["feature_id"].values.tolist() feature_values = features["value"].values.tolist() node_count = max(node_index) + 1 feature_count = max(feature_index) + 1 features = coo_matrix((feature_values, (node_index, feature_index)), shape=(node_count, feature_count)).toarray() return features def target_reader(path): """ Reading the target vector from disk. :param path: Path to the target. :return target: Target vector. """ target = np.array(pd.read_csv(path)["target"]).reshape(-1, 1) return target def make_adjacency(graph, max_degree, sel=None): all_nodes = np.array(graph.nodes()) # Initialize w/ links to a dummy node n_nodes = len(all_nodes) adj = (np.zeros((n_nodes + 1, max_degree)) + n_nodes).astype(int) if sel is not None: # only look at nodes in training set all_nodes = all_nodes[sel] for node in tqdm(all_nodes): neibs = np.array(list(graph.neighbors(node))) if sel is not None: neibs = neibs[sel[neibs]] if len(neibs) > 0: if len(neibs) > max_degree: neibs = np.random.choice(neibs, max_degree, replace=False) elif len(neibs) < max_degree: extra = np.random.choice(neibs, max_degree - neibs.shape[0], replace=True) neibs = np.concatenate([neibs, extra]) adj[node, :] = neibs return adj def connected_component_subgraphs(graph): """ Find all connected subgraphs in a networkx Graph Args: graph (Graph): A networkx Graph Yields: generator: A subgraph generator """ for c in nx.connected_components(graph): yield graph.subgraph(c) def check_exist(file_name): if not os.path.exists(os.path.dirname(file_name)): try: os.makedirs(os.path.dirname(file_name)) except OSError as exc: # Guard against race condition if exc.errno != errno.EEXIST: raise def filter_edge_index(edge_index, node_indices, reindex=True): assert np.all(np.diff(node_indices) >= 0), 'node_indices must be sorted' if isinstance(edge_index, torch.Tensor): edge_index = edge_index.cpu() node_index = np.isin(edge_index, node_indices) col_index = np.nonzero(np.logical_and(node_index[0], node_index[1]))[0] edge_index = edge_index[:, col_index] if reindex: return np.searchsorted(node_indices, edge_index) else: return edge_index def pyg_to_nx(data): """ Convert a torch geometric Data to networkx Graph. Args: data (Data): A torch geometric Data. Returns: Graph: A networkx Graph. """ graph = nx.Graph() graph.add_nodes_from(np.arange(data.num_nodes)) edge_index = data.edge_index.numpy() for u, v in np.transpose(edge_index): graph.add_edge(u, v) return graph def edge_index_to_nx(edge_index, num_nodes): """ Convert a torch geometric Data to networkx Graph by edge_index. Args: edge_index (Data.edge_index): A torch geometric Data. num_nodes (int): Number of nodes in a graph. Returns: Graph: networkx Graph """ graph = nx.Graph() graph.add_nodes_from(np.arange(num_nodes)) edge_index = edge_index.numpy() for u, v in np.transpose(edge_index): graph.add_edge(u, v) return graph def filter_edge_index_1(data, node_indices): """ Remove unnecessary edges from a torch geometric Data, only keep the edges between node_indices. Args: data (Data): A torch geometric Data. node_indices (list): A list of nodes to be deleted from data. Returns: data.edge_index: The new edge_index after removing the node_indices. """ if isinstance(data.edge_index, torch.Tensor): data.edge_index = data.edge_index.cpu() edge_index = data.edge_index node_index = np.isin(edge_index, node_indices) col_index = np.nonzero(np.logical_and(node_index[0], node_index[1]))[0] edge_index = data.edge_index[:, col_index] return np.searchsorted(node_indices, edge_index)
4,851
27.046243
117
py
Graph-Unlearning
Graph-Unlearning-main/lib_utils/logger.py
from texttable import Texttable def tab_printer(args): """ Function to print the logs in a nice tabular format. :param args: Parameters used for the model. """ # args = vars(args) keys = sorted(args.keys()) t = Texttable() t.add_rows([["Parameter", "Value"]] + [[k.replace("_"," ").capitalize(),args[k]] for k in keys]) print(t.draw())
373
30.166667
101
py
Graph-Unlearning
Graph-Unlearning-main/lib_aggregator/opt_dataset.py
from torch.utils.data import Dataset class OptDataset(Dataset): def __init__(self, posteriors, labels): self.posteriors = posteriors self.labels = labels def __getitem__(self, index): ret_posterior = {} for shard, post in self.posteriors.items(): ret_posterior[shard] = post[index] return ret_posterior, self.labels[index] def __len__(self): return self.labels.shape[0]
448
22.631579
51
py
Graph-Unlearning
Graph-Unlearning-main/lib_aggregator/optimal_aggregator.py
import copy import logging import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.optim.lr_scheduler import MultiStepLR from torch.utils.data import DataLoader from torch_geometric.data import Data from lib_aggregator.opt_dataset import OptDataset from lib_dataset.data_store import DataStore from lib_utils import utils class OptimalAggregator: def __init__(self, run, target_model, data, args): self.logger = logging.getLogger('optimal_aggregator') self.args = args self.run = run self.target_model = target_model self.data = data self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.num_shards = args['num_shards'] def generate_train_data(self): data_store = DataStore(self.args) train_indices, _ = data_store.load_train_test_split() # sample a set of nodes from train_indices if self.args["num_opt_samples"] == 1000: train_indices = np.random.choice(train_indices, size=1000, replace=False) elif self.args["num_opt_samples"] == 10000: train_indices = np.random.choice(train_indices, size=int(train_indices.shape[0] * 0.1), replace=False) elif self.args["num_opt_samples"] == 1: train_indices = np.random.choice(train_indices, size=int(train_indices.shape[0]), replace=False) train_indices = np.sort(train_indices) self.logger.info("Using %s samples for optimization" % (int(train_indices.shape[0]))) x = self.data.x[train_indices] y = self.data.y[train_indices] edge_index = utils.filter_edge_index(self.data.edge_index, train_indices) train_data = Data(x=x, edge_index=torch.from_numpy(edge_index), y=y) train_data.train_mask = torch.zeros(train_indices.shape[0], dtype=torch.bool) train_data.test_mask = torch.ones(train_indices.shape[0], dtype=torch.bool) self.true_labels = y self.posteriors = {} for shard in range(self.num_shards): self.target_model.data = train_data data_store.load_target_model(self.run, self.target_model, shard) self.posteriors[shard] = self.target_model.posterior().to(self.device) def optimization(self): weight_para = nn.Parameter(torch.full((self.num_shards,), fill_value=1.0 / self.num_shards), requires_grad=True) optimizer = optim.Adam([weight_para], lr=self.args['opt_lr']) scheduler = MultiStepLR(optimizer, milestones=[500, 1000], gamma=self.args['opt_lr']) train_dset = OptDataset(self.posteriors, self.true_labels) train_loader = DataLoader(train_dset, batch_size=32, shuffle=True, num_workers=0) min_loss = 1000.0 for epoch in range(self.args['opt_num_epochs']): loss_all = 0.0 for posteriors, labels in train_loader: labels = labels.to(self.device) optimizer.zero_grad() loss = self._loss_fn(posteriors, labels, weight_para) loss.backward() loss_all += loss optimizer.step() with torch.no_grad(): weight_para[:] = torch.clamp(weight_para, min=0.0) scheduler.step() if loss_all < min_loss: ret_weight_para = copy.deepcopy(weight_para) min_loss = loss_all self.logger.info('epoch: %s, loss: %s' % (epoch, loss_all)) return ret_weight_para / torch.sum(ret_weight_para) def _loss_fn(self, posteriors, labels, weight_para): aggregate_posteriors = torch.zeros_like(posteriors[0]) for shard in range(self.num_shards): aggregate_posteriors += weight_para[shard] * posteriors[shard] aggregate_posteriors = F.softmax(aggregate_posteriors, dim=1) loss_1 = F.cross_entropy(aggregate_posteriors, labels) loss_2 = torch.sqrt(torch.sum(weight_para ** 2)) return loss_1 + loss_2
4,054
37.990385
120
py
Graph-Unlearning
Graph-Unlearning-main/lib_aggregator/aggregator.py
import logging import torch torch.cuda.empty_cache() from sklearn.metrics import f1_score import numpy as np from lib_aggregator.optimal_aggregator import OptimalAggregator from lib_dataset.data_store import DataStore class Aggregator: def __init__(self, run, target_model, data, shard_data, args): self.logger = logging.getLogger('Aggregator') self.args = args self.data_store = DataStore(self.args) self.run = run self.target_model = target_model self.data = data self.shard_data = shard_data self.num_shards = args['num_shards'] def generate_posterior(self, suffix=""): self.true_label = self.shard_data[0].y[self.shard_data[0]['test_mask']].detach().cpu().numpy() self.posteriors = {} for shard in range(self.args['num_shards']): self.target_model.data = self.shard_data[shard] self.data_store.load_target_model(self.run, self.target_model, shard, suffix) self.posteriors[shard] = self.target_model.posterior() self.logger.info("Saving posteriors.") self.data_store.save_posteriors(self.posteriors, self.run, suffix) def aggregate(self): if self.args['aggregator'] == 'mean': aggregate_f1_score = self._mean_aggregator() elif self.args['aggregator'] == 'optimal': aggregate_f1_score = self._optimal_aggregator() elif self.args['aggregator'] == 'majority': aggregate_f1_score = self._majority_aggregator() else: raise Exception("unsupported aggregator.") return aggregate_f1_score def _mean_aggregator(self): posterior = self.posteriors[0] for shard in range(1, self.num_shards): posterior += self.posteriors[shard] posterior = posterior / self.num_shards return f1_score(self.true_label, posterior.argmax(axis=1).cpu().numpy(), average="micro") def _majority_aggregator(self): pred_labels = [] for shard in range(self.num_shards): pred_labels.append(self.posteriors[shard].argmax(axis=1).cpu().numpy()) pred_labels = np.stack(pred_labels) pred_label = np.argmax( np.apply_along_axis(np.bincount, axis=0, arr=pred_labels, minlength=self.posteriors[0].shape[1]), axis=0) return f1_score(self.true_label, pred_label, average="micro") def _optimal_aggregator(self): optimal = OptimalAggregator(self.run, self.target_model, self.data, self.args) optimal.generate_train_data() weight_para = optimal.optimization() self.data_store.save_optimal_weight(weight_para, run=self.run) posterior = self.posteriors[0] * weight_para[0] for shard in range(1, self.num_shards): posterior += self.posteriors[shard] * weight_para[shard] return f1_score(self.true_label, posterior.argmax(axis=1).cpu().numpy(), average="micro")
2,958
35.9875
117
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/constrained_kmeans.py
import logging import copy from tqdm import tqdm import numpy as np import cupy as np class ConstrainedKmeans: def __init__(self, data_feat, num_clusters, node_threshold, terminate_delta, max_iteration=20): self.logger = logging.getLogger('constrained_kmeans') self.data_feat = data_feat self.num_clusters = num_clusters self.node_threshold = node_threshold self.terminate_delta = terminate_delta self.max_iteration = max_iteration def initialization(self): centroids = np.random.choice(np.arange(self.data_feat.shape[0]), self.num_clusters, replace=False) self.centroid = {} for i in range(self.num_clusters): self.centroid[i] = self.data_feat[centroids[i].get()] def clustering(self): centroid = copy.deepcopy(self.centroid) km_delta = [] pbar = tqdm(total=self.max_iteration) pbar.set_description('Clustering') for i in range(self.max_iteration): self.logger.info('iteration %s' % (i,)) self._node_reassignment() self._centroid_updating() # record the average change of centroids, if the change is smaller than a very small value, then terminate delta = self._centroid_delta(centroid, self.centroid) km_delta.append(delta) centroid = copy.deepcopy(self.centroid) if delta <= self.terminate_delta: break self.logger.info("delta: %s" % delta) pbar.close() return self.clusters, km_delta def _node_reassignment(self): self.clusters = {} for i in range(self.num_clusters): self.clusters[i] = np.zeros(0, dtype=np.uint64) distance = np.zeros([self.num_clusters, self.data_feat.shape[0]]) for i in range(self.num_clusters): distance[i] = np.sum(np.power((self.data_feat - self.centroid[i]), 2), axis=1) sort_indices = np.unravel_index(np.argsort(distance, axis=None), distance.shape) clusters = sort_indices[0] users = sort_indices[1] selected_nodes = np.zeros(0, dtype=np.int64) counter = 0 while len(selected_nodes) < self.data_feat.shape[0]: cluster = int(clusters[counter]) user = users[counter] if self.clusters[cluster].size < self.node_threshold: self.clusters[cluster] = np.append(self.clusters[cluster], np.array(int(user))) selected_nodes = np.append(selected_nodes, np.array(int(user))) # delete all the following pairs for the selected user user_indices = np.where(users == user)[0] a = np.arange(users.size) b = user_indices[user_indices > counter] remain_indices = a[np.where(np.logical_not(np.isin(a, b)))[0]] clusters = clusters[remain_indices] users = users[remain_indices] counter += 1 def _centroid_updating(self): for i in range(self.num_clusters): self.centroid[i] = np.mean(self.data_feat[self.clusters[i].astype(int)], axis=0) def _centroid_delta(self, centroid_pre, centroid_cur): delta = 0.0 for i in range(len(centroid_cur)): delta += np.sum(np.abs(centroid_cur[i] - centroid_pre[i])) return delta if __name__ == '__main__': output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) data_feat = np.array([[1, 2], [1, 3], [1, 4], [1, 5], [10, 2], [10, 3]]) num_clusters = 2 node_threshold = 3 terminate_delta = 0.001 cluster = ConstrainedKmeans(data_feat, num_clusters, node_threshold, terminate_delta) cluster.initialization() cluster.clustering()
4,038
34.743363
118
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/graph_partition.py
import logging from lib_graph_partition.partition_kmeans import PartitionKMeans from lib_graph_partition.partition_lpa import PartitionConstrainedLPA, PartitionLPA, PartitionConstrainedLPABase from lib_graph_partition.metis_partition import MetisPartition from lib_graph_partition.partition_random import PartitionRandom class GraphPartition: def __init__(self, args, graph, dataset=None): self.logger = logging.getLogger(__name__) self.args = args self.graph = graph self.dataset = dataset self.partition_method = self.args['partition_method'] self.num_shards = self.args['num_shards'] def graph_partition(self): self.logger.info('graph partition, method: %s' % self.partition_method) if self.partition_method == 'random': partition_method = PartitionRandom(self.args, self.graph) elif self.partition_method in ['sage_km', 'sage_km_base']: partition_method = PartitionKMeans(self.args, self.graph, self.dataset) elif self.partition_method == 'lpa' and not self.args['is_constrained']: partition_method = PartitionLPA(self.args, self.graph) elif self.partition_method == 'lpa' and self.args['is_constrained']: partition_method = PartitionConstrainedLPA(self.args, self.graph) elif self.partition_method == 'lpa_base': partition_method = PartitionConstrainedLPABase(self.args, self.graph) elif self.partition_method == 'metis': partition_method = MetisPartition(self.args, self.graph, self.dataset) else: raise Exception('Unsupported partition method') return partition_method.partition()
1,708
42.820513
112
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/constrained_kmeans_base.py
# An implementation of ``Balanced K-Means for Clustering.'' (https://rdcu.be/cESzk) import logging import copy import numpy as np import seaborn as sns import matplotlib.pyplot as plt from munkres import Munkres from lib_graph_partition.hungarian import Hungarian from lib_graph_partition.hungarian_1 import KMMatcher class ConstrainedKmeansBase: def __init__(self, data_feat, num_clusters, node_threshold, terminate_delta, max_iteration=20): self.logger = logging.getLogger('constrained_kmeans_base') self.data_feat = data_feat self.num_clusters = num_clusters self.node_threshold = node_threshold self.terminate_delta = terminate_delta self.max_iteration = max_iteration def initialization(self): centroids = np.random.choice(np.arange(self.data_feat.shape[0]), self.num_clusters, replace=False) self.centroid = dict(zip(range(self.num_clusters), self.data_feat[centroids])) def clustering(self): centroid = copy.deepcopy(self.centroid) centroid_delta = {} km_base_delta = [] for i in range(self.max_iteration): self.logger.info('iteration %s' % (i)) self._node_reassignment() self._centroid_updating() # record the average change of centroids, if the change is smaller than a very small value, then terminate delta = self._centroid_delta(centroid, self.centroid) centroid_delta[i] = delta km_base_delta.append(delta) centroid = copy.deepcopy(self.centroid) if delta <= self.terminate_delta: break self.logger.info("delta: %s" % delta) return self.clusters, km_base_delta def _node_reassignment(self): self.logger.info('Node reassignment begins') self.clusters = dict( zip(np.arange(self.num_clusters), [np.zeros(0, dtype=np.uint64) for _ in range(self.num_clusters)])) distance = np.zeros([self.num_clusters, self.data_feat.shape[0]]) # cost_matrix = np.zeros([self.data_feat.shape[0], self.data_feat.shape[0]]) for i in range(self.num_clusters): distance[i] = np.sum((self.data_feat - self.centroid[i]) ** 2, axis=1) cost_matrix = np.tile(distance, (self.data_feat.shape[0], 1)) cost_matrix = cost_matrix[:self.data_feat.shape[0], :] # too slow # matrix = np.array(cost_matrix) # m = Munkres() # assignment = np.array(assignment) # assignment = assignment[:, 1] # hungarian = Hungarian(cost_matrix) # hungarian.calculate() # assignment = hungarian.get_results() # assignment = np.array(assignment) # assignment = assignment[np.argsort(assignment[:, 0])] # assignment = assignment[:, 1] matcher = KMMatcher(cost_matrix) assignment, _ = matcher.solve() partition = np.zeros(self.data_feat.shape[0]) for i in range(self.data_feat.shape[0]): partition[assignment[i]] = i % self.num_clusters for i in range(self.num_clusters): self.clusters[i] = np.where(partition == i)[0] def _centroid_updating(self): self.logger.info('Updating centroid begins') for i in range(self.num_clusters): self.centroid[i] = np.mean(self.data_feat[self.clusters[i]], axis=0) def _centroid_delta(self, centroid_pre, centroid_cur): delta = 0.0 for i in range(len(centroid_cur)): delta += np.sum(np.abs(centroid_cur[i] - centroid_pre[i])) return delta if __name__ == '__main__': output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) data_feat = np.array([[1, 2], [1, 3], [1, 4], [1, 5], [10, 2], [10, 3]]) num_clusters = 2 node_threshold = 3 terminate_delta = 0.001 cluster = ConstrainedKmeansBase(data_feat, num_clusters, node_threshold, terminate_delta) cluster.initialization() cluster.clustering()
4,307
35.820513
118
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/metis_partition.py
import numpy as np import networkx as nx import pymetis from torch_geometric.data import ClusterData from torch_geometric.utils import from_networkx from lib_graph_partition.partition import Partition class MetisPartition(Partition): def __init__(self, args, graph, dataset): super(MetisPartition, self).__init__(args, graph, dataset) self.graph = graph self.args = args self.data = dataset def partition(self, recursive=False): # recursive (bool, optional): If set to :obj:`True`, will use multilevel # recursive bisection instead of multilevel k-way partitioning. # (default: :obj:`False`) # only use train data, not the whole dataset self.train_data = from_networkx(self.graph) data = ClusterData(self.train_data, self.args['num_shards'], recursive=recursive) community_to_node = {} for i in range(self.args['num_shards']): community_to_node[i] = [*range(data.partptr[i], data.partptr[i+1], 1)] # map node back to original graph for com in range(self.args['num_shards']): community_to_node[com] = np.array(list(self.graph.nodes))[data.partptr.numpy()[com]:data.partptr.numpy()[com+1]] return community_to_node class PyMetisPartition(Partition): def __init__(self, args, graph, dataset): super(PyMetisPartition, self).__init__(args, graph, dataset) self.graph = graph self.args = args self.data = dataset def partition(self, recursive=False): # recursive (bool, optional): If set to :obj:`True`, will use multilevel # recursive bisection instead of multilevel k-way partitioning. # (default: :obj:`False`) # only use train data, not the whole dataset # map graph into new graph mapping = {} for i, node in enumerate(self.graph.nodes): mapping[node] = i partition_graph = nx.relabel_nodes(self.graph, mapping=mapping) adj_list = [] for line in nx.generate_adjlist(partition_graph): line_int = list(map(int, line.split())) adj_list.append(np.array(line_int)) n_cuts, membership = pymetis.part_graph(self.args['num_shards'], adjacency=adj_list) # map node back to original graph community_to_node = {} for shard_index in range(self.args['num_shards']): community_to_node[shard_index] = np.array([node_id for node_id, node_shard_index in zip(list(mapping.keys()), membership) if node_shard_index == shard_index]) return community_to_node
2,609
38.545455
170
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/constrained_lpa.py
import copy import logging from collections import defaultdict import numpy as np class ConstrainedLPA: def __init__(self, adj, num_communities, node_threshold, terminate_delta): self.logger = logging.getLogger('constrained_lpa_single') self.adj = adj self.num_nodes = adj.shape[0] self.num_communities = num_communities self.node_threshold = node_threshold self.terminate_delta = terminate_delta def initialization(self): self.logger.info('initializing communities') random_nodes = np.arange(self.num_nodes) np.random.shuffle(random_nodes) self.communities = defaultdict(set) self.node_community = np.zeros(self.adj.shape[0]) # each node use node is as its community label for community, nodes in enumerate(np.array_split(random_nodes, self.num_communities)): self.communities[community] = set(nodes) self.node_community[nodes] = community def community_detection(self, iterations=100): self.logger.info('detecting communities') communities = copy.deepcopy(self.communities) lpa_deltas = [] # Currently, break when maximum iterations round achieves. for i in range(iterations): self.logger.info('iteration %s' % (i,)) desire_move = self._determine_desire_move() sort_indices = np.flip(np.argsort(desire_move[:, 2])) candidate_nodes = defaultdict(list) # allocate nodes' community with descending order of colocate count for node in sort_indices: src_community = desire_move[node][0] dst_community = desire_move[node][1] if src_community != dst_community: if len(self.communities[dst_community]) < self.node_threshold: self.node_community[node] = dst_community self.communities[dst_community].add(node) self.communities[src_community].remove(node) # reallocate the candidate nodes candidate_nodes_cur = candidate_nodes[src_community] while len(candidate_nodes_cur) != 0: node_cur = candidate_nodes_cur[0] src_community_cur = desire_move[node_cur][0] dst_community_cur = desire_move[node_cur][1] self.node_community[node_cur] = dst_community_cur self.communities[dst_community_cur].add(node_cur) self.communities[src_community_cur].remove(node_cur) candidate_nodes[dst_community_cur].pop(0) candidate_nodes_cur = candidate_nodes[src_community_cur] else: candidate_nodes[dst_community].append(node) # record the communities of each iteration, break the loop while communities are stable. delta = self._lpa_delta(communities, self.communities) lpa_deltas.append(delta) self.logger.info("%d" % delta) communities = copy.deepcopy(self.communities) if delta <= self.terminate_delta: break return self.communities, lpa_deltas def _determine_desire_move(self): desire_move = np.zeros([self.num_nodes, 3]) desire_move[:, 0] = self.node_community for i in range(self.num_nodes): # neighbor_community = self.node_community[np.nonzero(self.adj[i])[0]] # for non-bool adj neighbor_community = self.node_community[self.adj[i]] # for bool adj unique_community, unique_count = np.unique(neighbor_community, return_counts=True) if unique_community.shape[0] == 0: continue max_indices = np.where(unique_count == np.max(unique_count))[0] if max_indices.size == 1: desire_move[i, 1] = unique_community[max_indices] desire_move[i, 2] = unique_count[max_indices] elif max_indices.size > 1: max_index = np.random.choice(max_indices) desire_move[i, 1] = unique_community[max_index] desire_move[i, 2] = unique_count[max_index] return desire_move def _lpa_delta(self, lpa_pre, lpa_cur): delta = 0.0 for i in range(len(lpa_cur)): delta += len((lpa_cur[i] | lpa_pre[i]) - (lpa_cur[i] & lpa_pre[i])) return delta if __name__ == '__main__': output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) adj = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]], dtype=np.bool) num_communities = 2 node_threshold = 3 terminate_delta = 1 lpa = ConstrainedLPA(adj, num_communities, node_threshold, terminate_delta) lpa.initialization() lpa.community_detection()
5,167
38.450382
104
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/partition_kmeans.py
import math import pickle import cupy as cp import numpy as np import logging from sklearn.cluster import KMeans import config from lib_graph_partition.constrained_kmeans_base import ConstrainedKmeansBase from lib_graph_partition.partition import Partition from lib_graph_partition.constrained_kmeans import ConstrainedKmeans from lib_node_embedding.node_embedding import NodeEmbedding class PartitionKMeans(Partition): def __init__(self, args, graph, dataset): super(PartitionKMeans, self).__init__(args, graph, dataset) self.logger = logging.getLogger('partition_kmeans') cp.cuda.Device(self.args['cuda']).use() self.load_embeddings() def load_embeddings(self): node_embedding = NodeEmbedding(self.args, self.graph, self.dataset) if self.partition_method in ["sage_km", "sage_km_base"]: self.node_to_embedding = node_embedding.sage_encoder() else: raise Exception('unsupported embedding method') def partition(self): self.logger.info("partitioning") embedding = [] for node in self.node_to_embedding.keys(): embedding.append(self.node_to_embedding[node]) if not self.args['is_constrained']: cluster = KMeans(n_clusters=self.num_shards, random_state=10) cluster_labels = cluster.fit_predict(embedding) node_to_community = {} for com, node in zip(cluster_labels, self.node_to_embedding.keys()): node_to_community[node] = com community_to_node = {} for com in range(len(set(node_to_community.values()))): community_to_node[com] = np.where(np.array(list(node_to_community.values())) == com)[0] community_to_node = dict(sorted(community_to_node.items())) else: # node_threshold = math.ceil(self.graph.number_of_nodes() / self.num_shards) # node_threshold = math.ceil(self.graph.number_of_nodes() / self.num_shards + 0.05*self.graph.number_of_nodes()) node_threshold = math.ceil( self.graph.number_of_nodes() / self.args['num_shards'] + self.args['shard_size_delta'] * ( self.graph.number_of_nodes() - self.graph.number_of_nodes() / self.args['num_shards'])) self.logger.info("#.nodes: %s. Shard threshold: %s." % (self.graph.number_of_nodes(), node_threshold)) if self.partition_method == 'sage_km_base': cluster = ConstrainedKmeansBase(np.array(embedding), num_clusters=self.num_shards, node_threshold=node_threshold, terminate_delta=self.args['terminate_delta']) cluster.initialization() community, km_deltas = cluster.clustering() pickle.dump(km_deltas, open(config.ANALYSIS_PATH + "partition/base_bkm_" + self.args['dataset_name'], 'wb')) community_to_node = {} for i in range(self.num_shards): community_to_node[i] = np.array(community[i]) if self.partition_method == 'sage_km': cluster = ConstrainedKmeans(cp.array(embedding), num_clusters=self.num_shards, node_threshold=node_threshold, terminate_delta=self.args['terminate_delta']) cluster.initialization() community, km_deltas = cluster.clustering() pickle.dump(km_deltas, open(config.ANALYSIS_PATH + "partition/bkm_" + self.args['dataset_name'], 'wb')) community_to_node = {} for i in range(self.num_shards): community_to_node[i] = np.array(community[i].get().astype(int)) return community_to_node
3,881
43.62069
124
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/hungarian.py
#!/usr/bin/python """ Implementation of the Hungarian (Munkres) Algorithm using Python and NumPy References: http://www.ams.jhu.edu/~castello/362/Handouts/hungarian.pdf http://weber.ucsd.edu/~vcrawfor/hungar.pdf http://en.wikipedia.org/wiki/Hungarian_algorithm http://www.public.iastate.edu/~ddoty/HungarianAlgorithm.html http://www.clapper.org/software/python/munkres/ """ # Module Information. __version__ = "1.1.1" __author__ = "Thom Dedecko" __url__ = "http://github.com/tdedecko/hungarian-algorithm" __copyright__ = "(c) 2010 Thom Dedecko" __license__ = "MIT License" class HungarianError(Exception): pass # Import numpy. Error if fails try: import numpy as np except ImportError: raise HungarianError("NumPy is not installed.") class Hungarian: """ Implementation of the Hungarian (Munkres) Algorithm using np. Usage: hungarian = Hungarian(cost_matrix) hungarian.calculate() or hungarian = Hungarian() hungarian.calculate(cost_matrix) Handle Profit matrix: hungarian = Hungarian(profit_matrix, is_profit_matrix=True) or cost_matrix = Hungarian.make_cost_matrix(profit_matrix) The matrix will be automatically padded if it is not square. For that numpy's resize function is used, which automatically adds 0's to any row/column that is added Get results and total potential after calculation: hungarian.get_results() hungarian.get_total_potential() """ def __init__(self, input_matrix=None, is_profit_matrix=False): """ input_matrix is a List of Lists. input_matrix is assumed to be a cost matrix unless is_profit_matrix is True. """ if input_matrix is not None: # Save input my_matrix = np.array(input_matrix) self._input_matrix = np.array(input_matrix) self._maxColumn = my_matrix.shape[1] self._maxRow = my_matrix.shape[0] # Adds 0s if any columns/rows are added. Otherwise stays unaltered matrix_size = max(self._maxColumn, self._maxRow) pad_columns = matrix_size - self._maxRow pad_rows = matrix_size - self._maxColumn my_matrix = np.pad(my_matrix, ((0,pad_columns),(0,pad_rows)), 'constant', constant_values=(0)) # Convert matrix to profit matrix if necessary if is_profit_matrix: my_matrix = self.make_cost_matrix(my_matrix) self._cost_matrix = my_matrix self._size = len(my_matrix) self._shape = my_matrix.shape # Results from algorithm. self._results = [] self._totalPotential = 0 else: self._cost_matrix = None def get_results(self): """Get results after calculation.""" return self._results def get_total_potential(self): """Returns expected value after calculation.""" return self._totalPotential def calculate(self, input_matrix=None, is_profit_matrix=False): """ Implementation of the Hungarian (Munkres) Algorithm. input_matrix is a List of Lists. input_matrix is assumed to be a cost matrix unless is_profit_matrix is True. """ # Handle invalid and new matrix inputs. if input_matrix is None and self._cost_matrix is None: raise HungarianError("Invalid input") elif input_matrix is not None: self.__init__(input_matrix, is_profit_matrix) result_matrix = self._cost_matrix.copy() # Step 1: Subtract row mins from each row. for index, row in enumerate(result_matrix): result_matrix[index] -= row.min() # Step 2: Subtract column mins from each column. for index, column in enumerate(result_matrix.T): result_matrix[:, index] -= column.min() # Step 3: Use minimum number of lines to cover all zeros in the matrix. # If the total covered rows+columns is not equal to the matrix size then adjust matrix and repeat. total_covered = 0 while total_covered < self._size: # Find minimum number of lines to cover all zeros in the matrix and find total covered rows and columns. cover_zeros = CoverZeros(result_matrix) covered_rows = cover_zeros.get_covered_rows() covered_columns = cover_zeros.get_covered_columns() total_covered = len(covered_rows) + len(covered_columns) # if the total covered rows+columns is not equal to the matrix size then adjust it by min uncovered num (m). if total_covered < self._size: result_matrix = self._adjust_matrix_by_min_uncovered_num(result_matrix, covered_rows, covered_columns) # Step 4: Starting with the top row, work your way downwards as you make assignments. # Find single zeros in rows or columns. # Add them to final result and remove them and their associated row/column from the matrix. expected_results = min(self._maxColumn, self._maxRow) zero_locations = (result_matrix == 0) while len(self._results) != expected_results: # If number of zeros in the matrix is zero before finding all the results then an error has occurred. if not zero_locations.any(): raise HungarianError("Unable to find results. Algorithm has failed.") # Find results and mark rows and columns for deletion matched_rows, matched_columns = self.__find_matches(zero_locations) # Make arbitrary selection total_matched = len(matched_rows) + len(matched_columns) if total_matched == 0: matched_rows, matched_columns = self.select_arbitrary_match(zero_locations) # Delete rows and columns for row in matched_rows: zero_locations[row] = False for column in matched_columns: zero_locations[:, column] = False # Save Results self.__set_results(zip(matched_rows, matched_columns)) # Calculate total potential value = 0 for row, column in self._results: value += self._input_matrix[row, column] self._totalPotential = value @staticmethod def make_cost_matrix(profit_matrix): """ Converts a profit matrix into a cost matrix. Expects NumPy objects as input. """ # subtract profit matrix from a matrix made of the max value of the profit matrix matrix_shape = profit_matrix.shape offset_matrix = np.ones(matrix_shape, dtype=int) * profit_matrix.max() cost_matrix = offset_matrix - profit_matrix return cost_matrix def _adjust_matrix_by_min_uncovered_num(self, result_matrix, covered_rows, covered_columns): """Subtract m from every uncovered number and add m to every element covered with two lines.""" # Calculate minimum uncovered number (m) elements = [] for row_index, row in enumerate(result_matrix): if row_index not in covered_rows: for index, element in enumerate(row): if index not in covered_columns: elements.append(element) min_uncovered_num = min(elements) # Add m to every covered element adjusted_matrix = result_matrix for row in covered_rows: adjusted_matrix[row] += min_uncovered_num for column in covered_columns: adjusted_matrix[:, column] += min_uncovered_num # Subtract m from every element m_matrix = np.ones(self._shape, dtype=int) * min_uncovered_num adjusted_matrix -= m_matrix return adjusted_matrix def __find_matches(self, zero_locations): """Returns rows and columns with matches in them.""" marked_rows = np.array([], dtype=int) marked_columns = np.array([], dtype=int) # Mark rows and columns with matches # Iterate over rows for index, row in enumerate(zero_locations): row_index = np.array([index]) if np.sum(row) == 1: column_index, = np.where(row) marked_rows, marked_columns = self.__mark_rows_and_columns(marked_rows, marked_columns, row_index, column_index) # Iterate over columns for index, column in enumerate(zero_locations.T): column_index = np.array([index]) if np.sum(column) == 1: row_index, = np.where(column) marked_rows, marked_columns = self.__mark_rows_and_columns(marked_rows, marked_columns, row_index, column_index) return marked_rows, marked_columns @staticmethod def __mark_rows_and_columns(marked_rows, marked_columns, row_index, column_index): """Check if column or row is marked. If not marked then mark it.""" new_marked_rows = marked_rows new_marked_columns = marked_columns if not (marked_rows == row_index).any() and not (marked_columns == column_index).any(): new_marked_rows = np.insert(marked_rows, len(marked_rows), row_index) new_marked_columns = np.insert(marked_columns, len(marked_columns), column_index) return new_marked_rows, new_marked_columns @staticmethod def select_arbitrary_match(zero_locations): """Selects row column combination with minimum number of zeros in it.""" # Count number of zeros in row and column combinations rows, columns = np.where(zero_locations) zero_count = [] for index, row in enumerate(rows): total_zeros = np.sum(zero_locations[row]) + np.sum(zero_locations[:, columns[index]]) zero_count.append(total_zeros) # Get the row column combination with the minimum number of zeros. indices = zero_count.index(min(zero_count)) row = np.array([rows[indices]]) column = np.array([columns[indices]]) return row, column def __set_results(self, result_lists): """Set results during calculation.""" # Check if results values are out of bound from input matrix (because of matrix being padded). # Add results to results list. for result in result_lists: row, column = result if row < self._maxRow and column < self._maxColumn: new_result = (int(row), int(column)) self._results.append(new_result) class CoverZeros: """ Use minimum number of lines to cover all zeros in the matrix. Algorithm based on: http://weber.ucsd.edu/~vcrawfor/hungar.pdf """ def __init__(self, matrix): """ Input a matrix and save it as a boolean matrix to designate zero locations. Run calculation procedure to generate results. """ # Find zeros in matrix self._zero_locations = (matrix == 0) self._shape = matrix.shape # Choices starts without any choices made. self._choices = np.zeros(self._shape, dtype=bool) self._marked_rows = [] self._marked_columns = [] # marks rows and columns self.__calculate() # Draw lines through all unmarked rows and all marked columns. self._covered_rows = list(set(range(self._shape[0])) - set(self._marked_rows)) self._covered_columns = self._marked_columns def get_covered_rows(self): """Return list of covered rows.""" return self._covered_rows def get_covered_columns(self): """Return list of covered columns.""" return self._covered_columns def __calculate(self): """ Calculates minimum number of lines necessary to cover all zeros in a matrix. Algorithm based on: http://weber.ucsd.edu/~vcrawfor/hungar.pdf """ while True: # Erase all marks. self._marked_rows = [] self._marked_columns = [] # Mark all rows in which no choice has been made. for index, row in enumerate(self._choices): if not row.any(): self._marked_rows.append(index) # If no marked rows then finish. if not self._marked_rows: return True # Mark all columns not already marked which have zeros in marked rows. num_marked_columns = self.__mark_new_columns_with_zeros_in_marked_rows() # If no new marked columns then finish. if num_marked_columns == 0: return True # While there is some choice in every marked column. while self.__choice_in_all_marked_columns(): # Some Choice in every marked column. # Mark all rows not already marked which have choices in marked columns. num_marked_rows = self.__mark_new_rows_with_choices_in_marked_columns() # If no new marks then Finish. if num_marked_rows == 0: return True # Mark all columns not already marked which have zeros in marked rows. num_marked_columns = self.__mark_new_columns_with_zeros_in_marked_rows() # If no new marked columns then finish. if num_marked_columns == 0: return True # No choice in one or more marked columns. # Find a marked column that does not have a choice. choice_column_index = self.__find_marked_column_without_choice() while choice_column_index is not None: # Find a zero in the column indexed that does not have a row with a choice. choice_row_index = self.__find_row_without_choice(choice_column_index) # Check if an available row was found. new_choice_column_index = None if choice_row_index is None: # Find a good row to accomodate swap. Find its column pair. choice_row_index, new_choice_column_index = \ self.__find_best_choice_row_and_new_column(choice_column_index) # Delete old choice. self._choices[choice_row_index, new_choice_column_index] = False # Set zero to choice. self._choices[choice_row_index, choice_column_index] = True # Loop again if choice is added to a row with a choice already in it. choice_column_index = new_choice_column_index def __mark_new_columns_with_zeros_in_marked_rows(self): """Mark all columns not already marked which have zeros in marked rows.""" num_marked_columns = 0 for index, column in enumerate(self._zero_locations.T): if index not in self._marked_columns: if column.any(): row_indices, = np.where(column) zeros_in_marked_rows = (set(self._marked_rows) & set(row_indices)) != set([]) if zeros_in_marked_rows: self._marked_columns.append(index) num_marked_columns += 1 return num_marked_columns def __mark_new_rows_with_choices_in_marked_columns(self): """Mark all rows not already marked which have choices in marked columns.""" num_marked_rows = 0 for index, row in enumerate(self._choices): if index not in self._marked_rows: if row.any(): column_index, = np.where(row) if column_index in self._marked_columns: self._marked_rows.append(index) num_marked_rows += 1 return num_marked_rows def __choice_in_all_marked_columns(self): """Return Boolean True if there is a choice in all marked columns. Returns boolean False otherwise.""" for column_index in self._marked_columns: if not self._choices[:, column_index].any(): return False return True def __find_marked_column_without_choice(self): """Find a marked column that does not have a choice.""" for column_index in self._marked_columns: if not self._choices[:, column_index].any(): return column_index raise HungarianError( "Could not find a column without a choice. Failed to cover matrix zeros. Algorithm has failed.") def __find_row_without_choice(self, choice_column_index): """Find a row without a choice in it for the column indexed. If a row does not exist then return None.""" row_indices, = np.where(self._zero_locations[:, choice_column_index]) for row_index in row_indices: if not self._choices[row_index].any(): return row_index # All rows have choices. Return None. return None def __find_best_choice_row_and_new_column(self, choice_column_index): """ Find a row index to use for the choice so that the column that needs to be changed is optimal. Return a random row and column if unable to find an optimal selection. """ row_indices, = np.where(self._zero_locations[:, choice_column_index]) for row_index in row_indices: column_indices, = np.where(self._choices[row_index]) column_index = column_indices[0] if self.__find_row_without_choice(column_index) is not None: return row_index, column_index # Cannot find optimal row and column. Return a random row and column. from random import shuffle shuffle(row_indices) column_index, = np.where(self._choices[row_indices[0]]) return row_indices[0], column_index[0] if __name__ == '__main__': profit_matrix = [ [62, 75, 80, 93, 95, 97], [75, 80, 82, 85, 71, 97], [80, 75, 81, 98, 90, 97], [78, 82, 84, 80, 50, 98], [90, 85, 85, 80, 85, 99], [65, 75, 80, 75, 68, 96]] hungarian = Hungarian(profit_matrix, is_profit_matrix=True) hungarian.calculate() print("Expected value:\t\t543") print("Calculated value:\t", hungarian.get_total_potential()) # = 543 print("Expected results:\n\t[(0, 4), (2, 3), (5, 5), (4, 0), (1, 1), (3, 2)]") print("Results:\n\t", hungarian.get_results()) print("-" * 80) cost_matrix = [ [4, 2, 8], [4, 3, 7], [3, 1, 6]] hungarian = Hungarian(cost_matrix) print('calculating...') hungarian.calculate() print("Expected value:\t\t12") print("Calculated value:\t", hungarian.get_total_potential()) # = 12 print("Expected results:\n\t[(0, 1), (1, 0), (2, 2)]") print("Results:\n\t", hungarian.get_results()) print("-" * 80) profit_matrix = [ [62, 75, 80, 93, 0, 97], [75, 0, 82, 85, 71, 97], [80, 75, 81, 0, 90, 97], [78, 82, 0, 80, 50, 98], [0, 85, 85, 80, 85, 99], [65, 75, 80, 75, 68, 0]] hungarian = Hungarian() hungarian.calculate(profit_matrix, is_profit_matrix=True) print("Expected value:\t\t523") print("Calculated value:\t", hungarian.get_total_potential()) # = 523 print("Expected results:\n\t[(0, 3), (2, 4), (3, 0), (5, 2), (1, 5), (4, 1)]") print("Results:\n\t", hungarian.get_results()) print("-" * 80)
19,635
40.252101
120
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/constrained_lpa_base.py
# An implementation of `` Balanced Label Propagation for Partitioning MassiveGraphs'' (https://stanford.edu/~jugander/papers/wsdm13-blp.pdf) import copy import logging from collections import defaultdict import numpy as np import cvxpy as cp from scipy.stats import linregress class ConstrainedLPABase: def __init__(self, adj, num_communities, node_threshold, terminate_delta): self.logger = logging.getLogger('constrained_lpa_base') self.adj = adj self.num_nodes = adj.shape[0] self.num_communities = num_communities self.node_threshold = node_threshold self.terminate_delta = terminate_delta def initialization(self): self.logger.info('initializing communities') random_nodes = np.arange(self.num_nodes) np.random.shuffle(random_nodes) self.communities = defaultdict(set) self.node_community = np.zeros(self.adj.shape[0]) # each node use node is as its community label for community, nodes in enumerate(np.array_split(random_nodes, self.num_communities)): self.communities[community] = set(nodes) self.node_community[nodes] = community def community_detection(self, iterations=100): self.logger.info('detecting communities') communities = copy.deepcopy(self.communities) lpa_deltas = [] for i in range(iterations): self.logger.info('iteration %s' % (i,)) ## Step 1: calculate desired move desire_move = self._determine_desire_move() relocation = {} utility_func = {} ## Step 2: calculate parameters for linear programming problem for src_community in range(self.num_communities): for dst_community in range(self.num_communities): move_node = desire_move[np.where(np.logical_and(desire_move[:, 1] == src_community, desire_move[:, 2] == dst_community))[0]] if src_community != dst_community and move_node.size != 0: move_node = move_node[np.flip(np.argsort(move_node[:, 3]))] relocation[(src_community, dst_community)] = move_node if move_node.shape[0] == 1: utility_func[(src_community, dst_community)] = np.array([[0, move_node[0, 3]]]) else: cum_sum = np.cumsum(move_node[:, 3]) utility_func_temp = np.zeros([move_node.shape[0] - 1, 2]) for k in range(move_node.shape[0] - 1): utility_func_temp[k, 0], utility_func_temp[k, 1], _, _, _ = linregress([k, k+1], [cum_sum[k], cum_sum[k+1]]) utility_func[(src_community, dst_community)] = utility_func_temp ## Step 3: solve linear programming problem x = cp.Variable([self.num_communities, self.num_communities]) z = cp.Variable([self.num_communities, self.num_communities]) objective = cp.Maximize(cp.sum(z)) constraints = [] for src_community in range(self.num_communities): const = 0 for dst_community in range(self.num_communities): if (src_community, dst_community) in relocation: if src_community == dst_community: constraints.append(x[src_community, dst_community] == 0) constraints.append(z[src_community, dst_community] == 0) else: ## Constraint 2 of Theorem 2 constraints.append(x[src_community, dst_community] >= 0) constraints.append(x[src_community, dst_community] <= relocation[(src_community, dst_community)].shape[0]) ## Constraint 1 of Theorem 2 if (dst_community, src_community) in relocation: const += x[src_community, dst_community] - x[dst_community, src_community] ## Constraint 3 of Theorem 2 for utility_func_value in utility_func[(src_community, dst_community)]: constraints.append(- utility_func_value[0] * x[src_community, dst_community] + z[src_community, dst_community] <= utility_func_value[1]) else: constraints.append(x[src_community, dst_community] == 0) constraints.append(z[src_community, dst_community] == 0) ## Constraint 1 of Theorem 2 constraints.append(len(self.communities[src_community]) + const <= self.node_threshold) problem = cp.Problem(objective, constraints) problem.solve() ## Step 4: parse linear programming problem results if problem.status == 'optimal': x_value = np.floor(np.abs(x.value)).astype(np.int64) for src_community in range(self.num_communities): for dst_community in range(self.num_communities): if (src_community, dst_community) in relocation and x_value[src_community, dst_community] != 0: # if (src_community, dst_community) in relocation: relocation_temp = relocation[(src_community, dst_community)][:, 0].astype(np.int64) move_node = relocation_temp[:x_value[src_community, dst_community] - 1] if isinstance(move_node, np.int64): self.communities[src_community].remove(move_node) self.communities[dst_community].add(move_node) self.node_community[move_node] = dst_community else: # move_node = set(move_node) self.communities[src_community].difference_update(move_node) self.communities[dst_community].update(move_node) for node in move_node: self.node_community[node] = dst_community else: self.logger.info("No optimal solution, break!") break ## Check the number of moved nodes delta = self._lpa_delta(communities, self.communities) lpa_deltas.append(delta) self.logger.info("%d" % delta) communities = copy.deepcopy(self.communities) if delta <= self.terminate_delta: break return self.communities, lpa_deltas def _determine_desire_move(self): desire_move = [] for i in range(self.num_nodes): # neighbor_community = self.node_community[np.nonzero(self.adj[i])[0]] # for non-bool adj neighbor_community = self.node_community[self.adj[i]] # for bool adj unique_community, unique_count = np.unique(neighbor_community, return_counts=True) src_relocation = unique_count[np.where(unique_community == self.node_community[i])[0]] for community in unique_community: if community != self.node_community[i]: dst_relocation = unique_count[np.where(unique_community == community)[0]] if dst_relocation - src_relocation >= 0: desire_move_temp = np.zeros(4) desire_move_temp[0] = i desire_move_temp[1] = self.node_community[i] desire_move_temp[2] = community desire_move_temp[3] = dst_relocation - src_relocation desire_move.append(desire_move_temp) return np.stack(desire_move) def _lpa_delta(self, lpa_pre, lpa_cur): delta = 0.0 for i in range(len(lpa_cur)): delta += len((lpa_cur[i] | lpa_pre[i]) - (lpa_cur[i] & lpa_pre[i])) return delta if __name__ == '__main__': output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) adj = np.array([[0, 1, 1], [1, 0, 1], [1, 1, 0]], dtype=np.bool) num_communities = 2 node_threshold = 3 terminate_delta = 1 lpa = ConstrainedLPABase(adj, num_communities, node_threshold, terminate_delta) lpa.initialization() lpa.community_detection()
8,700
45.77957
164
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/partition_random.py
import numpy as np from lib_graph_partition.partition import Partition class PartitionRandom(Partition): def __init__(self, args, graph): super(PartitionRandom, self).__init__(args, graph) def partition(self): graph_nodes = np.array(self.graph.nodes) np.random.shuffle(graph_nodes) train_shard_indices = np.array_split(graph_nodes, self.args['num_shards']) return dict(zip(range(self.num_shards), train_shard_indices))
472
28.5625
82
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/partition.py
import numpy as np class Partition: def __init__(self, args, graph, dataset=None): self.args = args self.graph = graph self.dataset = dataset self.partition_method = self.args['partition_method'] self.num_shards = self.args['num_shards'] self.dataset_name = self.args['dataset_name'] def idx2id(self, idx_dict, node_list): ret_dict = {} for com, idx in idx_dict.items(): ret_dict[com] = node_list[list(idx)] return ret_dict def id2idx(self, id_dict, node_list): ret_dict = {} for com, id in id_dict.items(): ret_dict[com] = np.searchsorted(node_list, id) return ret_dict
738
26.37037
61
py
Graph-Unlearning
Graph-Unlearning-main/lib_graph_partition/hungarian_1.py
''' reference: https://www.topcoder.com/community/competitive-programming/tutorials/assignment-problem-and-hungarian-algorithm/ ''' import numpy as np #max weight assignment class KMMatcher: ## weights : nxm weight matrix (numpy , float), n <= m def __init__(self, weights): weights = np.array(weights).astype(np.float32) self.weights = weights self.n, self.m = weights.shape assert self.n <= self.m # init label self.label_x = np.max(weights, axis=1) self.label_y = np.zeros((self.m, ), dtype=np.float32) self.max_match = 0 self.xy = -np.ones((self.n,), dtype=np.int) self.yx = -np.ones((self.m,), dtype=np.int) def do_augment(self, x, y): self.max_match += 1 while x != -2: self.yx[y] = x ty = self.xy[x] self.xy[x] = y x, y = self.prev[x], ty def find_augment_path(self): self.S = np.zeros((self.n,), np.bool) self.T = np.zeros((self.m,), np.bool) self.slack = np.zeros((self.m,), dtype=np.float32) self.slackyx = -np.ones((self.m,), dtype=np.int) # l[slackyx[y]] + l[y] - w[slackx[y], y] == slack[y] self.prev = -np.ones((self.n,), np.int) queue, st = [], 0 root = -1 for x in range(self.n): if self.xy[x] == -1: queue.append(x); root = x self.prev[x] = -2 self.S[x] = True break self.slack = self.label_y + self.label_x[root] - self.weights[root] self.slackyx[:] = root while True: while st < len(queue): x = queue[st]; st+= 1 is_in_graph = np.isclose(self.weights[x], self.label_x[x] + self.label_y) nonzero_inds = np.nonzero(np.logical_and(is_in_graph, np.logical_not(self.T)))[0] for y in nonzero_inds: if self.yx[y] == -1: return x, y self.T[y] = True queue.append(self.yx[y]) self.add_to_tree(self.yx[y], x) self.update_labels() queue, st = [], 0 is_in_graph = np.isclose(self.slack, 0) nonzero_inds = np.nonzero(np.logical_and(is_in_graph, np.logical_not(self.T)))[0] for y in nonzero_inds: x = self.slackyx[y] if self.yx[y] == -1: return x, y self.T[y] = True if not self.S[self.yx[y]]: queue.append(x) self.add_to_tree(self.yx[y], x) def solve(self, verbose = False): while self.max_match < self.n: x, y = self.find_augment_path() self.do_augment(x, y) sum = 0. for x in range(self.n): if verbose: print('match {} to {}, weight {:.4f}'.format(x, self.xy[x], self.weights[x, self.xy[x]])) sum += self.weights[x, self.xy[x]] self.best = sum if verbose: print('ans: {:.4f}'.format(sum)) return self.xy, sum def add_to_tree(self, x, prevx): self.S[x] = True self.prev[x] = prevx better_slack_idx = self.label_x[x] + self.label_y - self.weights[x] < self.slack self.slack[better_slack_idx] = self.label_x[x] + self.label_y[better_slack_idx] - self.weights[x, better_slack_idx] self.slackyx[better_slack_idx] = x def update_labels(self): delta = self.slack[np.logical_not(self.T)].min() self.label_x[self.S] -= delta self.label_y[self.T] += delta self.slack[np.logical_not(self.T)] -= delta if __name__ == '__main__': matcher = KMMatcher([ [2., 3., 0., 3.], [0., 4., 4., 0.], [5., 6., 0., 0.], [0., 0., 7., 0.] ]) best = matcher.solve(verbose=True) print(best)
3,953
31.146341
123
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/gnn_base.py
import logging import pickle import torch class GNNBase: def __init__(self): self.logger = logging.getLogger('gnn') self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # self.device = torch.device('cpu') self.model = None self.embedding_dim = 0 self.data = None self.subgraph_loader = None def save_model(self, save_path): self.logger.info('saving model') torch.save(self.model.state_dict(), save_path) def load_model(self, save_path): self.logger.info('loading model') device = torch.device('cpu') self.model.load_state_dict(torch.load(save_path, map_location=device)) def save_paras(self, save_path): self.logger.info('saving paras') self.paras = { 'embedding_dim': self.embedding_dim } pickle.dump(self.paras, open(save_path, 'wb')) def load_paras(self, save_path): self.logger.info('loading paras') return pickle.load(open(save_path, 'rb')) def count_parameters(self): return sum(p.numel() for p in self.model.parameters() if p.requires_grad) def posterior(self): self.model.eval() self.model = self.model.to(self.device) self.data = self.data.to(self.device) posteriors = self.model(self.data) for _, mask in self.data('test_mask'): posteriors = posteriors[mask] return posteriors.detach()
1,482
28.078431
82
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/node_classifier.py
import logging import os import torch from sklearn.model_selection import train_test_split torch.cuda.empty_cache() import torch.nn.functional as F import torch_geometric.transforms as T from torch_geometric.datasets import Planetoid from torch_geometric.data import NeighborSampler from torch_geometric.nn.conv.gcn_conv import gcn_norm import numpy as np import config from lib_gnn_model.gat.gat_net_batch import GATNet from lib_gnn_model.gin.gin_net_batch import GINNet from lib_gnn_model.gcn.gcn_net_batch import GCNNet from lib_gnn_model.graphsage.graphsage_net import SageNet from lib_gnn_model.gnn_base import GNNBase from parameter_parser import parameter_parser from lib_utils import utils class NodeClassifier(GNNBase): def __init__(self, num_feats, num_classes, args, data=None): super(NodeClassifier, self).__init__() self.args = args self.logger = logging.getLogger('node_classifier') self.target_model = args['target_model'] self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # self.device = 'cpu' self.model = self.determine_model(num_feats, num_classes).to(self.device) self.data = data def determine_model(self, num_feats, num_classes): self.logger.info('target model: %s' % (self.args['target_model'],)) if self.target_model == 'SAGE': self.lr, self.decay = 0.01, 0.001 return SageNet(num_feats, 256, num_classes) elif self.target_model == 'GAT': self.lr, self.decay = 0.01, 0.001 return GATNet(num_feats, num_classes) elif self.target_model == 'GCN': self.lr, self.decay = 0.05, 0.0001 return GCNNet(num_feats, num_classes) elif self.target_model == 'GIN': self.lr, self.decay = 0.01, 0.0001 return GINNet(num_feats, num_classes) else: raise Exception('unsupported target model') def train_model(self): self.logger.info("training model") self.model.train() self.model.reset_parameters() self.model, self.data = self.model.to(self.device), self.data.to(self.device) self.data.y = self.data.y.squeeze().to(self.device) self._gen_train_loader() optimizer = torch.optim.Adam(self.model.parameters(), lr=self.lr, weight_decay=self.decay) for epoch in range(self.args['num_epochs']): self.logger.info('epoch %s' % (epoch,)) for batch_size, n_id, adjs in self.train_loader: # self.logger.info("batch size: %s"%(batch_size)) # `adjs` holds a list of `(edge_index, e_id, size)` tuples. adjs = [adj.to(self.device) for adj in adjs] test_node = np.nonzero(self.data.test_mask.cpu().numpy())[0] intersect = np.intersect1d(test_node, n_id.numpy()) optimizer.zero_grad() if self.target_model == 'GCN': out = self.model(self.data.x[n_id], adjs, self.edge_weight) else: out = self.model(self.data.x[n_id], adjs) loss = F.nll_loss(out, self.data.y[n_id[:batch_size]]) loss.backward() optimizer.step() train_acc, test_acc = self.evaluate_model() self.logger.info(f'Train: {train_acc:.4f}, Test: {test_acc:.4f}') @torch.no_grad() def evaluate_model(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) self._gen_test_loader() if self.target_model == 'GCN': out = self.model.inference(self.data.x, self.test_loader, self.edge_weight, self.device) else: out = self.model.inference(self.data.x, self.test_loader, self.device) y_true = self.data.y.cpu().unsqueeze(-1) y_pred = out.argmax(dim=-1, keepdim=True) results = [] for mask in [self.data.train_mask, self.data.test_mask]: results += [int(y_pred[mask].eq(y_true[mask]).sum()) / int(mask.sum())] return results def posterior(self): self.logger.debug("generating posteriors") self.model, self.data = self.model.to(self.device), self.data.to(self.device) self.model.eval() self._gen_test_loader() if self.target_model == 'GCN': posteriors = self.model.inference(self.data.x, self.test_loader, self.edge_weight, self.device) else: posteriors = self.model.inference(self.data.x, self.test_loader, self.device) for _, mask in self.data('test_mask'): posteriors = F.log_softmax(posteriors[mask], dim=-1) return posteriors.detach() def generate_embeddings(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) self._gen_test_loader() if self.target_model == 'GCN': logits = self.model.inference(self.data.x, self.test_loader, self.edge_weight, self.device) else: logits = self.model.inference(self.data.x, self.test_loader, self.device) return logits def _gen_train_loader(self): self.logger.info("generate train loader") train_indices = np.nonzero(self.data.train_mask.cpu().numpy())[0] edge_index = utils.filter_edge_index(self.data.edge_index, train_indices, reindex=False) if edge_index.shape[1] == 0: edge_index = torch.tensor([[1, 2], [2, 1]]) self.train_loader = NeighborSampler( edge_index, node_idx=self.data.train_mask, sizes=[5, 5], num_nodes=self.data.num_nodes, batch_size=self.args['batch_size'], shuffle=True, num_workers=0) if self.target_model == 'GCN': _, self.edge_weight = gcn_norm(self.data.edge_index, edge_weight=None, num_nodes=self.data.x.shape[0], add_self_loops=False) self.logger.info("generate train loader finish") def _gen_test_loader(self): test_indices = np.nonzero(self.data.train_mask.cpu().numpy())[0] if not self.args['use_test_neighbors']: edge_index = utils.filter_edge_index(self.data.edge_index, test_indices, reindex=False) else: edge_index = self.data.edge_index if edge_index.shape[1] == 0: edge_index = torch.tensor([[1, 3], [3, 1]]) self.test_loader = NeighborSampler( edge_index, node_idx=None, sizes=[-1], num_nodes=self.data.num_nodes, # sizes=[5], num_nodes=self.data.num_nodes, batch_size=self.args['test_batch_size'], shuffle=False, num_workers=0) if self.target_model == 'GCN': _, self.edge_weight = gcn_norm(self.data.edge_index, edge_weight=None, num_nodes=self.data.x.shape[0], add_self_loops=False) if __name__ == '__main__': os.chdir('../') args = parameter_parser() output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) dataset_name = 'cora' dataset = Planetoid(config.RAW_DATA_PATH, dataset_name, transform=T.NormalizeFeatures()) data = dataset[0] train_indices, test_indices = train_test_split(np.arange((data.num_nodes)), test_size=0.2, random_state=100) data.train_mask, data.test_mask = torch.zeros(data.num_nodes, dtype=torch.bool), torch.zeros(data.num_nodes, dtype=torch.bool) data.train_mask[train_indices] = True data.test_mask[test_indices] = True graphsage = NodeClassifier(dataset.num_features, dataset.num_classes, args, data) graphsage.train_model()
7,966
38.636816
114
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/gin/gin.py
import os import logging import torch import torch.nn.functional as F import torch_geometric.transforms as T from torch_geometric.datasets import Planetoid, Reddit from lib_gnn_model.gnn_base import GNNBase from lib_gnn_model.gin.gin_net import GINNet import config class GIN(GNNBase): def __init__(self, num_feats, num_classes, data=None): super(GIN, self).__init__() self.logger = logging.getLogger('gin') self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = GINNet(num_feats, num_classes).to(self.device) self.data = data def train_model(self, num_epochs=100): self.model.train() self.model.reset_parameters() self.model, self.data = self.model.to(self.device), self.data.to(self.device) optimizer = torch.optim.Adam(self.model.parameters(), lr=0.01) for epoch in range(num_epochs): self.logger.info('epoch %s' % (epoch,)) optimizer.zero_grad() output = self.model(self.data)[self.data.train_mask] loss = F.nll_loss(output, self.data.y[self.data.train_mask]) # loss = F.nll_loss(output, self.data.y.squeeze(1)[self.data.train_mask]) loss.backward() optimizer.step() train_acc, test_acc = self.evaluate_model() self.logger.info('train acc: %s, test acc: %s' % (train_acc, test_acc)) def evaluate_model(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) logits, accs = self.model(self.data), [] for _, mask in self.data('train_mask', 'test_mask'): pred = logits[mask].max(1)[1] acc = pred.eq(self.data.y[mask]).sum().item() / mask.sum().item() accs.append(acc) return accs if __name__ == '__main__': os.chdir('../../') output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) dataset_name = 'citeseer' dataset = Planetoid(config.RAW_DATA_PATH, dataset_name, transform=T.NormalizeFeatures()) data = dataset[0] gin = GIN(dataset.num_features, dataset.num_classes, data) gin.train_model()
2,338
31.943662
92
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/gin/gin_net.py
import torch import torch.nn.functional as F from torch.nn import Sequential, Linear, ReLU from torch_geometric.nn import GINConv class GINNet(torch.nn.Module): def __init__(self, num_feats, num_classes): super(GINNet, self).__init__() dim = 32 nn1 = Sequential(Linear(num_feats, dim), ReLU(), Linear(dim, dim)) self.conv1 = GINConv(nn1) self.bn1 = torch.nn.BatchNorm1d(dim) nn2 = Sequential(Linear(dim, dim), ReLU(), Linear(dim, dim)) self.conv2 = GINConv(nn2) self.bn2 = torch.nn.BatchNorm1d(dim) nn3 = Sequential(Linear(dim, dim), ReLU(), Linear(dim, dim)) self.conv3 = GINConv(nn3) self.bn3 = torch.nn.BatchNorm1d(dim) nn4 = Sequential(Linear(dim, dim), ReLU(), Linear(dim, dim)) self.conv4 = GINConv(nn4) self.bn4 = torch.nn.BatchNorm1d(dim) nn5 = Sequential(Linear(dim, dim), ReLU(), Linear(dim, dim)) self.conv5 = GINConv(nn5) self.bn5 = torch.nn.BatchNorm1d(dim) self.fc1 = Linear(dim, dim) self.fc2 = Linear(dim, num_classes) def forward(self, data, batch=None): x = F.relu(self.conv1(data.x, data.edge_index)) x = self.bn1(x) x = F.relu(self.conv2(x, data.edge_index)) x = self.bn2(x) x = F.relu(self.fc1(x)) x = F.dropout(x, p=0.5, training=self.training) x = self.fc2(x) return F.log_softmax(x, dim=1) def reset_parameters(self): self.conv1.reset_parameters() self.conv2.reset_parameters()
1,558
30.18
74
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/gat/gat_net.py
import torch import torch.nn.functional as F from torch_geometric.nn import GATConv class GATNet(torch.nn.Module): def __init__(self, num_feats, num_classes, dropout=0.6): super(GATNet, self).__init__() self.dropout = dropout self.conv1 = GATConv(num_feats, 8, heads=8, dropout=self.dropout, add_self_loops=False) # On the Pubmed dataset, use heads=8 in conv2. self.conv2 = GATConv(8 * 8, num_classes, heads=1, concat=False, dropout=self.dropout, add_self_loops=False) # self.conv2 = GATConv(8 * 8, num_classes, heads=8, concat=False, dropout=self.dropout, add_self_loops=False) self.reset_parameters() def forward(self, data): x = F.dropout(data.x, p=self.dropout, training=self.training) x = F.elu(self.conv1(x, data.edge_index)) x = F.dropout(x, p=self.dropout, training=self.training) x = self.conv2(x, data.edge_index) return F.log_softmax(x, dim=1) def reset_parameters(self): self.conv1.reset_parameters() self.conv2.reset_parameters()
1,074
36.068966
117
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/gat/gat.py
import logging import os import torch import torch.nn.functional as F import torch_geometric.transforms as T from torch_geometric.datasets import Planetoid import config from lib_gnn_model.gnn_base import GNNBase from lib_gnn_model.gat.gat_net import GATNet class GAT(GNNBase): def __init__(self, num_feats, num_classes, data=None): super(GAT, self).__init__() self.logger = logging.getLogger('gat') self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = GATNet(num_feats, num_classes) self.data = data def train_model(self, num_epoch=100): self.model.train() self.model.reset_parameters() self.model, self.data = self.model.to(self.device), self.data.to(self.device) optimizer = torch.optim.Adam(self.model.parameters(), lr=0.005, weight_decay=0.0001) for epoch in range(num_epoch): self.logger.info('epoch %s' % (epoch,)) optimizer.zero_grad() output = self.model(self.data)[self.data.train_mask] loss = F.nll_loss(output, self.data.y[self.data.train_mask]) loss.backward() optimizer.step() train_acc, test_acc = self.evaluate_model() self.logger.info('train acc: %s, test acc: %s' % (train_acc, test_acc)) def evaluate_model(self): self.model.eval() # self.model, self.data = self.model.to(self.device), self.data.to(self.device) logits, accs = self.model(self.data), [] for _, mask in self.data('train_mask', 'test_mask'): pred = logits[mask].max(1)[1] acc = pred.eq(self.data.y[mask]).sum().item() / mask.sum().item() accs.append(acc) return accs if __name__ == '__main__': os.chdir('../../') output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) dataset_name = 'cora' dataset = Planetoid(config.RAW_DATA_PATH, dataset_name, transform=T.NormalizeFeatures()) data = dataset[0] gat = GAT(dataset.num_features, dataset.num_classes, data) gat.train_model() # gat.evaluate_model()
2,273
31.028169
92
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/graphsage/graphsage.py
import os import logging import torch import torch.nn.functional as F import torch_geometric.transforms as T from torch_geometric.datasets import Planetoid from torch_geometric.data import NeighborSampler from lib_gnn_model.graphsage.graphsage_net import SageNet from lib_gnn_model.gnn_base import GNNBase import config class SAGE(GNNBase): def __init__(self, num_feats, num_classes, data=None): super(SAGE, self).__init__() self.logger = logging.getLogger('graphsage') self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') # self.device = torch.device('cpu') self.model = SageNet(num_feats, 256, num_classes).to(self.device) self.data = data def train_model(self, num_epochs=100): self.model.train() self.model.reset_parameters() self.model, self.data = self.model.to(self.device), self.data.to(self.device) self.data.y = self.data.y.squeeze().to(self.device) self._gen_train_loader() optimizer = torch.optim.Adam(self.model.parameters(), lr=0.01, weight_decay=0.001) for epoch in range(num_epochs): self.logger.info('epoch %s' % (epoch,)) for batch_size, n_id, adjs in self.train_loader: # `adjs` holds a list of `(edge_index, e_id, size)` tuples. adjs = [adj.to(self.device) for adj in adjs] optimizer.zero_grad() out = self.model(self.data.x[n_id], adjs) loss = F.nll_loss(out, self.data.y[n_id[:batch_size]]) loss.backward() optimizer.step() train_acc, test_acc = self.evaluate_model() self.logger.info(f'Train: {train_acc:.4f}, Test: {test_acc:.4f}') @torch.no_grad() def evaluate_model(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) self._gen_subgraph_loader() out = self.model.inference(self.data.x, self.subgraph_loader, self.device) y_true = self.data.y.cpu().unsqueeze(-1) y_pred = out.argmax(dim=-1, keepdim=True) results = [] for mask in [self.data.train_mask, self.data.test_mask]: results += [int(y_pred[mask].eq(y_true[mask]).sum()) / int(mask.sum())] return results def posterior(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) self._gen_subgraph_loader() posteriors = self.model.inference(self.data.x, self.subgraph_loader, self.device) for _, mask in self.data('test_mask'): posteriors = F.log_softmax(posteriors[mask], dim=-1) return posteriors.detach() def generate_embeddings(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) self._gen_subgraph_loader() logits = self.model.inference(self.data.x, self.subgraph_loader, self.device) return logits def _gen_train_loader(self): if self.data.edge_index.shape[1] == 0: self.data.edge_index = torch.tensor([[1, 2], [2, 1]]) self.train_loader = NeighborSampler(self.data.edge_index, node_idx=self.data.train_mask, # sizes=[25, 10], batch_size=128, shuffle=True, # sizes=[25, 10], num_nodes=self.data.num_nodes, sizes=[10, 10], num_nodes=self.data.num_nodes, # sizes=[5, 5], num_nodes=self.data.num_nodes, # batch_size=128, shuffle=True, batch_size=64, shuffle=True, num_workers=0) def _gen_subgraph_loader(self): self.subgraph_loader = NeighborSampler(self.data.edge_index, node_idx=None, # sizes=[-1], num_nodes=self.data.num_nodes, sizes=[10], num_nodes=self.data.num_nodes, # batch_size=128, shuffle=False, batch_size=64, shuffle=False, num_workers=0) if __name__ == '__main__': os.chdir('../../') output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) dataset_name = 'cora' dataset = Planetoid(config.RAW_DATA_PATH, dataset_name, transform=T.NormalizeFeatures()) data = dataset[0] graphsage = SAGE(dataset.num_features, dataset.num_classes, data) graphsage.train_model()
4,883
39.363636
96
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/graphsage/graphsage_net.py
import torch import torch.nn.functional as F from torch_geometric.nn import SAGEConv class SageNet(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels): super(SageNet, self).__init__() self.num_layers = 2 self.convs = torch.nn.ModuleList() self.convs.append(SAGEConv(in_channels, hidden_channels)) self.convs.append(SAGEConv(hidden_channels, out_channels)) def forward(self, x, adjs): # `train_loader` computes the k-hop neighborhood of a batch of nodes, # and returns, for each layer, a bipartite graph object, holding the # bipartite edges `edge_index`, the index `e_id` of the original edges, # and the size/shape `size` of the bipartite graph. # Target nodes are also included in the source nodes so that one can # easily apply skip-connections or add self-loops. for i, (edge_index, _, size) in enumerate(adjs): x_target = x[:size[1]] # Target nodes are always placed first. x = self.convs[i]((x, x_target), edge_index) if i != self.num_layers - 1: x = F.relu(x) x = F.dropout(x, p=0.5, training=self.training) return F.log_softmax(x, dim=-1) def inference(self, x_all, subgraph_loader, device): # Compute representations of nodes layer by layer, using *all* # available edges. This leads to faster computation in contrast to # immediately computing the final representations of each batch. for i in range(self.num_layers): xs = [] for batch_size, n_id, adj in subgraph_loader: edge_index, _, size = adj.to(device) x = x_all[n_id].to(device) x_target = x[:size[1]] x = self.convs[i]((x, x_target), edge_index) if i != self.num_layers - 1: x = F.relu(x) xs.append(x.cpu()) x_all = torch.cat(xs, dim=0) return x_all def reset_parameters(self): for i in range(self.num_layers): self.convs[i].reset_parameters()
2,154
37.482143
79
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/gcn/gcn_net.py
import torch import torch.nn.functional as F from torch_geometric.nn import GCNConv class GCNNet(torch.nn.Module): def __init__(self, num_feats, num_classes): super(GCNNet, self).__init__() self.conv1 = GCNConv(num_feats, 16, cached=True, add_self_loops=False) self.conv2 = GCNConv(16, num_classes, cached=True, add_self_loops=False) def forward(self, data): x, edge_index, edge_weight = data.x, data.edge_index, data.edge_attr x = F.relu(self.conv1(x, edge_index, edge_weight)) x = F.dropout(x, training=self.training) x = self.conv2(x, edge_index, edge_weight) return F.log_softmax(x, dim=-1) def reset_parameters(self): self.conv1.reset_parameters() self.conv2.reset_parameters()
781
31.583333
80
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/gcn/gcn.py
import os import logging import torch import torch.nn.functional as F import torch_geometric.transforms as T from torch_geometric.datasets import Planetoid from lib_gnn_model.gnn_base import GNNBase from lib_gnn_model.gcn.gcn_net import GCNNet import config class GCN(GNNBase): def __init__(self, num_feats, num_classes, data=None): super(GCN, self).__init__() self.logger = logging.getLogger('gcn') self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = GCNNet(num_feats, num_classes) self.data = data def train_model(self, num_epoch=100): self.model.train() self.model.reset_parameters() self.model, self.data = self.model.to(self.device), self.data.to(self.device) optimizer = torch.optim.Adam(self.model.parameters(), lr=0.01) for epoch in range(num_epoch): self.logger.info('epoch %s' % (epoch,)) optimizer.zero_grad() output = self.model(self.data)[self.data.train_mask] loss = F.nll_loss(output, self.data.y[self.data.train_mask]) loss.backward() optimizer.step() train_acc, test_acc = self.evaluate_model() self.logger.info('train acc: %s, test acc: %s' % (train_acc, test_acc)) def evaluate_model(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) logits, accs = self.model(self.data), [] for _, mask in self.data('train_mask', 'test_mask'): pred = logits[mask].max(1)[1] acc = pred.eq(self.data.y[mask]).sum().item() / mask.sum().item() accs.append(acc) return accs if __name__ == '__main__': os.chdir('../../') output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) dataset_name = 'cora' dataset = Planetoid(config.RAW_DATA_PATH, dataset_name, transform=T.NormalizeFeatures()) data = dataset[0] gcn = GCN(dataset.num_features, dataset.num_classes, data) gcn.train_model()
2,221
31.202899
92
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/mlp/mlp.py
import os import logging import torch import torch.nn.functional as F import torch_geometric.transforms as T from torch_geometric.datasets import Planetoid from lib_gnn_model.gnn_base import GNNBase from lib_gnn_model.mlp.mlpnet import MLPNet import config class MLP(GNNBase): def __init__(self, num_feats, num_classes, data=None): super(MLP, self).__init__() self.logger = logging.getLogger(__name__) self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') self.model = MLPNet(num_feats, num_classes) self.data = data def train_model(self, num_epoch=100): self.model.train() self.model, self.data = self.model.to(self.device), self.data.to(self.device) optimizer = torch.optim.Adam(self.model.parameters(), lr=0.01) for epoch in range(num_epoch): self.logger.info('epoch %s' % (epoch,)) optimizer.zero_grad() output = self.model(self.data.x)[self.data.train_mask] # loss = F.nll_loss(output, self.data.y[self.data.train_mask]) loss = torch.nn.CrossEntropyLoss(output, self.data.y[self.data.train_mask].squeeze()) loss.backward() optimizer.step() train_acc, test_acc = self.evaluate_model() self.logger.info('train acc: %s, test acc: %s' % (train_acc, test_acc)) def evaluate_model(self): self.model.eval() self.model, self.data = self.model.to(self.device), self.data.to(self.device) logits, accs = self.model(self.data.x), [] for _, mask in self.data('train_mask', 'test_mask'): pred = logits[mask].max(1)[1] acc = pred.eq(self.data.y[mask]).sum().item() / mask.sum().item() accs.append(acc) return accs def posterior(self): self.model.eval() posteriors = self.model(self.data.x) for _, mask in self.data('test_mask'): posteriors = posteriors[mask] return posteriors if __name__ == '__main__': os.chdir('../../') output_file = None logging.basicConfig(filename=output_file, format='%(levelname)s:%(asctime)s: - %(name)s - : %(message)s', level=logging.DEBUG) dataset_name = 'Cora' dataset = Planetoid(config.RAW_DATA_PATH + dataset_name, dataset_name, transform=T.NormalizeFeatures()) data = dataset[0] gcn = MLP(dataset.num_features, dataset.num_classes, data) gcn.train_model()
2,518
31.294872
107
py
Graph-Unlearning
Graph-Unlearning-main/lib_gnn_model/mlp/mlpnet.py
from torch import nn import torch.nn.functional as F class MLPNet(nn.Module): def __init__(self, input_size, num_classes): super(MLPNet, self).__init__() self.xent = nn.CrossEntropyLoss() self.layers = nn.Sequential( nn.Linear(input_size, 250), nn.Linear(250, 100), nn.Linear(100, num_classes) ) def forward(self, x): x = x.view(x.size(0), -1) x = self.layers(x) return F.softmax(x, dim=1) def loss(self, nodes, labels): scores = self.forward(nodes) return self.xent(scores, labels.squeeze()) def reset_parameters(self): return 0
668
23.777778
50
py
Graph-Unlearning
Graph-Unlearning-main/exp/exp_graph_partition.py
import logging import time import torch from sklearn.model_selection import train_test_split import numpy as np from torch_geometric.data import Data import torch_geometric as tg import networkx as nx from exp.exp import Exp from lib_utils.utils import connected_component_subgraphs from lib_graph_partition.graph_partition import GraphPartition from lib_utils import utils class ExpGraphPartition(Exp): def __init__(self, args): super(ExpGraphPartition, self).__init__(args) self.logger = logging.getLogger('exp_graph_partition') self.load_data() self.train_test_split() self.gen_train_graph() self.graph_partition() self.generate_shard_data() def load_data(self): self.data = self.data_store.load_raw_data() def train_test_split(self): if self.args['is_split']: self.logger.info('splitting train/test data') self.train_indices, self.test_indices = train_test_split(np.arange((self.data.num_nodes)), test_size=self.args['test_ratio'], random_state=100) self.data_store.save_train_test_split(self.train_indices, self.test_indices) self.data.train_mask = torch.from_numpy(np.isin(np.arange(self.data.num_nodes), self.train_indices)) self.data.test_mask = torch.from_numpy(np.isin(np.arange(self.data.num_nodes), self.test_indices)) else: self.train_indices, self.test_indices = self.data_store.load_train_test_split() self.data.train_mask = torch.from_numpy(np.isin(np.arange(self.data.num_nodes), self.train_indices)) self.data.test_mask = torch.from_numpy(np.isin(np.arange(self.data.num_nodes), self.test_indices)) def gen_train_graph(self): # delete ratio of edges and update the train graph if self.args['ratio_deleted_edges'] != 0: self.logger.debug("Before edge deletion. train data #.Nodes: %f, #.Edges: %f" % ( self.data.num_nodes, self.data.num_edges)) # self._ratio_delete_edges() self.data.edge_index = self._ratio_delete_edges(self.data.edge_index) # decouple train test edges. edge_index = self.data.edge_index.numpy() test_edge_indices = np.logical_or(np.isin(edge_index[0], self.test_indices), np.isin(edge_index[1], self.test_indices)) train_edge_indices = np.logical_not(test_edge_indices) edge_index_train = edge_index[:, train_edge_indices] self.train_graph = nx.Graph() self.train_graph.add_nodes_from(self.train_indices) # use largest connected graph as train graph if self.args['is_prune']: self._prune_train_set() # reconstruct a networkx train graph for u, v in np.transpose(edge_index_train): self.train_graph.add_edge(u, v) self.logger.debug("After edge deletion. train graph #.Nodes: %f, #.Edges: %f" % ( self.train_graph.number_of_nodes(), self.train_graph.number_of_edges())) self.logger.debug("After edge deletion. train data #.Nodes: %f, #.Edges: %f" % ( self.data.num_nodes, self.data.num_edges)) self.data_store.save_train_data(self.data) self.data_store.save_train_graph(self.train_graph) def graph_partition(self): if self.args['is_partition']: self.logger.info('graph partitioning') start_time = time.time() partition = GraphPartition(self.args, self.train_graph, self.data) self.community_to_node = partition.graph_partition() partition_time = time.time() - start_time self.logger.info("Partition cost %s seconds." % partition_time) self.data_store.save_community_data(self.community_to_node) else: self.community_to_node = self.data_store.load_community_data() def generate_shard_data(self): self.logger.info('generating shard data') self.shard_data = {} for shard in range(self.args['num_shards']): train_shard_indices = list(self.community_to_node[shard]) shard_indices = np.union1d(train_shard_indices, self.test_indices) x = self.data.x[shard_indices] y = self.data.y[shard_indices] edge_index = utils.filter_edge_index_1(self.data, shard_indices) data = Data(x=x, edge_index=torch.from_numpy(edge_index), y=y) data.train_mask = torch.from_numpy(np.isin(shard_indices, train_shard_indices)) data.test_mask = torch.from_numpy(np.isin(shard_indices, self.test_indices)) self.shard_data[shard] = data self.data_store.save_shard_data(self.shard_data) def _prune_train_set(self): # extract the the maximum connected component self.logger.debug("Before Prune... #. of Nodes: %f, #. of Edges: %f" % ( self.train_graph.number_of_nodes(), self.train_graph.number_of_edges())) self.train_graph = max(connected_component_subgraphs(self.train_graph), key=len) self.logger.debug("After Prune... #. of Nodes: %f, #. of Edges: %f" % ( self.train_graph.number_of_nodes(), self.train_graph.number_of_edges())) # self.train_indices = np.array(self.train_graph.nodes) def _ratio_delete_edges(self, edge_index): edge_index = edge_index.numpy() unique_indices = np.where(edge_index[0] < edge_index[1])[0] unique_indices_not = np.where(edge_index[0] > edge_index[1])[0] remain_indices = np.random.choice(unique_indices, int(unique_indices.shape[0] * (1.0 - self.args['ratio_deleted_edges'])), replace=False) remain_encode = edge_index[0, remain_indices] * edge_index.shape[1] * 2 + edge_index[1, remain_indices] unique_encode_not = edge_index[1, unique_indices_not] * edge_index.shape[1] * 2 + edge_index[0, unique_indices_not] sort_indices = np.argsort(unique_encode_not) remain_indices_not = unique_indices_not[sort_indices[np.searchsorted(unique_encode_not, remain_encode, sorter=sort_indices)]] remain_indices = np.union1d(remain_indices, remain_indices_not) # self.data.edge_index = torch.from_numpy(edge_index[:, remain_indices]) return torch.from_numpy(edge_index[:, remain_indices])
6,423
44.560284
155
py
Graph-Unlearning
Graph-Unlearning-main/exp/exp_attack_unlearning.py
import logging import time from collections import defaultdict import numpy as np import torch import torch_geometric as tg from torch_geometric.data import Data from scipy.spatial import distance import config from exp.exp import Exp from lib_graph_partition.graph_partition import GraphPartition from lib_gnn_model.node_classifier import NodeClassifier from lib_aggregator.aggregator import Aggregator from lib_utils import utils class ExpAttackUnlearning(Exp): def __init__(self, args): super(ExpAttackUnlearning, self).__init__(args) self.logger = logging.getLogger('exp_attack_unlearning') # 1. respond to the unlearning requests self.load_preprocessed_data() # self.graph_unlearning_request_respond() if self.args['repartition']: with open(config.MODEL_PATH + self.args['dataset_name'] + '/' + self.args['target_model']+"_unlearned_indices") as file: node_unlearning_indices = [line.rstrip() for line in file] for unlearned_node in node_unlearning_indices: self.graph_unlearning_request_respond(int(unlearned_node)) else: self.graph_unlearning_request_respond() # 2. evalute the attack performance self.attack_graph_unlearning() def load_preprocessed_data(self): self.shard_data = self.data_store.load_shard_data() self.raw_data = self.data_store.load_raw_data() self.train_data = self.data_store.load_train_data() self.train_graph = self.data_store.load_train_graph() self.train_indices, self.test_indices = self.data_store.load_train_test_split() self.community_to_node = self.data_store.load_community_data() num_feats = self.train_data.num_features num_classes = len(self.train_data.y.unique()) self.target_model = NodeClassifier(num_feats, num_classes, self.args) def graph_unlearning_request_respond(self, node_unlearning_request=None): # reindex the node ids node_to_com = self.data_store.c2n_to_n2c(self.community_to_node) train_indices_prune = list(node_to_com.keys()) if node_unlearning_request==None: # generate node unlearning requests node_unlearning_indices = np.random.choice(train_indices_prune, self.args['num_unlearned_nodes']) else: node_unlearning_indices = np.array([node_unlearning_request]) self.num_unlearned_edges =0 unlearning_indices = defaultdict(list) for node in node_unlearning_indices: unlearning_indices[node_to_com[node]].append(node) # delete a list of revoked nodes from train_graph self.train_graph.remove_nodes_from(node_unlearning_indices) # delete the revoked nodes from train_data # by building unlearned data from unlearned train_graph self.train_data.train_mask = torch.from_numpy(np.isin(np.arange(self.train_data.num_nodes), self.train_indices)) self.train_data.test_mask = torch.from_numpy(np.isin(np.arange(self.train_data.num_nodes), np.append(self.test_indices, node_unlearning_indices))) # delete the revoked nodes from shard_data self.shard_data_after_unlearning = {} self.affected_shard=[] for shard in range(self.args["num_shards"]): train_shard_indices = list(self.community_to_node[shard]) # node unlearning train_shard_indices = np.setdiff1d(train_shard_indices, unlearning_indices[shard]) shard_indices = np.union1d(train_shard_indices, self.test_indices) x = self.train_data.x[shard_indices] y = self.train_data.y[shard_indices] edge_index = utils.filter_edge_index_1(self.train_data, shard_indices) data = Data(x=x, edge_index=torch.from_numpy(edge_index), y=y) data.train_mask = torch.from_numpy(np.isin(shard_indices, train_shard_indices)) data.test_mask = torch.from_numpy(np.isin(shard_indices, self.test_indices)) self.shard_data_after_unlearning[shard] = data self.num_unlearned_edges += self.shard_data[shard].num_edges - self.shard_data_after_unlearning[shard].num_edges # find the affected shard model if self.shard_data_after_unlearning[shard].num_nodes != self.shard_data[shard].num_nodes: self.affected_shard.append(shard) self.data_store.save_unlearned_data(self.train_graph, 'train_graph') self.data_store.save_unlearned_data(self.train_data, 'train_data') self.data_store.save_unlearned_data(self.shard_data_after_unlearning, 'shard_data') # retrain the correponding shard model if not self.args['repartition']: for shard in self.affected_shard: suffix = "unlearned_"+str(node_unlearning_indices[0]) self._train_shard_model(shard, suffix) # (if re-partition, re-partition the remaining graph) # re-train the shard model, save model and optimal weight score if self.args['repartition']: suffix="_repartition_unlearned_" + str(node_unlearning_indices[0]) self._repartition(suffix) for shard in range(self.args["num_shards"]): self._train_shard_model(shard, suffix) def _repartition(self, suffix): # load unlearned train_graph and train_data train_graph = self.data_store.load_unlearned_data('train_graph') train_data = self.data_store.load_unlearned_data('train_data') # repartition start_time = time.time() partition = GraphPartition(self.args, train_graph, train_data) community_to_node = partition.graph_partition() partition_time = time.time() - start_time self.logger.info("Partition cost %s seconds." % partition_time) # save the new partition and shard self.data_store.save_community_data(community_to_node, suffix) self._generate_unlearned_repartitioned_shard_data(train_data, community_to_node, self.test_indices) def _generate_unlearned_repartitioned_shard_data(self, train_data, community_to_node, test_indices): self.logger.info('generating shard data') shard_data = {} for shard in range(self.args['num_shards']): train_shard_indices = list(community_to_node[shard]) shard_indices = np.union1d(train_shard_indices, test_indices) x = self.train_data.x[shard_indices] y = self.train_data.y[shard_indices] edge_index = utils.filter_edge_index_1(train_data, shard_indices) data = Data(x=x, edge_index=torch.from_numpy(edge_index), y=y) data.train_mask = torch.from_numpy(np.isin(shard_indices, train_shard_indices)) data.test_mask = torch.from_numpy(np.isin(shard_indices, test_indices)) shard_data[shard] = data # self.data_store.save_unlearned_data(shard_data, 'shard_data_repartition') return shard_data def _train_shard_model(self, shard, suffix="unlearned"): self.logger.info('training target models, shard %s' % shard) # load shard data self.target_model.data = self.shard_data_after_unlearning[shard] # retrain shard model self.target_model.train_model() # replace shard model device=torch.device("cpu") self.target_model.device = device self.data_store.save_target_model(0, self.target_model, shard, suffix) # self.data_store.save_unlearned_target_model(0, self.target_model, shard, suffix) def attack_graph_unlearning(self): # load unlearned indices with open(config.MODEL_PATH + self.args['dataset_name'] + "/" + self.args['target_model'] +"_unlearned_indices") as file: unlearned_indices = [line.rstrip() for line in file] # member sample query, label as 1 positive_posteriors = self._query_target_model(unlearned_indices, unlearned_indices) # non-member sample query, label as 0 negative_posteriors = self._query_target_model(unlearned_indices, self.test_indices) # evaluate attack performance, train multiple shadow models, or calculate posterior entropy, or directly calculate AUC. self.evaluate_attack_performance(positive_posteriors, negative_posteriors) def _query_target_model(self, unlearned_indices, test_indices): # load unlearned data train_data = self.data_store.load_unlearned_data('train_data') # load optimal weight score # optimal_weight=self.data_store.load_optimal_weight(0) # calculate the final posterior, save as attack feature self.logger.info('aggregating submodels') posteriors_a, posteriors_b, posteriors_c =[],[],[] for i in unlearned_indices: community_to_node = self.data_store.load_community_data('') shard_data = self._generate_unlearned_repartitioned_shard_data(train_data, community_to_node, int(i)) posteriors_a.append(self._generate_posteriors(shard_data, '')) suffix="unlearned_" + str(i) posteriors_b.append(self._generate_posteriors_unlearned(shard_data, suffix, i)) if self.args['repartition']: suffix = "_repartition_unlearned_" + str(i) community_to_node = self.data_store.load_community_data(suffix) shard_data = self._generate_unlearned_repartitioned_shard_data(train_data, community_to_node, int(i)) suffix = "__repartition_unlearned_" + str(i) posteriors_c.append(self._generate_posteriors(shard_data, suffix)) return posteriors_a, posteriors_b, posteriors_c def _generate_posteriors_unlearned(self, shard_data, suffix, unlearned_indice): import glob model_path=glob.glob(config.MODEL_PATH+self.args['dataset_name']+"/*_1unlearned_"+str(unlearned_indice)) if not model_path: self.logger.info("No corresponding unlearned shard model for node %s" % str(unlearned_indice)) return torch.tensor([0]*6) else: affected_shard = int(model_path[0].split('/')[-1].split('_')[-4]) posteriors = [] for shard in range(self.args['num_shards']): if shard == affected_shard: # load the retrained the shard model self.data_store.load_target_model(0, self.target_model, shard, suffix) else: # self.target_model.model.reset_parameters() # load unaffected shard model self.data_store.load_target_model(0, self.target_model, shard, '') self.device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu') self.target_model.model = self.target_model.model.to(self.device) self.target_model.data = shard_data[shard].to(self.device) posteriors.append(self.target_model.posterior()) return torch.mean(torch.cat(posteriors, dim=0), dim=0) def _generate_posteriors(self, shard_data, suffix): posteriors = [] for shard in range(self.args['num_shards']): # self.target_model.model.reset_parameters() self.data_store.load_target_model(0, self.target_model, shard, suffix) self.device = torch.device('cuda:3' if torch.cuda.is_available() else 'cpu') self.target_model.model = self.target_model.model.to(self.device) self.target_model.data = shard_data[shard].to(self.device) posteriors.append(self.target_model.posterior()) return torch.mean(torch.cat(posteriors, dim=0), dim=0) def evaluate_attack_performance(self, positive_posteriors, negative_posteriors): # constrcut attack data label = torch.cat((torch.ones(len(positive_posteriors[0])), torch.zeros(len(negative_posteriors[0])))) data={} for i in range(2): data[i] = torch.cat((torch.stack(positive_posteriors[i]), torch.stack(negative_posteriors[i])),0) # calculate l2 distance model_b_distance = self._calculate_distance(data[0], data[1]) # directly calculate AUC with feature and labels attack_auc_b = self.evaluate_attack_with_AUC(model_b_distance, label) if self.args['repartition']: model_c_distance = self._calculate_distance(data[0], data[2]) attack_auc_c = self.evaluate_attack_with_AUC(model_c_distance, label) self.logger.info("Attack_Model_B AUC: %s | Attack_Model_C AUC: %s" % (attack_auc_b, attack_auc_c)) def evaluate_attack_with_AUC(self, data, label): from sklearn.metrics import roc_auc_score self.logger.info("Directly calculate the attack AUC") return roc_auc_score(label, data.reshape(-1, 1)) def _calculate_distance(self, data0, data1, distance='l2_norm' ): if distance == 'l2_norm': return np.array([np.linalg.norm(data0[i]-data1[i]) for i in range(len(data0))]) elif distance =='direct_diff': return data0 - data1 else: raise Exception("Unsupported distance")
13,321
48.895131
154
py
Graph-Unlearning
Graph-Unlearning-main/exp/exp.py
import logging from lib_dataset.data_store import DataStore class Exp: def __init__(self, args): self.logger = logging.getLogger('exp') self.args = args self.data_store = DataStore(args) def load_data(self): pass
258
16.266667
46
py
Graph-Unlearning
Graph-Unlearning-main/exp/exp_node_edge_unlearning.py
import logging import pickle import time from collections import defaultdict import numpy as np import torch from torch_geometric.data import Data import config from exp.exp import Exp from lib_gnn_model.graphsage.graphsage import SAGE from lib_gnn_model.gat.gat import GAT from lib_gnn_model.gin.gin import GIN from lib_gnn_model.gcn.gcn import GCN from lib_gnn_model.mlp.mlp import MLP from lib_gnn_model.node_classifier import NodeClassifier from lib_aggregator.aggregator import Aggregator from lib_utils import utils class ExpNodeEdgeUnlearning(Exp): def __init__(self, args): super(ExpNodeEdgeUnlearning, self).__init__(args) self.logger = logging.getLogger('exp_node_edge_unlearning') self.target_model_name = self.args['target_model'] self.load_data() self.determine_target_model() self.run_exp() def run_exp(self): # unlearning efficiency run_f1 = np.empty((0)) unlearning_time = np.empty((0)) for run in range(self.args['num_runs']): self.logger.info("Run %f" % run) self.train_target_models(run) aggregate_f1_score = self.aggregate(run) # node_unlearning_time = self.unlearning_time_statistic() node_unlearning_time = 0 run_f1 = np.append(run_f1, aggregate_f1_score) unlearning_time = np.append(unlearning_time, node_unlearning_time) self.num_unlearned_edges = 0 # model utility self.f1_score_avg = np.average(run_f1) self.f1_score_std = np.std(run_f1) self.unlearning_time_avg = np.average(unlearning_time) self.unlearning_time_std = np.std(unlearning_time) self.logger.info( "%s %s %s %s" % (self.f1_score_avg, self.f1_score_std, self.unlearning_time_avg, self.unlearning_time_std)) def load_data(self): self.shard_data = self.data_store.load_shard_data() self.raw_data = self.data_store.load_raw_data() self.train_data = self.data_store.load_train_data() self.unlearned_shard_data = self.shard_data def determine_target_model(self): num_feats = self.train_data.num_features num_classes = len(self.train_data.y.unique()) if not self.args['is_use_batch']: if self.target_model_name == 'SAGE': self.target_model = SAGE(num_feats, num_classes) elif self.target_model_name == 'GCN': self.target_model = GCN(num_feats, num_classes) elif self.target_model_name == 'GAT': self.target_model = GAT(num_feats, num_classes) elif self.target_model_name == 'GIN': self.target_model = GIN(num_feats, num_classes) else: raise Exception('unsupported target model') else: if self.target_model_name == 'MLP': self.target_model = MLP(num_feats, num_classes) else: self.target_model = NodeClassifier(num_feats, num_classes, self.args) def train_target_models(self, run): if self.args['is_train_target_model']: self.logger.info('training target models') self.time = {} for shard in range(self.args['num_shards']): self.time[shard] = self._train_model(run, shard) def aggregate(self, run): self.logger.info('aggregating submodels') # posteriors, true_label = self.generate_posterior() aggregator = Aggregator(run, self.target_model, self.train_data, self.unlearned_shard_data, self.args) aggregator.generate_posterior() self.aggregate_f1_score = aggregator.aggregate() self.logger.info("Final Test F1: %s" % (self.aggregate_f1_score,)) return self.aggregate_f1_score def _generate_unlearning_request(self, num_unlearned="assign"): node_list = [] for key, value in self.community_to_node.items(): # node_list.extend(value.tolist()) node_list.extend(value) if num_unlearned == "assign": num_of_unlearned_nodes = self.args['num_unlearned_nodes'] elif num_unlearned == "ratio": num_of_unlearned_nodes = int(self.args['ratio_unlearned_nodes'] * len(node_list)) if self.args['unlearning_request'] == 'random': unlearned_nodes_indices = np.random.choice(node_list, num_of_unlearned_nodes, replace=False) elif self.args['unlearning_request'] == 'top1': sorted_shards = sorted(self.community_to_node.items(), key=lambda x: len(x[1]), reverse=True) unlearned_nodes_indices = np.random.choice(sorted_shards[0][1], num_of_unlearned_nodes, replace=False) elif self.args['unlearning_request'] == 'adaptive': sorted_shards = sorted(self.community_to_node.items(), key=lambda x: len(x[1]), reverse=True) candidate_list = np.concatenate([sorted_shards[i][1] for i in range(int(self.args['num_shards']/2)+1)], axis=0) unlearned_nodes_indices = np.random.choice(candidate_list, num_of_unlearned_nodes, replace=False) elif self.args['unlearning_request'] == 'last5': sorted_shards = sorted(self.community_to_node.items(), key=lambda x: len(x[1]), reverse=False) candidate_list = np.concatenate([sorted_shards[i][1] for i in range(int(self.args['num_shards']/2)+1)], axis=0) unlearned_nodes_indices = np.random.choice(candidate_list, num_of_unlearned_nodes, replace=False) return unlearned_nodes_indices def unlearning_time_statistic(self): if self.args['is_train_target_model'] and self.args['num_shards'] != 1: # random sample 5% nodes, find their belonging communities unlearned_nodes = self._generate_unlearning_request(num_unlearned="ratio") belong_community = [] for sample_node in range(len(unlearned_nodes)): for community, node in self.community_to_node.items(): if np.in1d(unlearned_nodes[sample_node], node).any(): belong_community.append(community) # calculate the total unlearning time and group unlearning time group_unlearning_time = [] node_unlearning_time = [] for shard in range(self.args['num_shards']): if belong_community.count(shard) != 0: group_unlearning_time.append(self.time[shard]) node_unlearning_time.extend([float(self.time[shard]) for j in range(belong_community.count(shard))]) return node_unlearning_time elif self.args['is_train_target_model'] and self.args['num_shards'] == 1: return self.time[0] else: return 0 def _train_model(self, run, shard): self.logger.info('training target models, run %s, shard %s' % (run, shard)) start_time = time.time() self.target_model.data = self.unlearned_shard_data[shard] self.target_model.train_model() train_time = time.time() - start_time self.data_store.save_target_model(run, self.target_model, shard) return train_time
7,194
42.606061
123
py
Graph-Unlearning
Graph-Unlearning-main/exp/exp_unlearning.py
import logging import time import numpy as np from exp.exp import Exp from lib_gnn_model.graphsage.graphsage import SAGE from lib_gnn_model.gat.gat import GAT from lib_gnn_model.gin.gin import GIN from lib_gnn_model.gcn.gcn import GCN from lib_gnn_model.mlp.mlp import MLP from lib_gnn_model.node_classifier import NodeClassifier from lib_aggregator.aggregator import Aggregator class ExpUnlearning(Exp): def __init__(self, args): super(ExpUnlearning, self).__init__(args) self.logger = logging.getLogger('exp_unlearning') self.target_model_name = self.args['target_model'] self.num_opt_samples = self.args['num_opt_samples'] self.load_data() self.determine_target_model() run_f1 = np.empty((0)) unlearning_time = np.empty((0)) for run in range(self.args['num_runs']): self.logger.info("Run %f" % run) self.train_target_models(run) aggregate_f1_score = self.aggregate(run) node_unlearning_time = self.unlearning_time_statistic() run_f1 = np.append(run_f1, aggregate_f1_score) unlearning_time = np.append(unlearning_time, node_unlearning_time) self.f1_score_avg = np.average(run_f1) self.f1_score_std = np.std(run_f1) self.unlearning_time_avg = np.average(unlearning_time) self.unlearning_time_std = np.std(unlearning_time) self.logger.info("%s %s %s %s" % (self.f1_score_avg, self.f1_score_std, self.unlearning_time_avg, self.unlearning_time_std)) def load_data(self): self.shard_data = self.data_store.load_shard_data() self.data = self.data_store.load_raw_data() def determine_target_model(self): num_feats = self.data.num_features num_classes = len(self.data.y.unique()) if not self.args['is_use_batch']: if self.target_model_name == 'SAGE': self.target_model = SAGE(num_feats, num_classes) elif self.target_model_name == 'GCN': self.target_model = GCN(num_feats, num_classes) elif self.target_model_name == 'GAT': self.target_model = GAT(num_feats, num_classes) elif self.target_model_name == 'GIN': self.target_model = GIN(num_feats, num_classes) else: raise Exception('unsupported target model') else: if self.target_model_name == 'MLP': self.target_model = MLP(num_feats, num_classes) else: self.target_model = NodeClassifier(num_feats, num_classes, self.args) def train_target_models(self, run): if self.args['is_train_target_model']: self.logger.info('training target models') self.time = {} for shard in range(self.args['num_shards']): self.time[shard] = self._train_model(run, shard) def aggregate(self, run): self.logger.info('aggregating submodels') start_time = time.time() aggregator = Aggregator(run, self.target_model, self.data, self.shard_data, self.args) aggregator.generate_posterior() self.aggregate_f1_score = aggregator.aggregate() aggregate_time = time.time() - start_time self.logger.info("Partition cost %s seconds." % aggregate_time) self.logger.info("Final Test F1: %s" % (self.aggregate_f1_score,)) return self.aggregate_f1_score def unlearning_time_statistic(self): if self.args['is_train_target_model'] and self.args['num_shards'] != 1: self.community_to_node = self.data_store.load_community_data() node_list = [] for key, value in self.community_to_node.items(): node_list.extend(value) # random sample 5% nodes, find their belonging communities sample_nodes = np.random.choice(node_list, int(0.05 * len(node_list))) belong_community = [] for sample_node in range(len(sample_nodes)): for community, node in self.community_to_node.items(): if np.in1d(sample_nodes[sample_node], node).any(): belong_community.append(community) # calculate the total unlearning time and group unlearning time group_unlearning_time = [] node_unlearning_time = [] for shard in range(self.args['num_shards']): if belong_community.count(shard) != 0: group_unlearning_time.append(self.time[shard]) node_unlearning_time.extend([float(self.time[shard]) for j in range(belong_community.count(shard))]) return node_unlearning_time elif self.args['is_train_target_model'] and self.args['num_shards'] == 1: return self.time[0] else: return 0 def _train_model(self, run, shard): self.logger.info('training target models, run %s, shard %s' % (run, shard)) start_time = time.time() self.target_model.data = self.shard_data[shard] self.target_model.train_model() train_time = time.time() - start_time self.data_store.save_target_model(run, self.target_model, shard) self.logger.info("Model training time: %s" % (train_time)) return train_time
5,345
39.195489
132
py
Graph-Unlearning
Graph-Unlearning-main/lib_dataset/data_store.py
import os import pickle import logging import shutil import numpy as np import torch from torch_geometric.datasets import Planetoid, Coauthor import torch_geometric.transforms as T import config class DataStore: def __init__(self, args): self.logger = logging.getLogger('data_store') self.args = args self.dataset_name = self.args['dataset_name'] self.num_features = { "cora": 1433, "pubmed": 500, "citeseer": 3703, "Coauthor_CS": 6805, "Coauthor_Phys": 8415 } self.partition_method = self.args['partition_method'] self.num_shards = self.args['num_shards'] self.target_model = self.args['target_model'] self.determine_data_path() def determine_data_path(self): embedding_name = '_'.join(('embedding', self._extract_embedding_method(self.partition_method), str(self.args['ratio_deleted_edges']))) community_name = '_'.join(('community', self.partition_method, str(self.num_shards), str(self.args['ratio_deleted_edges']))) shard_name = '_'.join(('shard_data', self.partition_method, str(self.num_shards), str(self.args['shard_size_delta']), str(self.args['ratio_deleted_edges']))) target_model_name = '_'.join((self.target_model, self.partition_method, str(self.num_shards), str(self.args['shard_size_delta']), str(self.args['ratio_deleted_edges']))) optimal_weight_name = '_'.join((self.target_model, self.partition_method, str(self.num_shards), str(self.args['shard_size_delta']), str(self.args['ratio_deleted_edges']))) processed_data_prefix = config.PROCESSED_DATA_PATH + self.dataset_name + "/" self.train_test_split_file = processed_data_prefix + "train_test_split" + str(self.args['test_ratio']) self.train_data_file = processed_data_prefix + "train_data" self.train_graph_file = processed_data_prefix + "train_graph" self.embedding_file = processed_data_prefix + embedding_name self.community_file = processed_data_prefix + community_name self.shard_file = processed_data_prefix + shard_name self.unlearned_file = processed_data_prefix+ '_'.join(('unlearned', str(self.args['num_unlearned_nodes']))) self.target_model_file = config.MODEL_PATH + self.dataset_name + '/' + target_model_name self.optimal_weight_file = config.ANALYSIS_PATH + 'optimal/' + self.dataset_name + '/' + optimal_weight_name self.posteriors_file = config.ANALYSIS_PATH + 'posteriors/' + self.dataset_name + '/' + target_model_name dir_lists = [s + self.dataset_name for s in [config.PROCESSED_DATA_PATH, config.MODEL_PATH, config.ANALYSIS_PATH + 'optimal/', config.ANALYSIS_PATH + 'posteriors/']] for dir in dir_lists: self._check_and_create_dirs(dir) def _check_and_create_dirs(self, folder): if not os.path.exists(folder): try: self.logger.info("checking directory %s", folder) os.makedirs(folder, exist_ok=True) self.logger.info("new directory %s created", folder) except OSError as error: self.logger.info("deleting old and creating new empty %s", folder) shutil.rmtree(folder) os.mkdir(folder) self.logger.info("new empty directory %s created", folder) else: self.logger.info("folder %s exists, do not need to create again.", folder) def load_raw_data(self): self.logger.info('loading raw data') if not self.args['is_use_node_feature']: self.transform = T.Compose([ T.OneHotDegree(-2, cat=False) # use only node degree as node feature. ]) else: self.transform = None if self.dataset_name in ["cora", "pubmed", "citeseer"]: dataset = Planetoid(config.RAW_DATA_PATH, self.dataset_name, transform=T.NormalizeFeatures()) labels = np.unique(dataset.data.y.numpy()) elif self.dataset_name in ["Coauthor_CS", "Coauthor_Phys"]: if self.dataset_name == "Coauthor_Phys": dataset = Coauthor(config.RAW_DATA_PATH, name="Physics", pre_transform=self.transform) else: dataset = Coauthor(config.RAW_DATA_PATH, name="CS", pre_transform=self.transform) else: raise Exception('unsupported dataset') data = dataset[0] return data def save_train_data(self, train_data): self.logger.info('saving train data') pickle.dump(train_data, open(self.train_data_file, 'wb')) def load_train_data(self): self.logger.info('loading train data') return pickle.load(open(self.train_data_file, 'rb')) def save_train_graph(self, train_data): self.logger.info('saving train graph') pickle.dump(train_data, open(self.train_graph_file, 'wb')) def load_train_graph(self): self.logger.info('loading train graph') return pickle.load(open(self.train_graph_file, 'rb')) def save_train_test_split(self, train_indices, test_indices): self.logger.info('saving train test split data') pickle.dump((train_indices, test_indices), open(self.train_test_split_file, 'wb')) def load_train_test_split(self): self.logger.info('loading train test split data') return pickle.load(open(self.train_test_split_file, 'rb')) def save_embeddings(self, embeddings): self.logger.info('saving embedding data') pickle.dump(embeddings, open(self.embedding_file, 'wb')) def load_embeddings(self): self.logger.info('loading embedding data') return pickle.load(open(self.embedding_file, 'rb')) def save_community_data(self, community_to_node, suffix=''): self.logger.info('saving community data') pickle.dump(community_to_node, open(self.community_file + suffix, 'wb')) def load_community_data(self, suffix=''): self.logger.info('loading community data from: %s'%(self.community_file + suffix)) return pickle.load(open(self.community_file + suffix, 'rb')) def c2n_to_n2c(self, community_to_node): node_list = [] for i in range(self.num_shards): node_list.extend(list(community_to_node.values())[i]) node_to_community = {} for comm, nodes in dict(community_to_node).items(): for node in nodes: # Map node id back to original graph # node_to_community[node_list[node]] = comm node_to_community[node] = comm return node_to_community def save_shard_data(self, shard_data): self.logger.info('saving shard data') pickle.dump(shard_data, open(self.shard_file, 'wb')) def load_shard_data(self): self.logger.info('loading shard data') return pickle.load(open(self.shard_file, 'rb')) def load_unlearned_data(self, suffix): file_path = '_'.join((self.unlearned_file, suffix)) self.logger.info('loading unlearned data from %s' % file_path) return pickle.load(open(file_path, 'rb')) def save_unlearned_data(self, data, suffix): self.logger.info('saving unlearned data %s' % suffix) pickle.dump(data, open('_'.join((self.unlearned_file, suffix)), 'wb')) def save_target_model(self, run, model, shard, suffix=''): if self.args["exp"] in ["node_edge_unlearning", "attack_unlearning"]: model_path = '_'.join((self.target_model_file, str(shard), str(run), str(self.args['num_unlearned_nodes']))) + suffix model.save_model(model_path) else: model.save_model(self.target_model_file + '_' + str(shard) + '_' + str(run)) # model.save_model(self.target_model_file + '_' + str(shard)) def load_target_model(self, run, model, shard, suffix=''): if self.args["exp"] == "node_edge_unlearning": model.load_model( '_'.join((self.target_model_file, str(shard), str(run), str(self.args['num_unlearned_nodes'])))) elif self.args["exp"] == "attack_unlearning": model_path = '_'.join((self.target_model_file, str(shard), str(run), str(self.args['num_unlearned_nodes']))) + suffix print("loading target model from:" + model_path) device = torch.device('cpu') model.load_model(model_path) model.device=device else: # model.load_model(self.target_model_file + '_' + str(shard) + '_' + str(run)) model.load_model(self.target_model_file + '_' + str(shard) + '_' + str(0)) def save_optimal_weight(self, weight, run): torch.save(weight, self.optimal_weight_file + '_' + str(run)) def load_optimal_weight(self, run): return torch.load(self.optimal_weight_file + '_' + str(run)) def save_posteriors(self, posteriors, run, suffix=''): torch.save(posteriors, self.posteriors_file + '_' + str(run) + suffix) def load_posteriors(self, run): return torch.load(self.posteriors_file + '_' + str(run)) def _extract_embedding_method(self, partition_method): return partition_method.split('_')[0]
9,583
44.421801
129
py