repo
stringlengths
2
99
file
stringlengths
14
239
code
stringlengths
20
3.99M
file_length
int64
20
3.99M
avg_line_length
float64
9.73
128
max_line_length
int64
11
86.4k
extension_type
stringclasses
1 value
neu-nbv
neu-nbv-main/scripts/planning/simulator_planning.py
import rospy import os import sys root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, root_dir) import yaml import argparse from planner import get_planner from datetime import datetime def main(): # planning experiment in simulator using a specific planner args = parse_args() rospy.init_node(args.planner_type) # find planner configuration file experiment_path = os.path.join( root_dir, "experiments", "simulator", datetime.now().strftime("%d-%m-%Y-%H-%M"), ) planner_cfg_path = os.path.join( "planning/config", f"{args.planner_type}_planner.yaml" ) assert os.path.exists(planner_cfg_path) with open(planner_cfg_path, "r") as config_file: planner_cfg = yaml.safe_load(config_file) planner_cfg.update(args.__dict__) planner_cfg["planner_type"] = args.planner_type planner_cfg["experiment_path"] = experiment_path planner_cfg["experiment_id"] = "record" nbv_planner = get_planner(planner_cfg) nbv_planner.start() def parse_args(): parser = argparse.ArgumentParser() # mandatory arguments parser.add_argument( "--planner_type", "-P", type=str, required=True, help="planner_type" ) # arguments with default values parser.add_argument( "--planning_budget", "-BG", type=int, default=20, help="maximal measurments for the mission", ) parser.add_argument( "--device", type=str, default="cuda", help="config file path", ) parser.add_argument( "--gpu_id", type=str, default="0", help="gpu to use, space delimited", ) parser.add_argument( "--initial_view", type=list, default=[0, 0], help="prefixed initial camera view angle", ) parser.add_argument( "--random_initial", action="store_true", help="use random inital camera pose", ) args = parser.parse_args() return args if __name__ == "__main__": main()
2,103
22.640449
76
py
neu-nbv
neu-nbv-main/scripts/planning/dtu_experiment.py
import sys import os root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, root_dir) from neural_rendering.evaluation.pretrained_model import PretrainedModel from neural_rendering.data import get_data from neural_rendering.utils import parser, util import yaml from dotmap import DotMap import torch import warnings import numpy as np import pandas import seaborn as sb import copy from scipy.spatial import distance from datetime import datetime import random import pickle from dotmap import DotMap warnings.filterwarnings("ignore") # follow pixelnerf setup candidate_index_list = [ 6, 7, 8, 9, 10, 13, 14, 15, 16, 17, 21, 22, 23, 24, 25, 31, 32, 33, 34, 35, 41, 42, 43, 44, 45, ] def setup_random_seed(seed): torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) random.seed(seed) torch.backends.cudnn.deterministic = True def get_nbv_ref_index( model, images, poses, focal, c, z_near, z_far, candidate_list, budget, ref_index ): _, _, H, W = images.shape for i in range(budget): remain_candidate_list = list(set(candidate_list) - set(ref_index)) reward_list = [] model.network.encode( images[ref_index].unsqueeze(0), poses[ref_index].unsqueeze(0), focal.unsqueeze(0), c.unsqueeze(0), ) for target_view in remain_candidate_list: novel_pose = poses[target_view] target_rays = util.gen_rays( novel_pose.unsqueeze(0), W, H, focal, z_near, z_far, c ) target_rays = target_rays.reshape(1, H * W, -1) predict = DotMap(model.renderer_par(target_rays)) uncertainty = predict["uncertainty"][0] reward = torch.sum(uncertainty**2).cpu().numpy() reward_list.append(reward) nbv_index = np.argmax(reward_list) new_ref_index = remain_candidate_list[nbv_index] ref_index.append(new_ref_index) return ref_index def get_camera_view_direction(poses): poses = poses.cpu().numpy() view_direction = -poses[..., :3, 2] view_direction = view_direction / np.linalg.norm(view_direction) return view_direction def get_max_dist_ref_index(poses, ref_index, candidate_list, budget): view_direction = get_camera_view_direction(poses) for i in range(budget): remain_candidate_list = list(set(candidate_list) - set(ref_index)) cos_distance_list = [] for idx in remain_candidate_list: cos_dist = 0.0 for image_idx in ref_index: cos_dist += distance.cosine( view_direction[idx], view_direction[image_idx] ) cos_distance_list.append(cos_dist) new_ref_index = remain_candidate_list[np.argmax(cos_distance_list)] ref_index.append(new_ref_index) return ref_index def main(): # planning experiment on DTU using baseline planners and our planner setup_random_seed(10) args = parser.parse_args(planning_args) dtu_nbv_planner = DTUNBVPlanning(args) experiment_path = args.experiment_path if args.evaluation_only: with open(f"{experiment_path}/saved_index_dict.pkl", "rb") as f: index_record = pickle.load(f) else: experiment_path = os.path.join( root_dir, "experiments", "dtu", datetime.now().strftime("%d-%m-%Y-%H-%M"), ) os.makedirs(experiment_path) index_record = dtu_nbv_planner.planning() with open(f"{experiment_path}/saved_index_dict.pkl", "wb") as f: pickle.dump(index_record, f) total_df = dtu_nbv_planner.evaluation(index_record) total_df.to_csv(f"{experiment_path}/dataframe.csv") class DTUNBVPlanning: """ planning on DTU using different view selection methods: max_view_distance, random, and our uncertainty guided """ def __init__(self, args): log_path = os.path.join(root_dir, "neural_rendering", "logs", args.model_name) assert os.path.exists(log_path), "experiment does not exist" with open(f"{log_path}/training_setup.yaml", "r") as config_file: cfg = yaml.safe_load(config_file) checkpoint_path = os.path.join(log_path, "checkpoints", "best.ckpt") assert os.path.exists(checkpoint_path), "checkpoint does not exist" ckpt_file = torch.load(checkpoint_path) gpu_id = list(map(int, args.gpu_id.split())) self.device = util.get_cuda(gpu_id[0]) self.repeat = args.repeat self.model = PretrainedModel(cfg["model"], ckpt_file, self.device, gpu_id) cfg["data"]["dataset"]["data_rootdir"] = os.path.join( root_dir, "neural_rendering/data/dataset/dtu_dataset/rs_dtu_4/DTU" ) datamodule = get_data(cfg["data"]) self.dataset = datamodule.load_dataset("val") self.z_near = self.dataset.z_near self.z_far = self.dataset.z_far def planning(self): print(f"---------- planning ---------- \n") ON = len(self.dataset) selection_type = ["Max. View Distance", "Random", "Ours"] nview_list = [2, 3, 4, 5, 6, 7, 8, 9] # maximal budget = 9 scene_index = range(ON) ref_index_record = {} with torch.no_grad(): for nviews in nview_list: ref_index_record[nviews] = {} print(f"---------- {nviews} views experiment---------- \n") for i in scene_index: data_instance = self.dataset.__getitem__(i) scene_title = data_instance["scan_name"] ref_index_record[nviews][i] = {} print(f"test on {scene_title}") images = data_instance["images"].to(self.device) focal = data_instance["focal"].to(self.device) c = data_instance["c"].to(self.device) poses = data_instance["poses"].to(self.device) # random initialize first 2 ref images for all methods for r in range(self.repeat): ref_index_record[nviews][i][r] = {} initial_ref_index = list( np.random.choice(candidate_index_list, 2, replace=False) ) candidate_list = list( set(candidate_index_list) - set(initial_ref_index) ) budget = nviews - 2 for stype in selection_type: print(f"---------- repeat: {r}, {stype} ---------- \n") if stype == "Max. View Distance": ref_index = get_max_dist_ref_index( poses, copy.deepcopy(initial_ref_index), candidate_list, budget, ) print(ref_index) elif stype == "Random": random_ref_index = list( np.random.choice( candidate_index_list, budget, replace=True ) ) ref_index = initial_ref_index + random_ref_index print(ref_index) ref_index = np.unique(ref_index) elif stype == "Ours": ref_index = get_nbv_ref_index( self.model, images, poses, focal, c, self.z_near, self.z_far, candidate_list, budget, copy.deepcopy(initial_ref_index), ) print(ref_index) ref_index_record[nviews][i][r][stype] = ref_index return ref_index_record def evaluation(self, index_record): print(f"---------- evaluation ---------- \n") total_df = pandas.DataFrame( { "Planning Type": [], "Reference Image Number": [], "PSNR": [], "SSIM": [], "Scene": [], } ) with torch.no_grad(): for nviews, nviews_dict in index_record.items(): print(f"---------- {nviews} views experiment---------- \n") for scene_id, scene_dict in nviews_dict.items(): data_instance = self.dataset.__getitem__(scene_id) scene_title = data_instance["scan_name"] print(f"test on {scene_title}") images = data_instance["images"].to(self.device) images_0to1 = images * 0.5 + 0.5 _, _, H, W = images.shape focal = data_instance["focal"].to(self.device) c = data_instance["c"].to(self.device) poses = data_instance["poses"].to(self.device) psnr_per_scene = [] ssim_per_scene = [] # random initialize first 2 ref images for all methods for repeat, repeat_dict in scene_dict.items(): for stype, ref_index in repeat_dict.items(): print(f"---------- repeat: {repeat}, {stype} ---------- \n") print(ref_index) self.model.network.encode( images[ref_index].unsqueeze(0), poses[ref_index].unsqueeze(0), focal.unsqueeze(0), c.unsqueeze(0), ) test_index = list( set(candidate_index_list) - set(ref_index) ) psnr_per_test = [] ssim_per_test = [] for target_view in test_index: gt = ( images_0to1[target_view] .permute(1, 2, 0) .cpu() .numpy() ) novel_pose = poses[target_view] target_rays = util.gen_rays( novel_pose.unsqueeze(0), W, H, focal, self.z_near, self.z_far, c, ) target_rays = target_rays.reshape(1, H * W, -1) predict = DotMap(self.model.renderer_par(target_rays)) metrics_dict = util.calc_metrics( predict, torch.tensor(gt) ) psnr_per_test.append(metrics_dict["psnr"]) ssim_per_test.append(metrics_dict["ssim"]) psnr_per_scene = np.mean(psnr_per_test) ssim_per_scene = np.mean(ssim_per_test) print(psnr_per_scene, ssim_per_scene) dataframe = pandas.DataFrame( { "Planning Type": stype, "Reference Image Number": nviews, "PSNR": psnr_per_scene, "SSIM": ssim_per_scene, "Scene": scene_id, }, index=[repeat], ) total_df = total_df.append(dataframe) return total_df def planning_args(parser): """ Parse arguments for evaluation setup. """ parser.add_argument( "--model_name", "-M", type=str, required=True, help="model name of pretrained model", ) parser.add_argument( "--repeat", "-R", type=int, default=5, help="repeat times for planning experiment", ) # arguments with default values parser.add_argument( "--evaluation_only", action="store_true", help="evaluation mode" ) parser.add_argument( "--experiment_path", type=str, default="not defined", help="must be defined in evaluation mode", ) parser.add_argument( "--gpu_id", type=str, default="0", help="GPU(s) to use, space delimited" ) return parser if __name__ == "__main__": main()
13,632
34.046272
113
py
neu-nbv
neu-nbv-main/scripts/planning/simulator_experiment.py
import rospy import os import sys root_dir = os.path.abspath(os.path.join(os.path.dirname(__file__), "..")) sys.path.insert(0, root_dir) import yaml import argparse from planner import get_planner from planner.utils import uniform_sampling import numpy as np import scipy.spatial as spatial from datetime import datetime import imageio import glob from dotmap import DotMap import torch from neural_rendering.utils import util from neural_rendering.evaluation.pretrained_model import PretrainedModel import pandas import torch.nn.functional as F planner_title = { "max_distance": "Max. View Distance", "random": "Random", "neural_nbv": "Ours", } def setup_random_seed(seed): np.random.seed(seed) def main(): # planning experiment in simulator using baseline planners and our planner setup_random_seed(10) rospy.init_node("simulator_experiment") args = parse_args() planner_type_list = ["max_distance", "random", "neural_nbv"] repeat = args.repeat experiment_path = args.experiment_path if not args.evaluation_only: experiment_path = os.path.join( root_dir, "experiments", "simulator", datetime.now().strftime("%d-%m-%Y-%H-%M"), ) os.makedirs(experiment_path, exist_ok=True) print("---------- planning ----------") for i in range(repeat): # initialize planning with 2 same views random_initial_view = [] for _ in range(2): random_initial_view.append( uniform_sampling(radius=2, phi_min=0.15) ) # hard-coded, should be the same for config file for planner_type in planner_type_list: # find planner configuration file print( f"---------- {planner_type} planner, experiment ID {i} ----------\n" ) planner_cfg_path = os.path.join( "planning/config", f"{planner_type}_planner.yaml" ) assert os.path.exists(planner_cfg_path) with open(planner_cfg_path, "r") as config_file: planner_cfg = yaml.safe_load(config_file) planner_cfg.update(args.__dict__) planner_cfg["planner_type"] = planner_type planner_cfg["experiment_path"] = experiment_path planner_cfg["experiment_id"] = i nbv_planner = get_planner(planner_cfg) nbv_planner.start(initial_view=random_initial_view) print("---------- evaluation ----------") gpu_id = list(map(int, args.gpu_id.split())) device = util.get_cuda(gpu_id[0]) log_path = os.path.join(root_dir, "neural_rendering", "logs", args.model_name) assert os.path.exists(log_path), "experiment does not exist" with open(f"{log_path}/training_setup.yaml", "r") as config_file: cfg = yaml.safe_load(config_file) checkpoint_path = os.path.join(log_path, "checkpoints", "best.ckpt") assert os.path.exists(checkpoint_path), "checkpoint does not exist" ckpt_file = torch.load(checkpoint_path) model = PretrainedModel(cfg["model"], ckpt_file, device, gpu_id) # load test view data as ground truth test_rgbs, test_poses, focal, c = get_image_data( args.test_data_path, "normal", device ) # configure rendering information nview = int(args.nviews) _, _, H, W = test_rgbs.shape z_near = cfg["data"]["dataset"]["z_near"] z_far = cfg["data"]["dataset"]["z_far"] step_list = [2, 4, 6, 8, 10, 12, 14, 16, 18, 20] total_df = pandas.DataFrame( { "Planning Type": [], "Reference Image Num.": [], "PSNR": [], "SSIM": [], } ) for r in range(repeat): for planner_type in planner_type_list: ref_data_path = os.path.join(experiment_path, planner_type, str(r)) ref_rgbs, ref_poses, _, _ = get_image_data(ref_data_path, "normal", device) for step in step_list: print( f"---------- planner:{planner_type}, repeat {r}, step {step} ----------\n" ) ref_kd_tree = spatial.KDTree(ref_poses[:step, :3, 3].cpu().numpy()) psnr_list = [] ssim_list = [] with torch.no_grad(): for i, rgb in enumerate(test_rgbs): pose = test_poses[i] gt = rgb * 0.5 + 0.5 gt = gt.permute(1, 2, 0).cpu().numpy() _, ref_index = ref_kd_tree.query( pose[:3, 3].cpu().numpy(), np.minimum(nview, step) ) model.network.encode( ref_rgbs[ref_index].unsqueeze(0), ref_poses[ref_index].unsqueeze(0), focal.unsqueeze(0), c.unsqueeze(0), ) target_rays = util.gen_rays( pose.unsqueeze(0), W, H, focal, z_near, z_far, c ) target_rays = target_rays.reshape(1, H * W, -1) predict = DotMap(model.renderer_par(target_rays)) metrics_dict = util.calc_metrics(predict, torch.tensor(gt)) psnr_list.append(metrics_dict["psnr"]) ssim_list.append(metrics_dict["ssim"]) psnr_mean = np.mean(psnr_list) ssim_mean = np.mean(ssim_list) print("psnr:", psnr_mean, "ssim:", ssim_mean) dataframe = pandas.DataFrame( { "Planning Type": planner_title[planner_type], "Reference Image Num.": step, "PSNR": psnr_mean, "SSIM": ssim_mean, }, index=[r], ) total_df = total_df.append(dataframe) total_df.to_csv(f"{experiment_path}/dataframe.csv") image_to_tensor = util.get_image_to_tensor_balanced() def get_image_data(data_path, coordinate_format, device, rescale=0.5): assert os.path.exists(data_path) rgb_paths = [ x for x in glob.glob(f"{data_path}/images/*") if (x.endswith(".jpg") or x.endswith(".png")) ] rgb_paths = sorted(rgb_paths) images = [] poses = [] for image_path in rgb_paths: image = imageio.imread(image_path)[..., :3] image = image_to_tensor(image) images.append(image) pose_list = np.load(f"{data_path}/trajectory.npy") for pose in pose_list: pose = util.coordinate_transformation(pose, format=coordinate_format) poses.append(pose) with open(f"{data_path}/camera_info.yaml") as file: intrinsic = yaml.safe_load(file) images = torch.stack(images).to(device) poses = torch.stack(poses).to(device) if rescale != 1: _, _, H, W = images.shape H = int(rescale * H) W = int(rescale * W) images = F.interpolate(images, size=[W, H], mode="area") focal = rescale * torch.tensor(intrinsic["focal"], dtype=torch.float32).to(device) c = rescale * torch.tensor(intrinsic["c"], dtype=torch.float32).to(device) assert len(images) == len(poses) return images, poses, focal, c def test_visualize(results_dict): import matplotlib.pyplot as plt H = 400 W = 400 rgb = results_dict.rgb[0].cpu().numpy().reshape(H, W, 3) depth = results_dict.depth[0].cpu().numpy().reshape(H, W) uncertainty = results_dict.uncertainty[0].cpu().numpy().reshape(H, W) fig, axs = plt.subplots(1, 3) axs[0].imshow(rgb) axs[1].imshow(uncertainty) axs[2].imshow(depth) plt.show() def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "--model_name", "-M", type=str, required=True, help="model name of pretrained model", ) parser.add_argument( "--test_data_path", "-TD", type=str, required=True, help="data path", ) # mandatory arguments parser.add_argument( "--repeat", "-rp", type=int, default=10, help="repeat experiment", ) # arguments with default values parser.add_argument( "--nviews", "-nv", type=int, default=5, help="number of reference views" ) parser.add_argument( "--planning_budget", "-BG", type=int, default=20, help="maximal measurments for the mission", ) parser.add_argument( "--device", type=str, default="cuda", help="config file path", ) parser.add_argument( "--gpu_id", type=str, default="0", help="gpu to use, space delimited", ) parser.add_argument( "--evaluation_only", action="store_true", help="evaluation mode" ) parser.add_argument( "--experiment_path", type=str, default="not defined", help="must be defined in evaluation mode", ) args = parser.parse_args() return args if __name__ == "__main__": main()
9,450
29.685065
94
py
neu-nbv
neu-nbv-main/scripts/planning/planner/simulator_bridge.py
import rospy from gazebo_msgs.msg import ModelState from sensor_msgs.msg import Image, CameraInfo from cv_bridge import CvBridge from . import utils import numpy as np class SimulatorBridge: def __init__(self, cfg): self.cv_bridge = CvBridge() self.current_rgb = None self.current_depth = None self.camera_type = cfg["camera_type"] self.sensor_noise = cfg["sensor_noise"] self.get_simulator_camera_info() self.pose_pub = rospy.Publisher( "/gazebo/set_model_state", ModelState, queue_size=1, latch=True ) if self.camera_type == "rgb_camera": self.rgb_sub = rospy.Subscriber( "/rgb_camera/rgb_image_raw", Image, self.update_rgb ) elif self.camera_type == "rgbd_camera": self.rgb_sub = rospy.Subscriber( "/rgbd_camera/rgb_image_raw", Image, self.update_rgb ) self.depth_sub = rospy.Subscriber( "/rgbd_camera/depth_image_raw", Image, self.update_depth ) def get_simulator_camera_info(self): camera_info_raw = rospy.wait_for_message( f"/{self.camera_type}/camera_info", CameraInfo ) K = camera_info_raw.K # intrinsic matrix H = int(camera_info_raw.height) # image height W = int(camera_info_raw.width) # image width self.camera_info = { "image_resolution": [H, W], "c": [K[2], K[5]], "focal": [K[0], K[4]], } def move_camera(self, pose): quaternion = utils.rotation_2_quaternion(pose[:3, :3]) translation = pose[:3, -1] camera_pose_msg = ModelState() camera_pose_msg.model_name = self.camera_type camera_pose_msg.pose.position.x = translation[0] camera_pose_msg.pose.position.y = translation[1] camera_pose_msg.pose.position.z = translation[2] camera_pose_msg.pose.orientation.x = quaternion[0] camera_pose_msg.pose.orientation.y = quaternion[1] camera_pose_msg.pose.orientation.z = quaternion[2] camera_pose_msg.pose.orientation.w = quaternion[3] self.pose_pub.publish(camera_pose_msg) def update_rgb(self, data): self.current_rgb = data def update_depth(self, data): self.current_depth = data def get_image(self): rgb = self.cv_bridge.imgmsg_to_cv2(self.current_rgb, "rgb8") rgb = np.array(rgb, dtype=float) if self.sensor_noise != 0: noise = np.random.normal(0.0, self.sensor_noise, rgb.shape) rgb += noise if self.camera_type == "rgb_camera": depth = None elif self.camera_type == "rgbd_camera": depth = self.cv_bridge.imgmsg_to_cv2(self.current_depth, "32FC1") return np.asarray(rgb), np.asarray(depth)
2,869
33.166667
77
py
neu-nbv
neu-nbv-main/scripts/planning/planner/utils.py
from scipy.spatial.transform import Rotation as R import cv2 import numpy as np import json # from rembg import remove import os import imageio def get_roi_mask(rgb): """binary mask for ROIs using color thresholding""" hsv = cv2.cvtColor(np.array(rgb, dtype=np.uint8), cv2.COLOR_RGB2HSV) lower_red = np.array([0, 50, 50]) upper_red = np.array([20, 255, 255]) mask0 = cv2.inRange(hsv, lower_red, upper_red) lower_red = np.array([160, 50, 50]) upper_red = np.array([180, 255, 255]) mask1 = cv2.inRange(hsv, lower_red, upper_red) mask = mask0 + mask1 mask = mask + 1e-5 return mask def get_black_mask(rgb): """binary mask for ROIs using color thresholding""" lower_black = np.array([250, 250, 250]) upper_black = np.array([255, 255, 255]) mask = cv2.inRange(rgb, lower_black, upper_black) return mask def visualize_uncertainty(uncertainty): variance = np.exp(uncertainty) def rotation_2_quaternion(rotation_matrix): r = R.from_matrix(rotation_matrix) return r.as_quat() def xyz_to_view(xyz, radius): phi = np.arcsin(xyz[2] / radius) # phi from 0 to 0.5*pi theta = np.arctan2(xyz[1], xyz[0]) % (2 * np.pi) # theta from 0 to 2*pi return [phi, theta] def view_to_pose(view, radius): phi, theta = view # phi should be within [min_phi, 0.5*np.pi) if phi >= 0.5 * np.pi: phi = np.pi - phi pose = np.eye(4) x = radius * np.cos(theta) * np.cos(phi) y = radius * np.sin(theta) * np.cos(phi) z = radius * np.sin(phi) translation = np.array([x, y, z]) rotation = R.from_euler("ZYZ", [theta, -phi, np.pi]).as_matrix() pose[:3, -1] = translation pose[:3, :3] = rotation return pose def view_to_pose_batch(views, radius): num = len(views) phi = views[:, 0] theta = views[:, 1] # phi should be within [min_phi, 0.5*np.pi) index = phi >= 0.5 * np.pi phi[index] = np.pi - phi[index] poses = np.broadcast_to(np.identity(4), (num, 4, 4)).copy() x = radius * np.cos(theta) * np.cos(phi) y = radius * np.sin(theta) * np.cos(phi) z = radius * np.sin(phi) translations = np.stack((x, y, z), axis=-1) angles = np.stack((theta, -phi, np.pi * np.ones(num)), axis=-1) rotations = R.from_euler("ZYZ", angles).as_matrix() poses[:, :3, -1] = translations poses[:, :3, :3] = rotations return poses def random_view(current_xyz, radius, phi_min, min_view_change, max_view_change): """ random scatter view direction changes by given current position and view change range. """ u = current_xyz / np.linalg.norm(current_xyz) # pick a random vector: r = np.random.multivariate_normal(np.zeros_like(u), np.eye(len(u))) # form a vector perpendicular to u: uperp = r - r.dot(u) * u uperp = uperp / np.linalg.norm(uperp) # random view angle change in radian random_view_change = np.random.uniform(low=min_view_change, high=max_view_change) cosine = np.cos(random_view_change) w = cosine * u + np.sqrt(1 - cosine**2 + 1e-8) * uperp w = radius * w / np.linalg.norm(w) view = xyz_to_view(w, radius) if view[0] < phi_min: view[0] = phi_min return view def uniform_sampling(radius, phi_min): """ uniformly generate unit vector on hemisphere. then calculate corresponding view direction targeting coordinate origin. """ xyz = np.array([0.0, 0.0, 0.0]) # avoid numerical error while np.linalg.norm(xyz) < 0.001: xyz[0] = np.random.uniform(low=-1.0, high=1.0) xyz[1] = np.random.uniform(low=-1.0, high=1.0) xyz[2] = np.random.uniform(low=0.0, high=1.0) xyz = radius * xyz / np.linalg.norm(xyz) view = xyz_to_view(xyz, radius) if view[0] < phi_min: view[0] = phi_min return view def focal_len_to_fov(focal, resolution): """ calculate FoV based on given focal length adn image resolution Args: focal: [fx, fy] resolution: [W, H] Returns: FoV: [HFoV, VFoV] """ focal = np.asarray(focal) resolution = np.asarray(resolution) return 2 * np.arctan(0.5 * resolution / focal) def mask_out_background(image_path): """remove background""" rgb = imageio.imread(image_path) masked_rgb = remove(rgb) # H, W, _ = rgb.shape # masked_rgb = np.ones((H, W, 4)) * 255 # masked_rgb[..., :3] = rgb # mask_white = rgb >= np.array([254, 254, 254]) # mask_white = np.all(mask_white, axis=-1) # mask_black = rgb <= np.array([1, 1, 1]) # mask_black = np.all(mask_black, axis=-1) # masked_rgb[mask_white] = [0, 0, 0, 0] # masked_rgb[mask_black] = [0, 0, 0, 0] return masked_rgb def record_render_data(path, camera_info, trajectory, use_masked_image=False): transformation = np.array( [[0, 0, -1, 0], [-1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1]] ) # transform gazebo coordinate to opengl format opencv_trajectory = np.empty(trajectory.shape) for i, pose in enumerate(trajectory): opencv_trajectory[i] = pose @ transformation resolution = camera_info["image_resolution"] c = camera_info["c"] focal = camera_info["focal"] fov = focal_len_to_fov(focal, resolution) record_dict = {} record_dict["camera_angle_x"] = fov[0] record_dict["camera_angle_y"] = fov[1] record_dict["fl_x"] = focal[0] record_dict["fl_y"] = focal[1] record_dict["k1"] = 0.000001 record_dict["k2"] = 0.000001 record_dict["p1"] = 0.000001 record_dict["p2"] = 0.000001 record_dict["cx"] = c[0] record_dict["cy"] = c[1] record_dict["w"] = resolution[0] record_dict["h"] = resolution[1] record_dict["frames"] = [] record_dict["scale"] = 1.0 record_dict["aabb_scale"] = 2.0 for i, pose in enumerate(opencv_trajectory): image_file = f"images/{i+1:04d}.png" image_path = os.path.join(path, image_file) if use_masked_image: masked_image = mask_out_background(image_path) image_file = f"images/masked_{i+1:04d}.png" image_path = os.path.join(path, image_file) imageio.imwrite(image_path, masked_image) data_frame = { "file_path": image_file, # "sharpness": 30.0, "transform_matrix": pose.tolist(), } record_dict["frames"].append(data_frame) with open(f"{path}/transforms.json", "w") as f: json.dump(record_dict, f, indent=4) # for test only # for i, pose in enumerate(opencv_trajectory[50:]): # data_frame = { # "file_path": f"images/{i+51:04d}.jpg", # "sharpness": 30.0, # "transform_matrix": pose.tolist(), # } # record_dict["frames"].append(data_frame) # with open(f"{path}/test_transforms.json", "w") as f: # json.dump(record_dict, f, indent=4) def test(): view = [] # for i in range(5): # new_view = uniform_sampling(2, 0.15) # view.append(new_view) # print("view:", new_view) current_xyz = [0, 0, 2] for i in range(500): local = random_view(current_xyz, 2, 0.15, 0.2, 1.05) view.append(local) xyz_list = view_to_pose_batch(np.array(view), 2)[..., :3, 3] print(xyz_list) for xyz in xyz_list: view = xyz_to_view(xyz, 2) print(view) fig = plt.figure() ax = fig.add_subplot(projection="3d") ax.scatter(xyz_list[..., 0], xyz_list[..., 1], xyz_list[..., 2]) ax.set_xlabel("X Label") ax.set_ylabel("Y Label") ax.set_zlabel("Z Label") ax.set_zlim(0, 2.5) ax.set_xlim(-2.5, 2.5) ax.set_ylim(-2.5, 2.5) plt.show() if __name__ == "__main__": import matplotlib.pyplot as plt test()
7,770
26.459364
90
py
neu-nbv
neu-nbv-main/scripts/planning/planner/planner.py
from .simulator_bridge import SimulatorBridge from . import utils import time import os from datetime import datetime import numpy as np import imageio.v2 as imageio import yaml class Planner: def __init__(self, cfg): self.simulator_bridge = SimulatorBridge(cfg["simulation_bridge"]) self.camera_info = self.simulator_bridge.camera_info self.record_path = os.path.join( cfg["experiment_path"], cfg["planner_type"], str(cfg["experiment_id"]) ) self.planning_budget = cfg["planning_budget"] self.initial_type = cfg["initial_type"] self.H, self.W = self.camera_info[ "image_resolution" ] # original image resolution from simulator self.trajectory = np.empty((self.planning_budget, 4, 4)) self.view_trajectory = np.empty((self.planning_budget, 2)) # [phi, theta] self.rgb_measurements = np.empty((self.planning_budget, self.H, self.W, 3)) self.depth_measurements = np.empty((self.planning_budget, self.H, self.W)) self.step = 0 self.config_actionspace(cfg["action_space"]) def config_actionspace(self, cfg): """set hemisphere actionspace parameters""" self.min_height = cfg["min_height"] self.radius = cfg["radius"] self.phi_min = np.arcsin(self.min_height / self.radius) self.phi_max = 0.5 * np.pi self.theta_min = 0 self.theta_max = 2 * np.pi def init_camera_pose(self, initial_view): print("------ start mission ------ \n") print("------ initialize camera pose ------ \n") if initial_view is None: if self.initial_type == "random": initial_view = utils.uniform_sampling(self.radius, self.phi_min) elif self.initial_type == "pre_calculated": self.get_view_list() initial_view = next(self.view_list) self.move_sensor(initial_view) else: for view in initial_view: self.move_sensor(view) def start(self, initial_view=None): self.init_camera_pose(initial_view) while self.step < self.planning_budget: next_view = self.plan_next_view() self.move_sensor(next_view) self.record_experiment() print("------ complete mission ------\n") # rospy.signal_shutdown("shut down ros node") def move_sensor(self, view): pose = utils.view_to_pose(view, self.radius) self.simulator_bridge.move_camera(pose) self.current_view = view self.current_pose = pose print(pose) print( f"------ reach given pose and take measurement No.{self.step + 1} ------\n" ) time.sleep(1) # lazy solution to make sure we receive correct images rgb, depth = self.simulator_bridge.get_image() self.record_step(view, pose, rgb, depth) self.step += 1 def plan_next_view(self): raise NotImplementedError("plan_next_view method is not implemented") def record_experiment(self): print("------ record experiment data ------\n") os.makedirs(self.record_path, exist_ok=True) images_path = os.path.join(self.record_path, "images") os.mkdir(images_path) depths_path = os.path.join(self.record_path, "depths") os.mkdir(depths_path) for i, rgb in enumerate(self.rgb_measurements): imageio.imwrite( f"{images_path}/{i+1:04d}.png", (rgb * 255).astype(np.uint8) ) if len(self.depth_measurements) > 0: for i, depth in enumerate(self.depth_measurements): with open(f"{depths_path}/depth_{i+1:04d}.npy", "wb") as f: depth_array = np.array(depth, dtype=np.float32) np.save(f, depth_array) with open(f"{self.record_path}/trajectory.npy", "wb") as f: np.save(f, self.trajectory) with open(f"{self.record_path}/camera_info.yaml", "w") as f: yaml.safe_dump(self.camera_info, f) # record json data required for instant-ngp training utils.record_render_data(self.record_path, self.camera_info, self.trajectory) def record_step(self, view, pose, rgb, depth): self.record_trajectory(view, pose) self.record_rgb_measurement(rgb) if depth is not None: self.record_depth_measurement(depth) def record_rgb_measurement(self, rgb): rgb = np.clip(rgb, a_min=0, a_max=255) rgb = rgb / 255 self.rgb_measurements[self.step] = rgb def record_depth_measurement(self, depth): self.depth_measurements[self.step] = depth def record_trajectory(self, view, pose): self.view_trajectory[self.step] = view self.trajectory[self.step] = pose
4,844
34.364964
87
py
neu-nbv
neu-nbv-main/scripts/planning/planner/neural_nbv/neural_nbv_planner.py
import numpy as np from scipy.spatial.transform import Rotation as R from planner.planner import Planner from planner.utils import view_to_pose_batch, random_view, uniform_sampling from neural_rendering.evaluation.pretrained_model import PretrainedModel import torch from dotmap import DotMap from neural_rendering.utils import util import torch.nn.functional as F import scipy.spatial as spatial import matplotlib.pyplot as plt import time import yaml import os class NeuralNBVPlanner(Planner): def __init__(self, cfg): super().__init__(cfg) self.device = cfg["device"] self.gpu_id = list(map(int, cfg["gpu_id"].split())) self.init_sensor_model(cfg) self.image_to_tensor = util.get_image_to_tensor_balanced() self.num_candidates = cfg["num_candidates"] self.sample_type = cfg["sample_type"] self.view_change = cfg["view_change"] self.local_view_change = cfg["local_view_change"] self.selection_range = cfg["selection_range"] self.hierachical_sampling = cfg["use_hierachical_sampling"] self.sample_ratio = cfg["sample_ratio"] self.K = cfg["top_k"] self.max_ref_num = cfg["maximal_ref"] self.reward_type = cfg["reward_type"] self.render_batch_size = cfg["render_batch_size"] self.uncertainty_th = cfg["uncertainty_threshold"] self.candidate_views = None self.candidate_poses = None self.render_pairs = None self.trajectory_kdtree = None # self.depth_for_renderer = torch.empty( # (self.planning_budget, self.H, self.W) # ).to(self.device) def init_sensor_model(self, cfg): assert os.path.exists(cfg["config_path"]) assert os.path.exists(cfg["checkpoint_path"]) with open(cfg["config_path"], "r") as config_file: model_cfg = yaml.safe_load(config_file)["model"] ckpt_file = torch.load(cfg["checkpoint_path"]) self.model = PretrainedModel(model_cfg, ckpt_file, self.device, self.gpu_id) # original image format H, W = self.camera_info["image_resolution"] # (H, W) focal = self.camera_info["focal"] # (f_x, f_y) c = self.camera_info["c"] # (c_x, c_y) # desired image format for redendering input render_info = cfg["render_info"] H_ref, W_ref = render_info["ref_image_resolution"] ref_focal = [0, 0] ref_c = [0, 0] if np.any([H, W] != [H_ref, W_ref]): scale_h = H_ref / H scale_w = W_ref / W ref_focal[0] = scale_w * focal[0] ref_focal[1] = scale_h * focal[1] ref_c[0] = scale_w * c[0] ref_c[1] = scale_h * c[1] self.ref_focal = torch.tensor(ref_focal, dtype=torch.float32).to(self.device) self.ref_c = torch.tensor(ref_c, dtype=torch.float32).to(self.device) self.ref_image_resolution = (H_ref, W_ref) self.trajectory_for_renderer = torch.empty((self.planning_budget, 4, 4)).to( self.device ) self.rgb_for_renderer = torch.empty((self.planning_budget, 3, H_ref, W_ref)).to( self.device ) # desired image format for redendering output render_scale = render_info["render_scale"] self.H_render = int(render_scale * H_ref) self.W_render = int(render_scale * W_ref) render_scale = torch.tensor( [ self.W_render / W_ref, self.H_render / H_ref, ] ).to(self.device) self.render_focal = render_scale * self.ref_focal self.render_c = render_scale * self.ref_c self.z_near, self.z_far = render_info["scene_range"] def render_novel_views(self, candidate_poses): candidate_num = len(candidate_poses) reward_list = np.zeros(candidate_num) distance_all, ref_index_all = self.trajectory_kdtree.query( candidate_poses[:, :3, 3], np.minimum(self.max_ref_num, self.step) ) # distance_all = torch.tensor(distance_all) # ref_index_all = torch.tensor(ref_index_all) bool_mask = ~np.isinf(distance_all) novel_poses = util.coordinate_transformation( candidate_poses, format="normal" ).to(self.device) # render novel view in batch split_novel_view = torch.split( torch.arange(candidate_num), self.render_batch_size, dim=0 ) for i in split_novel_view: ref_index = torch.tensor(ref_index_all[i] * bool_mask[i]) ref_images = self.rgb_for_renderer[ref_index] ref_poses = self.trajectory_for_renderer[ref_index] render_results = self.rendering(ref_images, ref_poses, novel_poses[i]) reward_list[i] = self.cal_reward(render_results) return reward_list def rendering(self, ref_images, ref_poses, novel_poses): NP = len(novel_poses) with torch.no_grad(): self.model.network.encode( ref_images, ref_poses, self.ref_focal.unsqueeze(0), self.ref_c.unsqueeze(0), ) target_rays = util.gen_rays( novel_poses, self.W_render, self.H_render, self.render_focal, self.z_near, self.z_far, self.render_c, ) # (IN, H, W, 8) target_rays = target_rays.reshape(NP, self.H_render * self.W_render, -1) predict = DotMap(self.model.renderer_par(target_rays)) return predict def cal_reward(self, render_results): uncertainty = render_results["uncertainty"] reward = torch.mean(uncertainty**2, dim=-1).cpu().numpy() reward = np.log10(reward) return reward # one stage planning def start_planning(self): candidate_views, candidate_poses = self.local_sampling( self.num_candidates, self.current_pose[:3, 3], view_change=self.view_change ) reward_list = self.render_novel_views(candidate_poses) nbv_index = np.argmax(reward_list) return candidate_views[nbv_index] def global_sampling(self, num): view_list = np.empty((num, 2)) for i in range(num): view_list[i] = uniform_sampling(self.radius, self.phi_min) pose_list = view_to_pose_batch(view_list, self.radius) return view_list, pose_list def local_sampling(self, num, xyz, view_change, min_view_change=0.2): view_list = np.empty((num, 2)) for i in range(num): view_list[i] = random_view( xyz, self.radius, self.phi_min, min_view_change, view_change ) pose_list = view_to_pose_batch(view_list, self.radius) return view_list, pose_list def plan_next_view(self): import time if self.step > 1: t1 = time.time() nbv = self.start_planning() t2 = time.time() print((t2 - t1)) return nbv # need at least two views to start the planning else: random_next_view = random_view( self.current_pose[:3, 3], self.radius, self.phi_min, self.view_change - 0.1, self.view_change, ) return random_next_view def record_trajectory(self, view, pose): self.view_trajectory[self.step] = view self.trajectory[self.step] = pose # maintain current measurment positions in kd tree self.trajectory_kdtree = spatial.KDTree(self.trajectory[: self.step + 1, :3, 3]) self.trajectory_for_renderer[self.step] = util.coordinate_transformation( pose, format="normal" ).to(self.device) def record_rgb_measurement(self, rgb): rgb = np.clip(rgb, a_min=0, a_max=255) rgb = rgb / 255 self.rgb_measurements[self.step] = rgb ref_image = self.image_to_tensor(rgb).to(self.device) ref_image = F.interpolate( ref_image.unsqueeze(0), size=self.ref_image_resolution, mode="area" ).squeeze(0) self.rgb_for_renderer[self.step] = ref_image def test_visualize(self, ref_images, results_dict): import matplotlib.pyplot as plt H = 60 W = 60 for i in range(self.render_batch_size): rgb = results_dict.rgb[i].cpu().numpy().reshape(H, W, 3) depth = results_dict.depth[i].cpu().numpy().reshape(H, W) uncertainty = results_dict.uncertainty[i].cpu().numpy().reshape(H, W) fig, axs = plt.subplots(1, 3) axs[0].imshow(rgb) axs[1].imshow(uncertainty) axs[2].imshow(depth) plt.show()
8,864
33.901575
88
py
neu-nbv
neu-nbv-main/scripts/planning/planner/baselines/random_planner.py
from planner.planner import Planner from planner.utils import random_view, uniform_sampling import numpy as np class RandomPlanner(Planner): def __init__(self, cfg): super().__init__(cfg) print("initial ") self.num_candidates = cfg["num_candidates"] self.view_change = cfg["view_change"] self.planning_type = cfg["planning_type"] def plan_next_view(self): view_list = np.empty((self.num_candidates, 2)) if self.planning_type == "local": for i in range(self.num_candidates): view_list[i] = random_view( self.current_pose[:3, 3], self.radius, self.phi_min, min_view_change=0.2, max_view_change=self.view_change, ) elif self.planning_type == "global": for i in range(self.num_candidates): view_list[i] = uniform_sampling(self.radius, self.phi_min) nbv_index = np.random.choice(len(view_list)) nbv = view_list[nbv_index] return nbv
1,101
32.393939
74
py
neu-nbv
neu-nbv-main/scripts/planning/planner/baselines/max_distance_planner.py
from planner.planner import Planner from planner.utils import view_to_pose_batch, random_view, uniform_sampling import numpy as np from scipy.spatial import distance class MaxDistancePlanner(Planner): def __init__(self, cfg): super().__init__(cfg) self.num_candidates = cfg["num_candidates"] self.view_change = cfg["view_change"] self.planning_type = cfg["planning_type"] def get_camera_view_direction(self, poses): view_direction = poses[..., :3, 0] view_direction = view_direction / np.linalg.norm(view_direction) return view_direction def plan_next_view(self): view_list = np.empty((self.num_candidates, 2)) if self.planning_type == "local": for i in range(self.num_candidates): view_list[i] = random_view( self.current_pose[:3, 3], self.radius, self.phi_min, min_view_change=0.2, max_view_change=self.view_change, ) elif self.planning_type == "global": for i in range(self.num_candidates): view_list[i] = uniform_sampling(self.radius, self.phi_min) pose_list = view_to_pose_batch(view_list, self.radius) new_view_list = self.get_camera_view_direction(pose_list) reference_pose_list = self.trajectory[: self.step] reference_view_list = self.get_camera_view_direction(reference_pose_list) dist_list = [] for view in new_view_list: dist = 0 count = 0 for ref_view in reference_view_list: # print(view, ref_view) cos_dist = distance.cosine(view, ref_view) if cos_dist < 0.6: dist += cos_dist count += 1 # print(dist) dist_list.append(dist / count) nbv = view_list[np.argmax(dist_list)] return nbv
1,982
34.410714
81
py
neu-nbv
neu-nbv-main/scripts/utils/plot.py
import seaborn as sb import matplotlib.pyplot as plt import pandas import os import argparse from matplotlib.ticker import FormatStrFormatter from matplotlib.ticker import MaxNLocator from matplotlib import rc PLOT_FONT_SIZE = 22 PLOT_LEGEND_SIZE = 18 PLOT_TICKS_SIZE = 18 PLOT_LINE_WIDTH = 4 plt.rcParams["figure.figsize"] = [12, 8] plt.rcParams["figure.autolayout"] = True sb.set_palette("bright") def main(): args = plot_args() dataframe_path = args.dataframe_path os.path.exists(dataframe_path), "dataframe does not exist!" plot(dataframe_path) def plot(dataframe_path): # DTU experiment plot save_path = os.path.dirname(dataframe_path) total_df = pandas.read_csv(dataframe_path) fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True) sb.lineplot( total_df, x="Reference Image Number", y="PSNR", hue="Planning Type", linewidth=PLOT_LINE_WIDTH, ax=ax1, errorbar=("sd", 1), palette=["C2", "C0", "C3"], ) ax1.set_ylabel("PSNR", fontsize=PLOT_FONT_SIZE) ax1.set_xlabel("Number of collected images", fontsize=PLOT_FONT_SIZE) ax1.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) ax1.yaxis.set_major_locator(MaxNLocator(nbins=4)) ax1.tick_params(axis="both", labelsize=PLOT_TICKS_SIZE) handles, labels = ax1.get_legend_handles_labels() order = [2, 0, 1] ax1.legend( [handles[idx] for idx in order], [labels[idx] for idx in order], loc="lower right", fontsize=PLOT_LEGEND_SIZE, frameon=False, ) sb.lineplot( total_df, x="Reference Image Number", y="SSIM", hue="Planning Type", linewidth=PLOT_LINE_WIDTH, ax=ax2, errorbar=("sd", 1), palette=["C2", "C0", "C3"], ) ax2.set_xlabel("Number of collected images", fontsize=PLOT_FONT_SIZE) ax2.set_ylabel("SSIM", fontsize=PLOT_FONT_SIZE) ax2.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) ax2.yaxis.set_major_locator(MaxNLocator(nbins=4)) ax2.get_legend().remove() ax2.tick_params(axis="both", labelsize=PLOT_TICKS_SIZE) plt.xticks([2, 3, 4, 5, 6, 7, 8, 9]) plt.savefig(f"{save_path}/plot_results.svg", bbox_inches="tight") plt.clf() def plot_args(): # mandatory arguments args = None parser = argparse.ArgumentParser() parser.add_argument( "--dataframe_path", type=str, required=True, help="path to dataframe", ) args = parser.parse_args() return args if __name__ == "__main__": main() # # gazebo car experiment plot # total_df = pandas.read_csv("dataframe/experiment_gazebo_car_0.csv") # total_df = total_df.append(pandas.read_csv("dataframe/experiment_gazebo_car_1.csv")) # fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True) # sb.lineplot( # total_df, # x="Reference Image Num.", # y="PSNR", # hue="Planning Type", # linewidth=PLOT_LINE_WIDTH, # ax=ax1, # errorbar=("sd", 1), # palette=["C2", "C0", "C3"], # ) # ax1.set_xlabel("Number of collected images", fontsize=PLOT_FONT_SIZE) # ax1.set_ylabel("PSNR", fontsize=PLOT_FONT_SIZE) # ax1.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) # ax1.yaxis.set_major_locator(MaxNLocator(nbins=4)) # # ax1.tick_params(labelsize=PLOT_TICKS_SIZE) # ax1.legend(loc="lower right", fontsize=PLOT_FONT_SIZE) # ax1.tick_params(axis="both", labelsize=PLOT_TICKS_SIZE) # handles, labels = ax1.get_legend_handles_labels() # order = [2, 0, 1] # ax1.legend( # [handles[idx] for idx in order], # [labels[idx] for idx in order], # loc="lower right", # fontsize=PLOT_LEGEND_SIZE, # frameon=False, # ) # sb.lineplot( # total_df, # x="Reference Image Num.", # y="SSIM", # hue="Planning Type", # linewidth=PLOT_LINE_WIDTH, # ax=ax2, # errorbar=("sd", 1), # palette=["C2", "C0", "C3"], # ) # ax2.set_xlabel("Number of collected images", fontsize=PLOT_FONT_SIZE) # plt.xticks([2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) # ax2.set_ylabel("SSIM", fontsize=PLOT_FONT_SIZE) # ax2.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) # ax2.yaxis.set_major_locator(MaxNLocator(nbins=4)) # ax2.get_legend().remove() # ax2.tick_params(axis="both", labelsize=PLOT_TICKS_SIZE) # # ax2.tick_params(labelsize=PLOT_TICKS_SIZE) # # plt.show() # plt.xticks(fontsize=PLOT_TICKS_SIZE) # plt.yticks(fontsize=PLOT_TICKS_SIZE) # plt.savefig("dataframe/gazebo_car.svg", bbox_inches="tight") # plt.clf() # # # gazebo indoor experiment plot # total_df = pandas.read_csv("dataframe/experiment_gazebo_indoor_0.csv") # total_df = total_df.append(pandas.read_csv("dataframe/experiment_gazebo_indoor_1.csv")) # fig, (ax1, ax2) = plt.subplots(1, 2, sharex=True) # sb.lineplot( # total_df, # x="Reference Image Num.", # y="PSNR", # hue="Planning Type", # linewidth=PLOT_LINE_WIDTH, # ax=ax1, # errorbar=("sd", 1), # palette=["C2", "C0", "C3"], # ) # ax1.set_ylabel("PSNR", fontsize=PLOT_FONT_SIZE) # ax1.set_xlabel("Number of collected images", fontsize=PLOT_FONT_SIZE) # ax1.yaxis.set_major_formatter(FormatStrFormatter("%.1f")) # ax1.set_yticks([13.4, 14.6, 15.8, 17.0]) # # ax1.yaxis.set_major_locator(MaxNLocator(nbins=5)) # ax1.tick_params(axis="both", labelsize=PLOT_TICKS_SIZE) # # ax1.tick_params(labelsize=PLOT_TICKS_SIZE) # ax1.legend(loc="lower right", fontsize=PLOT_FONT_SIZE) # handles, labels = ax1.get_legend_handles_labels() # order = [2, 0, 1] # ax1.legend( # [handles[idx] for idx in order], # [labels[idx] for idx in order], # loc="lower right", # fontsize=PLOT_LEGEND_SIZE, # frameon=False, # ) # sb.lineplot( # total_df, # x="Reference Image Num.", # y="SSIM", # hue="Planning Type", # linewidth=PLOT_LINE_WIDTH, # ax=ax2, # errorbar=("sd", 1), # palette=["C2", "C0", "C3"], # ) # ax2.set_xlabel("Number of collected images", fontsize=PLOT_FONT_SIZE) # ax2.set_ylabel("SSIM", fontsize=PLOT_FONT_SIZE) # ax2.yaxis.set_major_formatter(FormatStrFormatter("%.2f")) # ax2.yaxis.set_major_locator(MaxNLocator(nbins=4)) # ax2.get_legend().remove() # ax2.tick_params(axis="both", labelsize=PLOT_TICKS_SIZE) # # ax2.tick_params(labelsize=PLOT_TICKS_SIZE) # # plt.show() # plt.xticks([2, 4, 6, 8, 10, 12, 14, 16, 18, 20]) # plt.xticks(fontsize=PLOT_TICKS_SIZE) # plt.yticks(fontsize=PLOT_TICKS_SIZE) # plt.savefig("dataframe/gazebo_indoor.svg", bbox_inches="tight") # plt.clf()
6,469
29.518868
89
py
PolSF
PolSF-master/label2dto3d.py
import numpy as np from skimage import io from scipy import misc # SF-ALOS2 # https://www.ietr.fr/polsarpro-bio/san-francisco/dataset/SAN_FRANCISCO_ALOS2.zip # color = [[0,0,0],[132,112,255],[0,0,255],[0,255,0],[192,0,0],[0,255,255],[255,255,0]] ## 0, unlabel, 1,Montain,2,Water,3,Vegetation,4,High-Density Urban,5,Low-Density Urban,6,Developd # SF-GF3 # https://www.ietr.fr/polsarpro-bio/san-francisco/dataset/SAN_FRANCISCO_GF3.zip # color = [[0,0,0],[132,112,255],[0,0,255],[0,255,0],[192,0,0],[0,255,255],[255,255,0]] ## 0, unlabel, 1,Montain,2,Water,3,Vegetation,4,High-Density Urban,5,Low-Density Urban,6,Developd # SF-RISAT # https://www.ietr.fr/polsarpro-bio/san-francisco/dataset/SAN_FRANCISCO_RISAT.zip # color = [[0,0,0],[132,112,255],[0,0,255],[0,255,0],[192,0,0],[0,255,255],[255,255,0]] ## 0, unlabel, 1,Montain,2,Water,3,Vegetation,4,High-Density Urban,5,Low-Density Urban,6,Developd # SF-RS2 # https://www.ietr.fr/polsarpro-bio/san-francisco/dataset/SAN_FRANCISCO_RS2.zip # color = [[0,0,0], [0,0,255],[0,255,0],[255,0,0],[255,255,0],[255,0,255]] ## 0, unlabel, 1,Water,2,Vegetation,3,High-Density Urban,4,Low-Density Urban,5,Developd # SF-AIRSAR # https://www.ietr.fr/polsarpro-bio/san-francisco/dataset/SAN_FRANCISCO_AIRSAR.zip color = [[0,0,0], [0,255,255],[255,255,0],[0,0,255],[255,0,0],[0,255,0]] ## 0, unlabel, 1,Montain,2,Water,3,Urban,4,Vegetation ,5, Bare soil # label_files = '/home/bidlc/labelposar/PolSF/SF-AIRSAR/SF-AIRSAR-label2d.png' datanameall = ['SF-AIRSAR','SF-AIRSAR','SF-AIRSAR','SF-AIRSAR','SF-AIRSAR'] dataname = datanameall[4] label_files = './'+dataname+'/'+dataname+'-label2d.png' label = io.imread(label_files) mm = label.shape[0] nn = label.shape[1] label3d = np.zeros([mm, nn, 3]) for j in range(mm): for k in range(nn): print(j,k) label3d[j][k]=color[int(label[j][k])] misc.imsave('/home/bidlc/labelposar/PolSF/'+dataname+'/'+dataname+'-label3d-test.png', label3d)
2,153
45.826087
97
py
MP-FedXGB
MP-FedXGB-main/VerticalXGBoost.py
import numpy as np import pandas as pd from mpi4py import MPI from datetime import * from SSCalculation import * from Tree import * import math import time np.random.seed(10) clientNum = 4 class LeastSquareLoss: def gradient(self, actual, predicted): return -(actual - predicted) def hess(self, actual, predicted): return np.ones_like(actual) class LogLoss(): def gradient(self, actual, predicted): prob = 1.0 / (1.0 + np.exp(-predicted)) return prob - actual def hess(self, actual, predicted): prob = 1.0 / (1.0 + np.exp(-predicted)) return prob * (1.0 - prob) # Mind the dimension class VerticalXGBoostClassifier: def __init__(self, rank, lossfunc, splitclass, _lambda=1, _gamma=0.5, _epsilon=0.1, n_estimators=3, max_depth=3): if lossfunc == 'LogLoss': self.loss = LogLoss() else: self.loss = LeastSquareLoss() self._lambda = _lambda self._gamma = _gamma self._epsilon = _epsilon self.n_estimators = n_estimators # Number of trees self.max_depth = max_depth # Maximum depth for tree self.rank = rank self.trees = [] self.splitclass = splitclass for _ in range(n_estimators): tree = VerticalXGBoostTree(rank=self.rank, lossfunc=self.loss, splitclass=self.splitclass, _lambda=self._lambda, _gamma=self._gamma, _epsilon=self._epsilon, _maxdepth=self.max_depth, clientNum=clientNum) self.trees.append(tree) def getQuantile(self, colidx): split_list = [] if self.rank != 0: # For client nodes data = self.data.copy() idx = np.argsort(data[:, colidx], axis=0) data = data[idx] value_list = sorted(list(set(list(data[:, colidx])))) # Record all the different value hess = np.ones_like(data[:, colidx]) data = np.concatenate((data, hess.reshape(-1, 1)), axis=1) sum_hess = np.sum(hess) last = value_list[0] i = 1 if len(value_list) == 1: # For those who has only one value, do such process. last_cursor = last else: last_cursor = value_list[1] split_list.append((-np.inf, value_list[0])) # if len(value_list) == 15000: # print(self.rank, colidx) # print(value_list) while i < len(value_list): cursor = value_list[i] small_hess = np.sum(data[:, -1][data[:, colidx] <= last]) / sum_hess big_hess = np.sum(data[:, -1][data[:, colidx] <= cursor]) / sum_hess # print(colidx, self.rank, np.abs(big_hess - small_hess), last, cursor) if np.abs(big_hess - small_hess) < self._epsilon: last_cursor = cursor else: judge = value_list.index(cursor) - value_list.index(last) if judge == 1: # Although it didn't satisfy the criterion, it has no more split, so we must add it. split_list.append((last, cursor)) last = cursor else: # Move forward and record the last. split_list.append((last, last_cursor)) last = last_cursor last_cursor = cursor i += 1 if split_list[-1][1] != value_list[-1]: split_list.append((split_list[-1][1], value_list[-1])) # Add the top value into split_list. split_list = np.array(split_list) return split_list def getAllQuantile(self): # Global quantile, must be calculated before tree building, avoiding recursion. self_maxlen = 0 if self.rank != 0: dict = {i:self.getQuantile(i) for i in range(self.data.shape[1])} # record all the split self_maxlen = max([len(dict[i]) for i in dict.keys()]) else: dict = {} recv_maxlen = comm.gather(self_maxlen, root=1) maxlen = None if self.rank == 1: maxlen = max(recv_maxlen) self.maxSplitNum = comm.bcast(maxlen, root=1) # print('MaxSplitNum: ', self.maxSplitNum) self.quantile = dict def fit(self, X, y): data_num = X.shape[0] y = np.reshape(y, (data_num, 1)) y_pred = np.zeros(np.shape(y)) self.data = X.copy() self.getAllQuantile() for i in range(self.n_estimators): # print('In classifier fit, rank: ', self.rank) tree = self.trees[i] tree.data, tree.maxSplitNum, tree.quantile = self.data, self.maxSplitNum, self.quantile y_and_pred = np.concatenate((y, y_pred), axis=1) tree.fit(y_and_pred, i) if i == self.n_estimators - 1: # The last tree, no need for prediction update. continue else: update_pred = tree.predict(X) if self.rank == 1: # print('test') update_pred = np.reshape(update_pred, (data_num, 1)) y_pred += update_pred def predict(self, X): y_pred = None data_num = X.shape[0] # Make predictions for tree in self.trees: # Estimate gradient and update prediction update_pred = tree.predict(X) if y_pred is None: y_pred = np.zeros_like(update_pred).reshape(data_num, -1) if self.rank == 1: update_pred = np.reshape(update_pred, (data_num, 1)) y_pred += update_pred return y_pred comm = MPI.COMM_WORLD rank = comm.Get_rank() def main1(): data = pd.read_csv('./iris.csv').values zero_index = data[:, -1] == 0 one_index = data[:, -1] == 1 zero_data = data[zero_index] one_data = data[one_index] train_size_zero = int(zero_data.shape[0] * 0.8) train_size_one = int(one_data.shape[0] * 0.8) X_train, X_test = np.concatenate((zero_data[:train_size_zero, :-1], one_data[:train_size_one, :-1]), 0), \ np.concatenate((zero_data[train_size_zero:, :-1], one_data[train_size_one:, :-1]), 0) y_train, y_test = np.concatenate((zero_data[:train_size_zero, -1].reshape(-1,1), one_data[:train_size_one, -1].reshape(-1, 1)), 0), \ np.concatenate((zero_data[train_size_zero:, -1].reshape(-1, 1), one_data[train_size_one:, -1].reshape(-1, 1)), 0) X_train_A = X_train[:, 0].reshape(-1, 1) X_train_B = X_train[:, 2].reshape(-1, 1) X_train_C = X_train[:, 1].reshape(-1, 1) X_train_D = X_train[:, 3].reshape(-1, 1) X_test_A = X_test[:, 0].reshape(-1, 1) X_test_B = X_test[:, 2].reshape(-1, 1) X_test_C = X_test[:, 1].reshape(-1, 1) X_test_D = X_test[:, 3].reshape(-1, 1) splitclass = SSCalculate() model = VerticalXGBoostClassifier(rank=rank, lossfunc='LogLoss', splitclass=splitclass) if rank == 1: model.fit(X_train_A, y_train) print('end 1') elif rank == 2: model.fit(X_train_B, np.zeros_like(y_train)) print('end 2') elif rank == 3: model.fit(X_train_C, np.zeros_like(y_train)) print('end 3') elif rank == 4: model.fit(X_train_D, np.zeros_like(y_train)) print('end 4') else: model.fit(np.zeros_like(X_train_B), np.zeros_like(y_train)) print('end 0') if rank == 1: y_pred = model.predict(X_test_A) elif rank == 2: y_pred = model.predict(X_test_B) elif rank == 3: y_pred = model.predict(X_test_C) elif rank == 4: y_pred = model.predict(X_test_D) else: model.predict(np.zeros_like(X_test_A)) if rank == 1: y_ori = y_pred.copy() y_pred = 1.0 / (1.0 + np.exp(-y_pred)) y_pred[y_pred > 0.5] = 1 y_pred[y_pred <= 0.5] = 0 result = y_pred - y_test print(np.sum(result == 0) / y_pred.shape[0]) # for i in range(y_test.shape[0]): # print(y_test[i], y_pred[i], y_ori[i]) def main2(): data = pd.read_csv('./GiveMeSomeCredit/cs-training.csv') data.dropna(inplace=True) data = data[['SeriousDlqin2yrs', 'RevolvingUtilizationOfUnsecuredLines', 'age', 'NumberOfTime30-59DaysPastDueNotWorse', 'DebtRatio', 'MonthlyIncome', 'NumberOfOpenCreditLinesAndLoans', 'NumberOfTimes90DaysLate', 'NumberRealEstateLoansOrLines', 'NumberOfTime60-89DaysPastDueNotWorse', 'NumberOfDependents']].values ori_data = data.copy() # Add features # for i in range(1): # data = np.concatenate((data, ori_data[:, 1:]), axis=1) data = data / data.max(axis=0) ratio = 10000 / data.shape[0] zero_index = data[:, 0] == 0 one_index = data[:, 0] == 1 zero_data = data[zero_index] one_data = data[one_index] zero_ratio = len(zero_data) / data.shape[0] one_ratio = len(one_data) / data.shape[0] num = 7500 train_size_zero = int(zero_data.shape[0] * ratio) + 1 train_size_one = int(one_data.shape[0] * ratio) X_train, X_test = np.concatenate((zero_data[:train_size_zero, 1:], one_data[:train_size_one, 1:]), 0), \ np.concatenate((zero_data[train_size_zero:train_size_zero+int(num * zero_ratio)+1, 1:], one_data[train_size_one:train_size_one+int(num * one_ratio), 1:]), 0) y_train, y_test = np.concatenate( (zero_data[:train_size_zero, 0].reshape(-1, 1), one_data[:train_size_one, 0].reshape(-1, 1)), 0), \ np.concatenate((zero_data[train_size_zero:train_size_zero+int(num * zero_ratio)+1, 0].reshape(-1, 1), one_data[train_size_one:train_size_one+int(num * one_ratio), 0].reshape(-1, 1)), 0) X_train_A = X_train[:, :2] X_train_B = X_train[:, 2:4] X_train_C = X_train[:, 4:7] X_train_D = X_train[:, 7:] X_test_A = X_test[:, :2] X_test_B = X_test[:, 2:4] X_test_C = X_test[:, 4:7] X_test_D = X_test[:, 7:] splitclass = SSCalculate() model = VerticalXGBoostClassifier(rank=rank, lossfunc='LogLoss', splitclass=splitclass, max_depth=3, n_estimators=3, _epsilon=0.1) start = datetime.now() if rank == 1: model.fit(X_train_A, y_train) end = datetime.now() print('In fitting 1: ', end - start) time = end - start for i in range(clientNum + 1): if i == 1: pass else: time += comm.recv(source=i) print(time / (clientNum + 1)) final_time = time / (clientNum + 1) print('end 1') print(final_time) elif rank == 2: model.fit(X_train_B, np.zeros_like(y_train)) end = datetime.now() comm.send(end - start, dest=1) print('In fitting 2: ', end - start) print('end 2') elif rank == 3: model.fit(X_train_C, np.zeros_like(y_train)) end = datetime.now() print('In fitting 3: ', end - start) comm.send(end - start, dest=1) print('end 3') elif rank == 4: model.fit(X_train_D, np.zeros_like(y_train)) end = datetime.now() print('In fitting 4: ', end - start) comm.send(end - start, dest=1) print('end 4') else: model.fit(np.zeros_like(X_train_B), np.zeros_like(y_train)) end = datetime.now() print('In fitting 0: ', end - start) comm.send(end - start, dest=1) print('end 0') if rank == 1: y_pred = model.predict(X_test_A) elif rank == 2: y_pred = model.predict(X_test_B) elif rank == 3: y_pred = model.predict(X_test_C) elif rank == 4: y_pred = model.predict(X_test_D) else: model.predict(np.zeros_like(X_test_A)) if rank == 1: y_pred = 1.0 / (1.0 + np.exp(-y_pred)) y_pred2 = y_pred.copy() y_pred2[y_pred2 > 0.5] = 1 y_pred2[y_pred2 <= 0.5] = 0 y_pred2 = y_pred2.reshape(-1,1) y_test = y_test.reshape(-1,1) result = y_pred2 - y_test print(np.sum(result == 0) / y_pred.shape[0]) # for i in range(y_test.shape[0]): # print(y_test[i], y_pred[i]) def main3(): data = np.load('./adult.npy') data = data / data.max(axis=0) ratio = 0.8 zero_index = data[:, 0] == 0 one_index = data[:, 0] == 1 zero_data = data[zero_index] one_data = data[one_index] train_size_zero = int(zero_data.shape[0] * ratio) + 1 train_size_one = int(one_data.shape[0] * ratio) X_train, X_test = np.concatenate((zero_data[:train_size_zero, 1:], one_data[:train_size_one, 1:]), 0), \ np.concatenate((zero_data[train_size_zero:, 1:], one_data[train_size_one:, 1:]), 0) y_train, y_test = np.concatenate( (zero_data[:train_size_zero, 0].reshape(-1, 1), one_data[:train_size_one, 0].reshape(-1, 1)), 0), \ np.concatenate((zero_data[train_size_zero:, 0].reshape(-1, 1), one_data[train_size_one:, 0].reshape(-1, 1)), 0) segment_A = int(0.2 * (data.shape[1] - 1)) segment_B = segment_A + int(0.2 * (data.shape[1] - 1)) segment_C = segment_B + int(0.3 * (data.shape[1] - 1)) X_train_A = X_train[:, 0:segment_A] X_train_B = X_train[:, segment_A:segment_B] X_train_C = X_train[:, segment_B:segment_C] X_train_D = X_train[:, segment_C:] X_test_A = X_test[:, :segment_A] X_test_B = X_test[:, segment_A:segment_B] X_test_C = X_test[:, segment_B:segment_C] X_test_D = X_test[:, segment_C:] splitclass = SSCalculate() model = VerticalXGBoostClassifier(rank=rank, lossfunc='LogLoss', splitclass=splitclass, max_depth=3, n_estimators=3, _epsilon=0.1) if rank == 1: start = datetime.now() model.fit(X_train_A, y_train) end = datetime.now() print('In fitting: ', end - start) print('end 1') elif rank == 2: model.fit(X_train_B, np.zeros_like(y_train)) print('end 2') elif rank == 3: model.fit(X_train_C, np.zeros_like(y_train)) print('end 3') elif rank == 4: model.fit(X_train_D, np.zeros_like(y_train)) else: model.fit(np.zeros_like(X_train_B), np.zeros_like(y_train)) print('end 0') if rank == 1: y_pred = model.predict(X_test_A) elif rank == 2: y_pred = model.predict(X_test_B) elif rank == 3: y_pred = model.predict(X_test_C) elif rank == 4: y_pred = model.predict(X_test_D) else: model.predict(np.zeros_like(X_test_A)) if rank == 1: y_ori = y_pred.copy() y_pred = 1.0 / (1.0 + np.exp(-y_pred)) y_pred2 = y_pred.copy() y_pred2[y_pred2 > 0.5] = 1 y_pred2[y_pred2 <= 0.5] = 0 y_pred2 = y_pred2.reshape(-1,1) y_test = y_test.reshape(-1,1) result = y_pred2 - y_test print(np.sum(result == 0) / y_pred.shape[0]) # for i in range(y_test.shape[0]): # print(y_test[i], y_pred[i]) if __name__ == '__main__': main2()
15,375
37.059406
179
py
MP-FedXGB
MP-FedXGB-main/XGBoost.py
import numpy as np import progressbar import pandas as pd from datetime import * np.random.seed(10) class LeastSquareLoss(): def gradient(self, actual, predicted): return -(actual - predicted) def hess(self, actual, predicted): return np.ones_like(actual) class LogLoss(): def gradient(self, actual, predicted): prob = 1.0 / (1.0 + np.exp(-predicted)) return prob - actual def hess(self, actual, predicted): prob = 1.0 / (1.0 + np.exp(-predicted)) return prob * (1.0 - prob) # Mind the dimension class Tree: def __init__(self, value=None, leftBranch=None, rightBranch=None, col=-1, result=None): self.value = value self.leftBranch = leftBranch self.rightBranch = rightBranch self.col = col self.result = result class XGBoostTree: def __init__(self, lossfunc, _lambda, _gamma, _max_depth, _epsilon=0.05): self.loss = lossfunc self._lambda = _lambda self._gamma = _gamma self._epsilon = _epsilon self._max_depth = _max_depth def _split(self, y): y, y_pred = y[:, 0].reshape(-1, 1), y[:, 1].reshape(-1, 1) return y, y_pred def _leaf_gain(self, g, h): nominator = np.power(g, 2) denominator = h + self._lambda return nominator / denominator def _split_criterion(self, left_g, left_h, right_g, right_h): gain = (self._leaf_gain(left_g, left_h) + self._leaf_gain(right_g, right_h) - self._leaf_gain(left_g + right_g, left_h + right_h)) * 0.5 - self._gamma # print('In split criterion') # print(self._leaf_gain(left_g, left_h)) # print(self._leaf_gain(right_g, right_h)) # print(self._leaf_gain(left_g + right_g, left_h + right_h)) # print('Out split criterion') return gain def getQuantile(self, colidx, X, y, y_pred): split_list = [] data = np.concatenate((X, y, y_pred), axis=1) data = data.copy() idx = np.argsort(data[:, colidx], axis=0) data = data[idx] value_list = sorted(list(set(list(data[:, colidx])))) # Record all the different value hess = np.ones_like(data[:, colidx]) data = np.concatenate((data, hess.reshape(-1, 1)), axis=1) sum_hess = np.sum(hess) last = value_list[0] i = 1 if len(value_list) == 1: # For those who has only one value, do such process. last_cursor = last else: last_cursor = value_list[1] split_list.append((-np.inf, value_list[0])) while i < len(value_list): cursor = value_list[i] small_hess = np.sum(data[:, -1][data[:, colidx] <= last]) / sum_hess big_hess = np.sum(data[:, -1][data[:, colidx] <= cursor]) / sum_hess # print(colidx, self.rank, np.abs(big_hess - small_hess), last, cursor) if np.abs(big_hess - small_hess) < self._epsilon: last_cursor = cursor else: judge = value_list.index(cursor) - value_list.index(last) if judge == 1: # Although it didn't satisfy the criterion, it has no more split, so we must add it. split_list.append((last, cursor)) last = cursor else: # Move forward and record the last. split_list.append((last, last_cursor)) last = last_cursor last_cursor = cursor i += 1 if split_list[-1][1] != value_list[-1]: split_list.append((split_list[-1][1], value_list[-1])) # Add the top value into split_list. split_list = np.array(split_list) return split_list def getAllQuantile(self, X, y): # Global quantile, must be calculated before tree building, avoiding recursion. y, y_pred = self._split(y) column_length = X.shape[1] dict = {i: self.getQuantile(i, X, y, y_pred) for i in range(column_length)} # record all the split self.quantile = dict def buildTree(self, X, y, depth=1): data = np.concatenate((X, y), axis=1) y, y_pred = self._split(y) column_length = X.shape[1] gradient = self.loss.gradient(y, y_pred) # Calculate the loss at begining, avoiding later calculation. hessian = self.loss.hess(y, y_pred) # print('*' * 10, 'Gradient') # print(np.concatenate([gradient, hessian], axis=1)[:20]) G = np.sum(gradient) H = np.sum(hessian) if depth > self._max_depth: return Tree(result=- G / (H + self._lambda)) bestGain = 0 bestSplit = 0 bestSet = () for col in range(column_length): splitList = self.quantile[col] GL = 0 HL = 0 for k in range(splitList.shape[0]): left = splitList[k][0] right = splitList[k][1] idx = ((data[:, col] <= right) & (data[:, col] > left)) GL += np.sum(gradient[idx]) HL += np.sum(hessian[idx]) GR = G - GL HR = H - HL gain = self._split_criterion(GL, HL, GR, HR) if gain > bestGain: bestGain = gain bestSplit = (col, right) bestSet = (data[data[:, col] <= right], data[data[:, col] > right]) if bestGain > 0: # print('Split value: ', bestSplit[1]) # print('Into left') leftBranch = self.buildTree(bestSet[0][:, :-2], bestSet[0][:, -2:], depth + 1) # print('Out left') # print('Into right') rightBranch = self.buildTree(bestSet[1][:, :-2], bestSet[1][:, -2:], depth + 1) # print('Out right') return Tree(value=bestSplit[1], leftBranch=leftBranch, rightBranch=rightBranch, col=bestSplit[0]) else: # print(-G/(H + self._lambda)) return Tree(result=- G / (H + self._lambda)) def fit(self, X, y): self.getAllQuantile(X, y) self.Tree = self.buildTree(X, y) def classify(self, tree, data): if tree.result != None: return tree.result else: branch = None v = data[tree.col] if isinstance(v, int) or isinstance(v, float): if v > tree.value: branch = tree.rightBranch else: branch = tree.leftBranch return self.classify(branch, data) def predict(self, data): data_num = data.shape[0] result = [] for i in range(data_num): result.append(self.classify(self.Tree, data[i])) result = np.array(result).reshape((-1, 1)) return result class XGBoostClassifier: def __init__(self, lossfunc, _lambda=1, _gamma=0.5, _epsilon=0.1, n_estimators=3, learning_rate=1, min_samples_split=2, max_depth=3): if lossfunc == 'LogLoss': self.loss = LogLoss() else: self.loss = LeastSquareLoss() self._lambda = _lambda self._gamma = _gamma self._epsilon = _epsilon self.n_estimators = n_estimators # Number of trees self.learning_rate = learning_rate # Step size for weight update self.min_samples_split = min_samples_split # The minimum n of sampels to justify split self.max_depth = max_depth # Maximum depth for tree self.bar = progressbar.ProgressBar() self.trees = [] for _ in range(n_estimators): tree = XGBoostTree( lossfunc=self.loss, _lambda=self._lambda, _gamma=self._gamma, _max_depth=self.max_depth, _epsilon=self._epsilon,) self.trees.append(tree) def fit(self, X, y): data_num = X.shape[0] y = np.reshape(y, (data_num, 1)) y_pred = np.zeros(np.shape(y)) # y_pred = np.random.rand(y.shape[0]).reshape(-1, 1) for i in range(self.n_estimators): tree = self.trees[i] y_and_pred = np.concatenate((y, y_pred), axis=1) # print(y_and_pred) tree.fit(X, y_and_pred) print('-' * 100) update_pred = tree.predict(X) update_pred = np.reshape(update_pred, (data_num, 1)) y_pred += update_pred def predict(self, X): y_pred = None data_num = X.shape[0] # Make predictions for tree in self.trees: # Estimate gradient and update prediction update_pred = tree.predict(X) update_pred = np.reshape(update_pred, (data_num, 1)) if y_pred is None: y_pred = np.zeros_like(update_pred).reshape(data_num, -1) y_pred += update_pred return y_pred def main(): data = pd.read_csv('./filtered_data_median.csv').values # train_size = int(data.shape[0] * 0.9) # X_train, X_test = data[:train_size, :-2], data[train_size:, :-2] # y_train, y_test = data[:train_size, -2].reshape(-1, 1), data[train_size:, -2].reshape(-1, 1) zero_index = data[:, -2] == 0 one_index = data[:, -2] == 1 zero_data = data[zero_index] one_data = data[one_index] train_size_zero = int(zero_data.shape[0] * 0.8) train_size_one = int(one_data.shape[0] * 0.8) X_train, X_test = np.concatenate((zero_data[:train_size_zero, :-2], one_data[:train_size_one, :-2]), 0), \ np.concatenate((zero_data[train_size_zero:, :-2], one_data[train_size_one:, :-2]), 0) y_train, y_test = np.concatenate((zero_data[:train_size_zero, -2].reshape(-1,1), one_data[:train_size_one, -2].reshape(-1, 1)), 0), \ np.concatenate((zero_data[train_size_zero:, -2].reshape(-1, 1), one_data[train_size_one:, -2].reshape(-1, 1)), 0) model = XGBoostClassifier(lossfunc='LogLoss') model.fit(X_train, y_train) y_pred = model.predict(X_test) y_ori = y_pred.copy() y_pred = 1.0 / (1.0 + np.exp(-y_pred)) y_pred[y_pred > 0.5] = 1 y_pred[y_pred <= 0.5] = 0 result = y_pred - y_test print(np.sum(result == 0) / y_pred.shape[0]) # for i in range(y_test.shape[0]): # print(y_test[i], y_pred[i], y_ori[i]) def main2(): data = pd.read_csv('./iris.csv').values zero_index = data[:, -1] == 0 one_index = data[:, -1] == 1 zero_data = data[zero_index] one_data = data[one_index] train_size_zero = int(zero_data.shape[0] * 0.8) train_size_one = int(one_data.shape[0] * 0.8) X_train, X_test = np.concatenate((zero_data[:train_size_zero, :-1], one_data[:train_size_one, :-1]), 0), \ np.concatenate((zero_data[train_size_zero:, :-1], one_data[train_size_one:, :-1]), 0) y_train, y_test = np.concatenate((zero_data[:train_size_zero, -1].reshape(-1,1), one_data[:train_size_one, -1].reshape(-1, 1)), 0), \ np.concatenate((zero_data[train_size_zero:, -1].reshape(-1, 1), one_data[train_size_one:, -1].reshape(-1, 1)), 0) model = XGBoostClassifier(lossfunc='LogLoss', n_estimators=3) model.fit(X_train, y_train) y_pred = model.predict(X_test) y_ori = y_pred.copy() y_pred = 1.0 / (1.0 + np.exp(-y_pred)) y_pred[y_pred > 0.5] = 1 y_pred[y_pred <= 0.5] = 0 result = y_pred - y_test print(np.sum(result == 0) / y_pred.shape[0]) for i in range(y_test.shape[0]): print(y_test[i], y_pred[i], y_ori[i]) def main3(): from sklearn.ensemble import GradientBoostingClassifier data = pd.read_csv('./iris.csv').values zero_index = data[:, -1] == 0 one_index = data[:, -1] == 1 zero_data = data[zero_index] one_data = data[one_index] train_size_zero = int(zero_data.shape[0] * 0.8) train_size_one = int(one_data.shape[0] * 0.8) X_train, X_test = np.concatenate((zero_data[:train_size_zero, :-1], one_data[:train_size_one, :-1]), 0), \ np.concatenate((zero_data[train_size_zero:, :-1], one_data[train_size_one:, :-1]), 0) y_train, y_test = np.concatenate((zero_data[:train_size_zero, -1].reshape(-1,1), one_data[:train_size_one, -1].reshape(-1, 1)), 0), \ np.concatenate((zero_data[train_size_zero:, -1].reshape(-1, 1), one_data[train_size_one:, -1].reshape(-1, 1)), 0) model = model = XGBoostClassifier(lossfunc='LogLoss') model.fit(X_train, y_train) y_pred = model.predict(X_test) print(y_pred) y_pred[y_pred > 0.5] = 1 y_pred[y_pred <= 0.5] = 0 result = y_pred - y_test print(np.sum(result == 0) / y_pred.shape[0]) for i in range(y_test.shape[0]): print(y_test[i], y_pred[i]) def main6(): data_train = pd.read_csv('./GiveMeSomeCredit/cs-training.csv') data_train = data_train[['SeriousDlqin2yrs', 'RevolvingUtilizationOfUnsecuredLines', 'age', 'NumberOfTime30-59DaysPastDueNotWorse', 'DebtRatio', 'MonthlyIncome', 'NumberOfOpenCreditLinesAndLoans', 'NumberOfTimes90DaysLate', 'NumberRealEstateLoansOrLines', 'NumberOfTime60-89DaysPastDueNotWorse', 'NumberOfDependents']].values data_train.dtype = 'float16' data_test = pd.read_csv('./GiveMeSomeCredit/cs-training.csv') data_test = data_test[['SeriousDlqin2yrs', 'RevolvingUtilizationOfUnsecuredLines', 'age', 'NumberOfTime30-59DaysPastDueNotWorse', 'DebtRatio', 'MonthlyIncome', 'NumberOfOpenCreditLinesAndLoans', 'NumberOfTimes90DaysLate', 'NumberRealEstateLoansOrLines', 'NumberOfTime60-89DaysPastDueNotWorse', 'NumberOfDependents']].values data_test.dtype = 'float16' y_train = data_train[:, 0] X_train = data_train[:, 1:] X_test = data_test[:, 1:] model = XGBoostClassifier(lossfunc='LogLoss') model.fit(X_train, y_train) y_pred = model.predict(X_test) y_ori = y_pred.copy() y_pred = 1.0 / (1.0 + np.exp(-y_pred)) y_pred2 = y_pred.copy() y_pred2[y_pred2 > 0.5] = 1 y_pred2[y_pred2 <= 0.5] = 0 print(y_pred) # result = y_pred2 - y_test # print(np.sum(result == 0) / y_pred.shape[0]) if __name__ == '__main__': start = datetime.now() main3() end = datetime.now() print(end - start)
14,368
39.590395
137
py
MP-FedXGB
MP-FedXGB-main/data_adult_process.py
import pandas as pd import numpy as np training_data = './adult.data' columns = ['Age','Workclass','fnlwgt','Education','EdNum','MaritalStatus', 'Occupation','Relationship','Race','Sex','CapitalGain', 'CapitalLoss','HoursPerWeek','Country','Income'] income = pd.read_csv(training_data, names=columns) income.dropna(inplace=True) income['Income'].replace(' <=50K', 0,inplace=True) income['Income'].replace(' >50K', 1,inplace=True) y = income['Income'] temp = income.iloc[:, :-1] # 将文本转换为数值型用于拟合模型 income_=pd.get_dummies(temp,columns=['Relationship','Sex','MaritalStatus','Workclass', 'Education','Country','Occupation','Race']) income = np.concatenate([y.values.reshape(-1, 1), income_.values,], axis=1) print(income.shape) np.save('adult.npy', income)
799
39
86
py
fitclip
fitclip-main/util/structured_group_utils.py
"""Useful utils when using `DataModuleStructuredGroup`.""" from typing import Any, Mapping, Sequence, Tuple import torch from aligner.video_text_module import TYPE_INPUT from util.tensor_utils import pad TYPE_MULTI_INPUT = Mapping[str, TYPE_INPUT] # It's like `default_collate` but instead of a sequence we have a mapping, and we do `cat` instead of `stack`. # It makes sense to be similar because we're merging multiple batches together. # Note that using collate from the dataloader side. It's simpler, and more GPU-memory efficient. def _cat_collate(batch: Sequence[Any]) -> Any: elem = batch[0] elem_type = type(batch) if isinstance(elem, torch.Tensor): return torch.cat(batch) # noqa elif isinstance(elem, Mapping): return {k: _cat_collate([d[k] for d in batch]) for k in elem} elif isinstance(elem, (float, int, bytes, str)): return batch elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple return elem_type(*(_cat_collate(samples) for samples in zip(*batch))) # noqa elif isinstance(elem, Sequence): return [x for d in batch for x in d] else: raise TypeError(f"Not sure how to collate type {elem_type}") def _merge_datasets_batch(batches_by_dataset: TYPE_MULTI_INPUT) -> Tuple[TYPE_INPUT, Sequence[int]]: lengths = [len(batch["video"]) for batch in batches_by_dataset.values()] max_text_len = max(batch["text"]["input_ids"].shape[-1] for batch in batches_by_dataset.values()) for batch in batches_by_dataset.values(): batch["text"] = {k: pad(v, min_size=max_text_len, dim=-1) for k, v in batch["text"].items()} batch = _cat_collate(list(batches_by_dataset.values())) return batch, lengths
1,737
40.380952
110
py
fitclip
fitclip-main/util/viz_utils.py
import numpy as np import torch import torchvision from matplotlib import pyplot as plt from matplotlib.pyplot import subplots_adjust from torchvision.transforms.functional import to_pil_image from aligner.encoder.video_text_encoder import VideoTextEncoder def visualize_images_tensor(images: torch.Tensor) -> plt.Axes: """`images` has shape (N, C, H, W).""" grid = torchvision.utils.make_grid(images) fig, ax = plt.subplots() fig.tight_layout() subplots_adjust(left=None, bottom=None, right=None, top=None, wspace=None, hspace=None) ax.autoscale_view("tight") ax.imshow(np.asarray(to_pil_image(grid))) ax.set(xticklabels=[], yticklabels=[], xticks=[], yticks=[]) return ax def debug_batch(video: torch.Tensor, text: torch.Tensor, encoder: VideoTextEncoder) -> None: video, text = video.detach().cpu(), text.detach().cpu() video = encoder.to_bchw(video) denormalized_images = encoder.denormalize_video_tensor(video).reshape(-1, *video.shape[2:]) visualize_images_tensor(denormalized_images) plt.show() for decoded in encoder.decode_text(text): print(decoded)
1,139
29
95
py
fitclip
fitclip-main/util/tensor_utils.py
from typing import Any, Mapping, Optional, Sequence, TypeVar, Union import pytorch_lightning as pl import torch import torch.nn.functional as F from pytorch_lightning.utilities.apply_func import apply_to_collection T = TypeVar("T") def pad(t: torch.Tensor, min_size: int, dim: int = 1, value: Any = 0) -> torch.Tensor: """Pads the dim `dim` in `t` with the value `value` so the size is at least `min_size`.""" if dim < 0: dim += len(t.shape) if (count := t.shape[dim]) < min_size: # `pad` keyword arg goes from the last dim to the first one in pairs, where the first value of the pair is # for left padding and the other one for right padding. return F.pad(t, pad=(0, 0) * (len(t.shape) - 1 - dim) + (0, min_size - count), value=value) else: return t def split_in_collection(data: T, split_size_or_sections: Union[int, Sequence[int]]) -> Sequence[T]: """Applies `split` to the inside tensors of the collections and also generates one collection for each of the returned elements from `split`.""" type_ = type(data) if isinstance(data, torch.Tensor): return data.split(split_size_or_sections) elif isinstance(data, Mapping): zipped = zip(*(split_in_collection(v, split_size_or_sections) for v in data.values())) return [type_((k, v) for k, v in zip(data.keys(), z)) for z in zipped] elif isinstance(data, Sequence): return [type_(z) for z in zip(*(split_in_collection(e, split_size_or_sections) for e in data))] else: raise ValueError(f"Unsupported type for split: {type_}") def _first_tensor_in_collection(data: Any) -> torch.Tensor: if isinstance(data, torch.Tensor): return data elif isinstance(data, Mapping): return _first_tensor_in_collection(data.values()) else: return _first_tensor_in_collection(next(iter(data))) def all_gather(lightning_module: pl.LightningModule, data: Any, group: Optional[Any] = None, sync_grads: bool = False, return_world_size_dim: bool = False) -> Any: """Gathers a tensor, or multiple tensors inside a collection, so that the output number of dimensions is the same regardless of the accelerator. Note this is different from `pl.LightningModule.all_gather`, that for a single GPU it doesn't return a new dimension but for the parallel settings it does. """ first_tensor_old_shape = _first_tensor_in_collection(data).shape output = lightning_module.all_gather(data, group=group, sync_grads=sync_grads) if len(first_tensor_new_shape := _first_tensor_in_collection(output).shape) == len(first_tensor_old_shape) + 1: return output if return_world_size_dim else apply_to_collection(output, torch.Tensor, lambda t: t.view(-1, *t.shape[2:])) elif len(first_tensor_new_shape) == len(first_tensor_old_shape): return apply_to_collection(output, torch.Tensor, torch.Tensor.unsqueeze, 0) if return_world_size_dim else output else: raise ValueError(f"Unexpected new shape for the first tensor in the collection: {first_tensor_new_shape} (old " f"was {first_tensor_old_shape}). " f"The new shape was expected to have the same number of dimensions or one more.")
3,355
49.089552
120
py
fitclip
fitclip-main/util/typing_utils.py
from os import PathLike from typing import Union TYPE_PATH = Union[PathLike, str, bytes]
141
22.666667
50
py
fitclip
fitclip-main/util/checkpoint_utils.py
from typing import MutableMapping import torch from cached_path import cached_path from util.typing_utils import TYPE_PATH def state_dict_from_checkpoint_path(checkpoint_path: TYPE_PATH, prefix: str = "") -> MutableMapping[str, torch.Tensor]: prefix += ("" if prefix.endswith(".") or not prefix else ".") checkpoint = torch.load(cached_path(checkpoint_path)) return {k[len(prefix):]: v for k, v in checkpoint["state_dict"].items() if k.startswith(prefix)}
472
35.384615
119
py
fitclip
fitclip-main/util/video_utils.py
import os from typing import Any, Callable, Iterable, Iterator, Optional, Sequence from torchvision.datasets.video_utils import VideoClips from util.typing_utils import TYPE_PATH # From https://en.wikipedia.org/wiki/Video_file_format VIDEO_FILE_EXTENSIONS = (".3g2", ".3gp", ".amv", ".asf", ".avi", ".drc", ".f4a", ".f4b", ".f4p", ".f4v", ".flv", ".gif", ".gifv", ".m2ts", ".m2v", ".m4p", ".m4v", ".mkv", ".mng", ".mov", ".mp2", ".mp4", ".mpe", ".mpeg", ".mpg", ".mpv", ".mts", ".mxf", ".nsv", ".ogg", ".ogv", ".qt", ".rm", ".rmvb", ".roq", ".svi", ".ts", ".viv", ".vob", ".webm", ".wmv", ".yuv") def get_videos_in_folder(path: TYPE_PATH, extensions: Optional[Iterable[str]] = VIDEO_FILE_EXTENSIONS) -> Iterator[str]: extensions = None if extensions is None else tuple(extensions) for folder, _, filenames in os.walk(path, followlinks=True): for filename in filenames: if os.path.isfile(full_path := os.path.join(folder, filename)) \ and (not extensions or filename.lower().endswith(extensions)): yield full_path def get_sorted_videos_in_folder(path: TYPE_PATH, extensions: Optional[Iterable[str]] = VIDEO_FILE_EXTENSIONS, key: Optional[Callable[[str], Any]] = None, reverse: bool = False) -> Iterator[str]: """Returns a sorted version of `get_videos_in_folder`. Even though this can be simply applied by the caller, the fact that the main use case of `get_videos_in_folder` is from a video dataset and that its order should be deterministic (but that `get_videos_in_folder` doesn't guarantee it) makes this function handy and a wake-up call for this issue. The videos in a PyTorch `Dataset` need to be deterministic e.g. for a distributed setting, when e.g. using `DistributedSampler` for it to guarantee each data sample is used once and only once between all processes. """ return sorted(get_videos_in_folder(path, extensions), key=key, reverse=reverse) def resample(num_frames: int, original_fps: float, new_fps: float) -> Sequence[int]: """Returns essentially the same as `VideoClips._resample_video_idx`. Unlike it, it always checks for the max frames (the mentioned function doesn't do it when it returns a `slice`).""" indices = VideoClips._resample_video_idx(num_frames, original_fps, new_fps) if isinstance(indices, slice) and indices.stop is None: indices = range(*indices.indices((indices.start or 0) + num_frames * indices.step)) return indices
2,659
53.285714
119
py
fitclip
fitclip-main/util/argparse_with_defaults.py
import argparse from typing import Any class ArgumentParserWithDefaults(argparse.ArgumentParser): """Custom argument parser that will display the default value for an argument in the help message. """ _action_defaults_to_ignore = {"help", "store_true", "store_false", "store_const"} @staticmethod def _is_empty_default(default: Any) -> bool: return default is None or (isinstance(default, (str, list, tuple, set)) and not default) def add_argument(self, *args, **kwargs) -> argparse.Action: # Add default value to the help message when the default is meaningful. default = kwargs.get("default") if kwargs.get("action") not in self._action_defaults_to_ignore and not self._is_empty_default(default): kwargs["help"] = f"{kwargs.get('help', '')} (default = {default})" return super().add_argument(*args, **kwargs)
981
45.761905
111
py
fitclip
fitclip-main/util/iter_utils.py
import collections import itertools from typing import Any, Iterable, Iterator, Literal, Optional, Sequence, Tuple, TypeVar T = TypeVar("T") def consume(it: Iterator[Any]) -> None: collections.deque(it, maxlen=0) # See https://docs.python.org/3/library/itertools.html#itertools-recipes def pairwise(it: Iterable[T]) -> Iterable[Tuple[T, T]]: a, b = itertools.tee(it) next(b, None) return zip(a, b) def can_be_iterated_more_than_once(it: Iterable[Any]) -> bool: try: object.__getattribute__(it, "__iter__") except AttributeError: return False try: object.__getattribute__(it, "__next__") except AttributeError: return True return False # See `grouper` in https://docs.python.org/3/library/itertools.html#itertools-recipes. def batch(iterable: Iterable[T], n: int, *, incomplete: Literal["fill", "ignore"] = "ignore", fill_value: Optional[Any] = None) -> Iterator[Iterable[T]]: """Batches the data into non-overlapping fixed-length batches. Examples: grouper("ABCDEFGH", 3) --> ABC DEF grouper("ABCDEFGH", 3, incomplete="fill", fill_value="x") --> ABC DEF GHx """ args = [iter(iterable)] * n if incomplete == "fill": return itertools.zip_longest(*args, fillvalue=fill_value) elif incomplete == "ignore": return zip(*args) else: raise ValueError(f"Expected 'fill' or 'ignore'; got '{incomplete}'") def batch_sequence(seq: Sequence[T], n: int) -> Iterator[Sequence[T]]: """Yield successive n-sized chunks from `seq`.""" for i in range(0, len(seq), n): yield seq[i:i + n]
1,784
30.315789
93
py
fitclip
fitclip-main/scripts/apply_wise_ft.py
import argparse import torch from aligner.encoder.clip_video_text_encoder import load_clip_model from aligner.wise import wise_state_dict from util.argparse_with_defaults import ArgumentParserWithDefaults def parse_args() -> argparse.Namespace: parser = ArgumentParserWithDefaults("Applies weight-space ensembles for fine-tuning (WiSE-FT) on 2 CLIP " "checkpoints.", description="See https://arxiv.org/abs/2109.01903 for more info.") parser.add_argument("input_path_or_name1", metavar="INPUT_FILE_OR_NAME_1") parser.add_argument("input_path_or_name2", metavar="INPUT_FILE_OR_NAME_2") parser.add_argument("output_path", metavar="OUTPUT_FILE") parser.add_argument("--weight-for-2", type=float, default=0.5) return parser.parse_args() def main() -> None: args = parse_args() model1 = load_clip_model(args.input_path_or_name1) model2 = load_clip_model(args.input_path_or_name2) # We don't use the logic scale from CLIP but ours, so we had deleted it. Here we need to re-create the variable, # so it doesn't fail when using the checkpoints. model1.logit_scale = getattr(model1, "logit_scale", torch.tensor(float("nan"))) model2.logit_scale = getattr(model2, "logit_scale", torch.tensor(float("nan"))) state_dict = wise_state_dict(model1, model2, weight_for_2=args.weight_for_2) torch.save(state_dict, args.output_path) if __name__ == "__main__": main()
1,526
37.175
116
py
fitclip
fitclip-main/scripts/csv_diff.py
import argparse import pandas as pd from util.argparse_with_defaults import ArgumentParserWithDefaults def parse_args() -> argparse.Namespace: parser = ArgumentParserWithDefaults() parser.add_argument("path1", metavar="FILE1") parser.add_argument("path2", metavar="FILE2") return parser.parse_args() def main() -> None: args = parse_args() df1 = pd.read_csv(args.path1) df2 = pd.read_csv(args.path2) print(pd.concat([df1, df2]).drop_duplicates(keep=False).to_csv(index=False)) if __name__ == "__main__": main()
635
21.714286
80
py
fitclip
fitclip-main/scripts/subcorr.py
import argparse import sys from typing import Any, Callable, Iterable, MutableMapping, Optional, Sequence, Union import PIL.Image import clip import decord import numpy as np import seaborn as sns import torch from clip.model import CLIP from matplotlib import pyplot as plt from matplotlib.offsetbox import AnnotationBbox, OffsetImage from spacy.tokens import Doc, Span def get_video_info(path: str) -> MutableMapping[str, Any]: video_reader = decord.VideoReader(path) frame_indices = list(range(0, len(video_reader), 10)) frames = [PIL.Image.fromarray(f) for f in video_reader.get_batch(frame_indices).asnumpy()] thumbnails_frame_indices = video_reader.get_key_indices() thumbnails = [PIL.Image.fromarray(f) for f in video_reader.get_batch(thumbnails_frame_indices).asnumpy()] thumbnails = [f.copy() for f in thumbnails] for thumbnail in thumbnails: thumbnail.thumbnail((64, 64)) return { "frames": frames, "frame_times": video_reader.get_frame_timestamp(frame_indices).mean(axis=-1), # noqa "thumbnails": thumbnails, "thumbnail_times": video_reader.get_frame_timestamp(thumbnails_frame_indices).mean(axis=-1), # noqa } def encode_visual(images: Iterable[PIL.Image.Image], clip_model: CLIP, image_preprocessor: Callable[[PIL.Image.Image], torch.Tensor], device: Optional[Any] = None) -> torch.Tensor: images = torch.stack([image_preprocessor(image) for image in images]) if device is not None: images = images.to(device) with torch.inference_mode(): encoded_images = clip_model.encode_image(images) return encoded_images / encoded_images.norm(dim=-1, keepdim=True) def encode_text(text: str, clip_model: CLIP, device: Optional[Any] = None) -> torch.Tensor: tokenized_texts = clip.tokenize([text]) if device is not None: tokenized_texts = tokenized_texts.to(device) with torch.inference_mode(): encoded_texts = clip_model.encode_text(tokenized_texts) return encoded_texts / encoded_texts.norm(dim=-1, keepdim=True) def text_probs(encoded_images: torch.Tensor, encoded_texts: torch.Tensor) -> np.ndarray: with torch.inference_mode(): # clip_model.logit_scale.exp() == 100 return (100 * encoded_images @ encoded_texts.T).softmax(dim=0).squeeze(-1).cpu().numpy() # noqa def create_figure(times: Sequence[float], probs: Sequence[float], thumbnail_times: Sequence[float], thumbnails: Iterable[PIL.Image.Image], title: Union[Doc, Span, str]) -> plt.Axes: # noinspection SpellCheckingInspection sns.set(rc={"figure.figsize": (1.0 * len(thumbnail_times), 1.5)}) ax = sns.lineplot(x=times, y=probs) plt.xticks(thumbnail_times) ax.set_title(title.text if isinstance(title, (Doc, Span)) else title, fontsize=35, y=0.6) ax.set(xlabel="time", ylabel="probability") plt.fill_between(times, probs) if isinstance(title, (Doc, Span)): start_time = title[0]._.start_time end_time = title[-1]._.end_time plt.axvspan(start_time, end_time, alpha=0.5, color="red") for i, (time, thumbnail) in enumerate(zip(thumbnail_times, thumbnails)): im = OffsetImage(thumbnail, axes=ax) ab = AnnotationBbox(im, (time, 0), xybox=(0, -60), frameon=False, boxcoords="offset points", pad=0) ax.add_artist(ab) plt.margins(x=0, tight=True) plt.subplots_adjust(left=0, bottom=0, right=1, top=1, wspace=0, hspace=0) return ax def create_figure_for_text(encoded_frames: torch.Tensor, text: Union[Doc, Span, str], clip_model: CLIP, times: Sequence[float], thumbnail_times: Sequence[float], thumbnails: Iterable[PIL.Image.Image]) -> plt.Axes: encoded_texts = encode_text(text.text if isinstance(text, (Doc, Span)) else text, clip_model, device=encoded_frames.device) probs = text_probs(encoded_frames, encoded_texts) return create_figure(times, probs, thumbnail_times, thumbnails, text) def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("path", metavar="PATH") return parser.parse_args() def main() -> None: sns.set_theme() args = parse_args() device = "cuda" if torch.cuda.is_available() else "cpu" clip_model, image_preprocessor = clip.load("ViT-B/16", device=device) # noinspection SpellCheckingInspection video_info = get_video_info(args.path) encoded_frames = encode_visual(video_info["frames"], clip_model, image_preprocessor, device=device) for text in sys.stdin: if text := text.strip(): create_figure_for_text(encoded_frames, text, clip_model, video_info["frame_times"], video_info["thumbnail_times"], video_info["thumbnails"]) plt.show() if __name__ == "__main__": main()
4,981
35.101449
109
py
fitclip
fitclip-main/scripts/sample_csv.py
import argparse import sys import pandas as pd from util.argparse_with_defaults import ArgumentParserWithDefaults def parse_args() -> argparse.Namespace: parser = ArgumentParserWithDefaults() parser.add_argument("path", metavar="FILE", nargs="?", default="-") parser.add_argument("-s", "--size", type=int, default=10) args = parser.parse_args() args.path = sys.stdin if args.path == "-" else args.path return args def main() -> None: args = parse_args() print(pd.read_csv(args.path).sample(args.size).to_csv(index=False)) if __name__ == "__main__": main()
624
21.321429
71
py
fitclip
fitclip-main/scripts/prepare_trained_clip_checkpoint_for_evaluation.py
import argparse import torch from util.checkpoint_utils import state_dict_from_checkpoint_path def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("input_path", metavar="INPUT_FILE") parser.add_argument("output_path", metavar="OUTPUT_FILE") parser.add_argument("--prefix", default="encoder.model.") return parser.parse_args() def main() -> None: args = parse_args() state_dict = state_dict_from_checkpoint_path(args.input_path, prefix=args.prefix) # We don't use the logic scale from CLIP but ours, so we had deleted it. Here we need to re-create the variable, # so it doesn't fail when loading this `state_dict`. state_dict["logit_scale"] = torch.tensor(float("nan")) torch.save(state_dict, args.output_path) if __name__ == "__main__": main()
868
27.032258
116
py
fitclip
fitclip-main/scripts/checkpoint_to_state_dict.py
import argparse import sys import torch from util.checkpoint_utils import state_dict_from_checkpoint_path def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("input_path", metavar="INPUT_FILE") parser.add_argument("--prefix", default="encoder.model.") return parser.parse_args() def main() -> None: args = parse_args() state_dict = state_dict_from_checkpoint_path(args.input_path, prefix=args.prefix) torch.save(state_dict, sys.stdout.buffer) if __name__ == "__main__": main()
582
22.32
85
py
fitclip
fitclip-main/scripts/list_possible_pos.py
import fileinput from nltk.corpus import wordnet as wn from nltk.corpus.reader import POS_LIST if __name__ == "__main__": for line in fileinput.input(): if line := line.strip(): print("".join(pos for pos in POS_LIST if wn.synsets(line, pos=pos)))
295
25.909091
80
py
fitclip
fitclip-main/scripts/prepare_trained_checkpoint_for_evaluation.py
import argparse import torch from cached_path import cached_path def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("input_path", metavar="INPUT_FILE", type=cached_path) parser.add_argument("output_path", metavar="OUTPUT_FILE") parser.add_argument("--prefix", default="encoder.model.") return parser.parse_args() def main() -> None: args = parse_args() checkpoint = torch.load(args.input_path) prefix = args.prefix + ("" if args.prefix.endswith(".") else ".") checkpoint["state_dict"] = {k[len(prefix):]: v for k, v in checkpoint["state_dict"].items() if k.startswith(prefix)} torch.save(checkpoint, args.output_path) if __name__ == "__main__": main()
771
26.571429
120
py
fitclip
fitclip-main/scripts/speech_to_text.py
import sys from google.cloud.speech_v1p1beta1 import RecognitionAudio, RecognitionConfig, RecognitionMetadata, \ SpeakerDiarizationConfig, SpeechClient # We use a Python script as the `gcloud` equivalent command doesn't support the enhanced models # (`gcloud ml speech recognize-long-running`, not even the alpha and beta ones). # noinspection PyTypeChecker def main() -> None: assert len(sys.argv) == 2, f"Valid syntax: {sys.argv[0]} GS_PATH" path = sys.argv[1] # -Cv9h3ic2JI.opus, czQwCto9O80.opus, mono: --BLA_8Qixs if path.startswith("gs://"): audio = RecognitionAudio(uri=path) else: with open(path, "rb") as file: audio = RecognitionAudio(content=file.read()) kwargs = { "audio_channel_count": 2, # It fails otherwise for many audios. FIXME: fails with mono } if path.endswith(".opus"): kwargs["encoding"] = RecognitionConfig.AudioEncoding.OGG_OPUS # All our Opus videos are in an Ogg container. # When using Ogg-Opus, the endpoint needs the following fields. kwargs["sample_rate"] = 48000 # All our Opus audios I've seen use this rate (at least 100). else: kwargs["encoding"] = RecognitionConfig.AudioEncoding.ENCODING_UNSPECIFIED metadata = RecognitionMetadata(original_media_type=RecognitionMetadata.OriginalMediaType.VIDEO) config = RecognitionConfig(language_code="en-US", enable_word_time_offsets=True, enable_word_confidence=True, # Option not supported in the enhanced video model: # alternative_language_codes=["en-GB", "en-IN", "en-AU"], enable_automatic_punctuation=True, use_enhanced=True, model="video", metadata=metadata, diarization_config=SpeakerDiarizationConfig(enable_speaker_diarization=True, min_speaker_count=1, max_speaker_count=10), **kwargs) response = SpeechClient().long_running_recognize(config=config, audio=audio) result = response.result(timeout=10000) print(type(result).to_json(result)) if __name__ == "__main__": main()
2,428
47.58
118
py
fitclip
fitclip-main/scripts/open_clip_checkpoint_to_model.py
import argparse import torch from cached_path import cached_path def parse_args() -> argparse.Namespace: parser = argparse.ArgumentParser() parser.add_argument("input_path", metavar="INPUT_FILE", type=cached_path) parser.add_argument("output_path", metavar="OUTPUT_FILE") return parser.parse_args() def main() -> None: args = parse_args() checkpoint = torch.load(args.input_path) state_dict = checkpoint["state_dict"] first_key = next(iter(state_dict)) prefix = next(prefix for prefix in ["model", "module"] if first_key.startswith(prefix + ".")) torch.save({k[len(prefix + "."):]: v for k, v in state_dict.items()}, args.output_path) if __name__ == "__main__": main()
744
25.607143
97
py
fitclip
fitclip-main/demo/app.py
import json import random from typing import Tuple from flask import Flask, Response, jsonify, request from flask_cors import CORS, cross_origin from demo.search import search_in_subtitles app = application = Flask(__name__, static_url_path="/") # `application` is gunicorn's default, `app` is flask's. cors = CORS(app) app.config["CORS_HEADERS"] = "Content-Type" @app.route("/search") @cross_origin() def search() -> Tuple[Response, int]: try: query = request.args.get("q", "[]") pattern = json.loads(query) # [{"LOWER": "this", "DEP": {"IN": ["nsubj", "dobj", "iobj"]}}] top_k = int(request.args.get("top_k", "10")) results = list(search_in_subtitles(pattern)) return jsonify([ { "video_id": span.doc._.video_id, "start_time": span[0]._.start_time, "end_time": span[-1]._.end_time, "text": span.text, } for span in random.sample(results, min(top_k, len(results))) ]), 200 except Exception as e: # noqa return jsonify(status=500, message=repr(e)), 500 @app.route("/") def root() -> Response: return app.send_static_file("index.html")
1,213
30.128205
114
py
fitclip
fitclip-main/demo/search.py
import json import os import re from typing import Any, Iterable, Iterator, Mapping, Optional, Sequence import spacy import spacy_alignments from cached_path import cached_path from spacy.matcher import Matcher from spacy.tokens import Doc, DocBin, Span, Token from tqdm.auto import tqdm RE_MULTIPLE_SPACES = re.compile(r" {2,}") CAPTIONS_DIR = os.path.join(os.environ["SCRATCH_DIR"], "captions") spacy.prefer_gpu() NLP = spacy.load("en_core_web_trf") Doc.set_extension("video_id", default=None) Token.set_extension("start_time", default=None) Token.set_extension("end_time", default=None) def _list_caption_paths(dir_path: str) -> Iterator[str]: with os.scandir(dir_path) as it: for entry in it: if entry.is_file() and entry.name.endswith(".json"): # noqa yield entry.path # noqa def _captions_to_text(caption_full_dict: Mapping[str, Any]) -> str: return RE_MULTIPLE_SPACES.sub(" ", " ".join(d["alternatives"][0]["transcript"].strip() for d in caption_full_dict["results"][:-1])).strip() def _parse_caption_time(s: str) -> float: return float(s[:-1]) def _load_caption(path: str) -> Optional[Mapping[str, Any]]: with open(path) as file: caption_full_dict = json.load(file) if results := caption_full_dict["results"]: tokens_info = results[-1]["alternatives"][0]["words"] else: tokens_info = None if tokens_info: return { # Save some memory by just keeping what we actually use. "text": _captions_to_text(caption_full_dict), "video_id": os.path.basename(path).rsplit(".", maxsplit=1)[0], "tokens_info": [{ "word": wi["word"], "start_time": _parse_caption_time(wi["startTime"]), "end_time": _parse_caption_time(wi["endTime"]), } for wi in tokens_info], } else: return None # There are around 750/150k that fall here for different reasons. def _add_caption_info_to_doc(doc: Doc, tokens_info: Sequence[Mapping[str, Any]]) -> Doc: spacy2caption = spacy_alignments.get_alignments([t.text for t in doc], [w["word"] for w in tokens_info])[0] for token, caption_token_indices in zip(doc, spacy2caption): token._.start_time = tokens_info[caption_token_indices[0]]["start_time"] token._.end_time = tokens_info[caption_token_indices[-1]]["end_time"] return doc def _create_docs() -> Iterator[Doc]: caption_paths = list(_list_caption_paths(CAPTIONS_DIR)) # caption_paths = random.sample(caption_paths, min(len(caption_paths), 100)) # We don't keep the captions in memory as it can be a lot. caption_it = (caption for path in caption_paths if (caption := _load_caption(path))) doc_and_context_it = NLP.pipe(((c["text"], (c["video_id"], c["tokens_info"])) # noqa for c in caption_it), as_tuples=True) for doc, (video_id, tokens_info) in tqdm(doc_and_context_it, total=len(caption_paths), desc="Parsing"): doc._.trf_data = None # It takes up a lot of memory. doc._.video_id = video_id yield _add_caption_info_to_doc(doc, tokens_info) def _load_cached_docs() -> Iterator[Doc]: print("Loading cached docs…") with open(cached_path("parsed_docs"), "rb") as file: return DocBin().from_bytes(file.read()).get_docs(NLP.vocab) def _save_docs(docs: Iterable[Doc]) -> None: print("Saving cached docs…") with open("/tmp/.docs", "wb") as file: file.write(DocBin(store_user_data=True, docs=docs).to_bytes()) if os.environ.get("LOAD_CACHED_DOCS", "0").lower() in {"1", "true", "y"}: DOCS = list(_load_cached_docs()) else: DOCS = list(_create_docs()) if os.environ.get("SAVE_CACHED_DOCS", "0").lower() in {"1", "true", "y"}: _save_docs(DOCS) print("Docs ready") def search_in_subtitles(pattern: Iterable[Mapping[str, Any]]) -> Iterator[Span]: matcher = Matcher(NLP.vocab) matcher.add("search", [pattern]) for doc in DOCS: for m in matcher(doc): yield doc[m[1]:m[2]]
4,180
34.432203
111
py
fitclip
fitclip-main/aligner/video_text_module.py
from typing import Any, Literal, Mapping, MutableMapping, Optional, Sequence, Tuple, Union import math import pytorch_lightning as pl import torch.distributed.nn from overrides import overrides from torch import nn from torch.nn.modules.loss import _Loss from aligner.encoder.video_text_encoder import TYPE_OUTPUT, VideoTextEncoder from aligner.loss import NCELoss from util.tensor_utils import all_gather TYPE_INPUT = MutableMapping[str, Any] TYPE_SPLIT = Literal["train", "val"] def log_lr(pl_module: pl.LightningModule, **kwargs) -> None: for i, optimizer in enumerate(pl_module.trainer.optimizers): for j, param_group in enumerate(optimizer.param_groups): if (lr := param_group.get("lr")) is not None: # noqa pl_module.log(f"lr_{i}_group_{j}", lr, **kwargs) class VideoTextLightningModule(pl.LightningModule): # noqa def __init__(self, encoder: VideoTextEncoder, init_temperature: float = 0.05, min_temperature: float = 0.001, fit_temperature: bool = True, loss: Optional[_Loss] = None) -> None: super().__init__() self.encoder = encoder # Use the temperature as in CLIP: save it in log-space and fit it along with the model. self.logit_scale = nn.Parameter(torch.tensor([- math.log(init_temperature)]), requires_grad=fit_temperature) # The following constant is set also as a parameter, so it's moved to the correct device automatically. self.max_logit_scale = nn.Parameter(torch.tensor([- math.log(min_temperature)]), requires_grad=False) self.loss = loss or NCELoss() @overrides(check_signature=False) def forward(self, batch: TYPE_INPUT, _batch_idx: int = 0) -> Union[TYPE_OUTPUT, Tuple[torch.Tensor, torch.Tensor, Sequence[str]]]: batch.pop("video_id", None) return self.encoder(**batch) def _step(self, batch: TYPE_INPUT, batch_idx: int = 0) -> TYPE_OUTPUT: return self(batch, batch_idx) @overrides(check_signature=False) def training_step(self, batch: TYPE_INPUT, _batch_idx: int = 0) -> TYPE_OUTPUT: output = self._step(batch, _batch_idx) # Need to log the step because PL doesn't log it in Neptune. first_video_value = next(v for k, v in batch.items() if k.startswith("video")) self.log("step", float(self.global_step), batch_size=len(first_video_value)) return output def _step_end(self, output: TYPE_OUTPUT, split: TYPE_SPLIT, log_kwargs: Optional[Mapping[str, Any]] = None) -> Union[torch.Tensor, TYPE_OUTPUT]: log_kwargs = log_kwargs or {} encoded_video, encoded_text = all_gather(self, output, sync_grads=split == "train") batch_size = len(encoded_video) logit_scale = self.logit_scale.exp() scores = logit_scale * encoded_video @ encoded_text.T loss = self.loss(scores) # Note train loss it's already shown in the progress bar by PL by default. # # Note that we need to pass the batch size in the first step log # as it can't be easily inferred by PL in our case. self.log(f"loss/{split}", loss, prog_bar=split != "train", batch_size=batch_size, **log_kwargs) if split == "train": self.log("batch_size", float(batch_size), batch_size=batch_size) self.log("temperature", 1 / logit_scale, batch_size=batch_size) return loss if split == "train" else (encoded_video, encoded_text) @overrides(check_signature=False) def training_step_end(self, output: TYPE_OUTPUT) -> torch.Tensor: loss = self._step_end(output, split="train") log_lr(self) return loss @overrides(check_signature=False) def predict_step(self, batch: TYPE_INPUT, batch_idx: int = 0) -> Mapping[str, torch.Tensor]: encoded_video, encoded_text = self._step(batch, batch_idx) return { "encoded_videos": encoded_video, "encoded_texts": encoded_text, "video_ids": batch["video_id"] } @overrides(check_signature=False) def optimizer_step(self, *args, **kwargs) -> None: super().optimizer_step(*args, **kwargs) if self.logit_scale >= self.max_logit_scale: self.logit_scale.copy_(self.max_logit_scale)
4,376
43.663265
116
py
fitclip
fitclip-main/aligner/__main__.py
import logging import os from time import strftime from typing import Mapping, Optional import hydra import torch from omegaconf import DictConfig from pytorch_lightning.loggers import NeptuneLogger, TensorBoardLogger from aligner.cli import create_model_data_module_trainer_and_ckpt_path, init_cli from aligner.logger_utils import get_logger_by_type # Note it's better to have this as a module, so it's importable and DDP works fine in debug mode. # Maybe this issue is caused by Hydra moving the CWD to somewhere else. LOGGER = logging.getLogger(__name__) # Set an env var, if empty, to the desired working directory in sweep mode. Then we read it from the config. # This way we make sure all processes use the same folder. os.environ.setdefault("SWEEP_DIR", f"multirun/{strftime('%Y-%m-%d')}/{strftime('%H-%M-%S')}") @hydra.main(config_path="../config", config_name="trainer") def main(cfg: DictConfig) -> Optional[float]: init_cli(cfg) if cfg.get("trainer", {}).get("strategy") == "dp": LOGGER.warning("DP strategy not supported by the current metric logging scheme." " See https://torchmetrics.readthedocs.io/en/stable/pages/lightning.html#logging-torchmetrics") model, data_module, trainer, ckpt_path = create_model_data_module_trainer_and_ckpt_path(cfg) output = None if cfg.command == "train": if cfg.get("validate_before_training"): LOGGER.info("Validation before training started.") with torch.inference_mode(): metrics_list = trainer.validate(model, datamodule=data_module, ckpt_path=ckpt_path) LOGGER.info("Validation before training finished.") if (tb_logger := get_logger_by_type(trainer, TensorBoardLogger)) and not tb_logger._default_hp_metric: tb_logger.log_hyperparams(model.hparams_initial, metrics={k: v for metrics in metrics_list for k, v in metrics.items()}) LOGGER.info("Training started.") trainer.fit(model, datamodule=data_module, ckpt_path=ckpt_path) if optimized_metric_name := cfg.get("optimized_metric_name"): output = trainer.callback_metrics.get(optimized_metric_name) elif cfg.command == "tune": assert ckpt_path is None, "Checkpoint path not supported when tuning." if trainer._accelerator_connector.is_distributed: LOGGER.warning("Tuning with the PL Trainer is known to have some issues in distributed settings." " See e.g. https://github.com/PyTorchLightning/pytorch-lightning/issues/4280") LOGGER.info("Tuning started.") trainer.tune(model, datamodule=data_module) elif cfg.command in {"evaluate", "validate"}: with torch.inference_mode(): trainer.validate(model, datamodule=data_module, ckpt_path=ckpt_path) elif cfg.command == "test": with torch.inference_mode(): trainer.test(model, datamodule=data_module, ckpt_path=ckpt_path) elif cfg.command == "predict": if trainer._accelerator_connector.is_distributed: LOGGER.warning("Predicting with the PL Trainer is known to have some issues in distributed settings." " See e.g. https://github.com/PyTorchLightning/pytorch-lightning/issues/10618") output_path = cfg.get("output_path", "predictions.pt") with torch.inference_mode(): predictions = trainer.predict(model, datamodule=data_module, ckpt_path=ckpt_path) assert predictions first_prediction = predictions[0] assert isinstance(first_prediction, Mapping) keys = first_prediction predictions_map = {k: torch.cat([prediction[k] for prediction in predictions]) if isinstance(first_prediction[k], torch.Tensor) else [p for prediction in predictions for p in prediction[k]] for k in keys} torch.save(predictions_map, output_path) else: raise ValueError(f"Unrecognized command: {cfg.command}") if (neptune_logger := get_logger_by_type(trainer, NeptuneLogger)) and trainer.is_global_zero: # In a Hydra multirun (sweep) scenario, Neptune experiments from finished runs are marked as still running neptune_logger.run.stop() # Return the optimized metric value for hparam search. return output if __name__ == "__main__": main()
4,715
43.490566
118
py
fitclip
fitclip-main/aligner/logger_utils.py
from typing import Optional, Type, TypeVar import pytorch_lightning as pl from pytorch_lightning.loggers import LightningLoggerBase, LoggerCollection T = TypeVar("T", bound=LightningLoggerBase) def get_logger_by_type(trainer: pl.Trainer, logger_class: Type[T]) -> Optional[T]: if isinstance(trainer.logger, LoggerCollection): return next((logger for logger in trainer.logger._logger_iterable if isinstance(logger, logger_class)), None) elif isinstance(trainer.logger, logger_class): return trainer.logger else: return None
564
32.235294
117
py
fitclip
fitclip-main/aligner/teacher_student.py
import itertools from typing import Iterable, Mapping, MutableMapping, Optional, Tuple, Union import torch.distributed.nn from overrides import overrides from torch import nn from aligner.encoder import video_text_encoder from aligner.encoder.video_text_encoder import TYPE_TOKENIZER, VideoTextEncoder from aligner.loss import TeacherStudentNCELoss from aligner.text_video_retrieval import TextVideoRetrievalLightningModule from aligner.video_text_module import TYPE_INPUT, TYPE_SPLIT, log_lr from util.tensor_utils import all_gather, pad, split_in_collection TYPE_OUTPUT = Tuple[video_text_encoder.TYPE_OUTPUT, video_text_encoder.TYPE_OUTPUT] TYPE_MULTI_OUTPUT = Mapping[str, TYPE_OUTPUT] def _replace_in_tokenized_text(tokenized_text: MutableMapping[str, torch.Tensor], new_tokenized_text: Mapping[str, torch.Tensor], start_idx: int, end_idx: int, tokenizer: TYPE_TOKENIZER) -> None: """Replaces the content in the tensor `tokenized_text` from the index `start_idx` to `end_idx` (exclusive) for `new_tokenized_text`. When it needs to know details about the tokenization, it uses `tokenizer`. """ for k in tokenized_text: padding_value = 0 if "mask" in k else getattr(tokenizer, "pad_token_id", 0) # We suppose right padding. if tokenized_text[k].shape[1] > new_tokenized_text[k].shape[1]: padded = pad(new_tokenized_text[k], min_size=tokenized_text[k].shape[1], value=padding_value) tokenized_text[k] = torch.cat((tokenized_text[k][:start_idx], padded, tokenized_text[k][end_idx:])) elif tokenized_text[k].shape[1] < new_tokenized_text[k].shape[1]: padded = pad(tokenized_text[k], min_size=new_tokenized_text[k].shape[1], value=padding_value) tokenized_text[k] = torch.cat((padded[:start_idx], new_tokenized_text[k], padded[end_idx:])) else: tokenized_text[k] = torch.cat((tokenized_text[k][:start_idx], new_tokenized_text[k], tokenized_text[k][end_idx:])) class TeacherStudentLightningModule(TextVideoRetrievalLightningModule): # noqa """ Distillation training module. If specified, `prompts` is used with the unlabeled dataset videos instead of the labels it provides (if any). """ def __init__(self, encoder: VideoTextEncoder, teacher: VideoTextEncoder, labeled_dataset_name: str = "labeled", labeled_dataset_loss_share: Optional[float] = None, dataset_names: Iterable[str] = ("labeled", "unlabeled"), prompts: Optional[Iterable[str]] = None, **kwargs) -> None: super().__init__(encoder=encoder, dataset_names=dataset_names, **kwargs) self.teacher = teacher assert self.dataset_names, "This module uses dataset names." assert len(self.dataset_names) == 2, "The current implementation needs exactly 2 datasets." # FIXME: it doesn't work with different datasets for training and evaluation, because it needs certain names # for training; and this logic assumes the same dataset names for both. if labeled_dataset_loss_share is None: self.dataset_loss_share = {name: 1 / len(self.dataset_names) for name in self.dataset_names} else: self.dataset_loss_share = {labeled_dataset_name: labeled_dataset_loss_share} self.dataset_loss_share.update((name, (1 - labeled_dataset_loss_share) / (len(self.dataset_names) - 1)) for name in self.dataset_names if name != labeled_dataset_name) self.teacher_student_logit_scale = nn.Parameter(self.logit_scale.clone(), requires_grad=self.logit_scale.requires_grad) # noinspection SpellCheckingInspection self.teacher_student_loss = TeacherStudentNCELoss(reduction="batchmean") for p in self.teacher.parameters(): p.requires_grad = False self.labeled_dataset_name = labeled_dataset_name self.unlabeled_dataset_name = next(k for k in self.dataset_names if k != labeled_dataset_name) if prompts is None: self.tokenized_prompts = None self.teacher_tokenized_prompts = None else: prompts = list(prompts) # We use parameters so the device and dtype are moved correctly along with this module. self.tokenized_prompts = nn.ParameterDict((k, nn.Parameter(v, requires_grad=False)) # noqa for k, v in encoder.get_tokenizer()(prompts).items()) self.teacher_tokenized_prompts = nn.ParameterDict((k, nn.Parameter(v, requires_grad=False)) # noqa for k, v in teacher.get_tokenizer()(prompts).items()) @overrides(check_signature=False) def _step(self, batch: TYPE_INPUT, _batch_idx: int = 0) -> TYPE_OUTPUT: # Note we pass the labeled dataset portion to the teacher, but then we don't use it. return self({"video": batch["video_student"], "text": batch["text_student"]}), \ self.teacher(video=batch["video_teacher"], text=batch["text_teacher"]) @overrides(check_signature=False) def training_step(self, batch: TYPE_INPUT, _batch_idx: int = 0) -> TYPE_MULTI_OUTPUT: keys, lengths = zip(*((key, sum(1 for _ in group)) for key, group in itertools.groupby(dataset for dataset in batch.pop("dataset")))) assert len(keys) == len(self.dataset_names), "All datasets should be present in each batch." if self.tokenized_prompts is None: unlabeled_dataset_idx = None else: unlabeled_dataset_idx = keys.index(self.unlabeled_dataset_name) start_idx_in_batch = sum(lengths[i] for i in range(unlabeled_dataset_idx)) end_idx_in_batch = start_idx_in_batch + lengths[unlabeled_dataset_idx] _replace_in_tokenized_text(tokenized_text=batch["text_student"], new_tokenized_text=self.tokenized_prompts, start_idx=start_idx_in_batch, end_idx=end_idx_in_batch, tokenizer=self.encoder.get_tokenizer()) _replace_in_tokenized_text(tokenized_text=batch["text_teacher"], new_tokenized_text=self.teacher_tokenized_prompts, start_idx=start_idx_in_batch, end_idx=end_idx_in_batch, tokenizer=self.teacher.get_tokenizer()) output = self._step(batch, _batch_idx) # Need to log the step because PL doesn't log it in Neptune. first_video_value = next(v for k, v in batch.items() if k.startswith("video")) self.log(f"step", self.global_step, batch_size=len(first_video_value)) if self.tokenized_prompts is None: split_output = split_in_collection(output, lengths) else: text_split_sections = list(lengths) text_split_sections[unlabeled_dataset_idx] = len(next(iter(self.tokenized_prompts.values()))) student_video_sections = split_in_collection(output[0][0], lengths) student_text_sections = split_in_collection(output[0][1], text_split_sections) teacher_video_sections = split_in_collection(output[1][0], lengths) teacher_text_sections = split_in_collection(output[1][1], text_split_sections) split_output = (((student_video_sections[i], student_text_sections[i]), (teacher_video_sections[i], teacher_text_sections[i])) for i in range(len(student_video_sections))) return dict(zip(keys, split_output)) def _dataset_step_end(self, output: TYPE_OUTPUT, split: TYPE_SPLIT, dataset_name: Optional[str] = None) -> Union[torch.Tensor, video_text_encoder.TYPE_OUTPUT]: gathered_output = all_gather(self, output, sync_grads=split == "train") (encoded_video, encoded_text), (teacher_encoded_video, teacher_encoded_text) = gathered_output batch_size = len(encoded_video) logit_scale = self.logit_scale.exp() scores = logit_scale * encoded_video @ encoded_text.T if dataset_name == self.labeled_dataset_name: loss = self.loss(scores) else: teacher_student_logit_scale = self.teacher_student_logit_scale.exp() teacher_scores = teacher_student_logit_scale * teacher_encoded_video @ teacher_encoded_text.T loss = self.teacher_student_loss(scores, teacher_scores) * teacher_student_logit_scale ** 2 if split == "train": # Note that we need to pass the batch size in the first step log # as it can't be easily inferred by PL in our case. self.log("batch_size", float(batch_size), batch_size=batch_size) self.log("temperature/labeled", 1 / logit_scale) self.log("temperature/unlabeled", 1 / teacher_student_logit_scale) prefix = f"loss/{split}_{dataset_name}" if dataset_name else f"loss/{split}" # Note that we need to pass the batch size in the first step log # as it can't be easily inferred by PL in our case. self.log(prefix, loss, prog_bar=split != "train", batch_size=batch_size, add_dataloader_idx=False) return loss if split == "train" else (encoded_video, encoded_text) @overrides(check_signature=False) def training_step_end(self, output: TYPE_MULTI_OUTPUT) -> torch.Tensor: loss = sum(self._dataset_step_end(batch, split="train", dataset_name=name) * self.dataset_loss_share[name] for name, batch in output.items()) self.log("loss/train", loss) # Note train loss it's already shown in the progress bar by PL by default. log_lr(self) return loss @overrides(check_signature=False) def _validation_dataset_step_end(self, output: TYPE_OUTPUT, dataset_name: Optional[str] = None) -> video_text_encoder.TYPE_OUTPUT: return self._dataset_step_end(output, split="val", dataset_name=dataset_name) @overrides(check_signature=False) def optimizer_step(self, *args, **kwargs) -> None: super().optimizer_step(*args, **kwargs) if self.teacher_student_logit_scale >= self.max_logit_scale: self.teacher_student_logit_scale.copy_(self.max_logit_scale)
10,735
54.05641
117
py
fitclip
fitclip-main/aligner/loss.py
from typing import Literal import torch from overrides import overrides from torch.nn import functional as F from torch.nn.modules.loss import _Loss TYPE_REDUCTION = Literal["none", "mean", "sum"] # noinspection SpellCheckingInspection TYPE_REDUCTION_KL_DIV = Literal["none", "batchmean", "mean", "sum"] def _rows_to_columns_nce_loss(scores: torch.Tensor, reduction: TYPE_REDUCTION = "mean") -> torch.Tensor: loss = - F.log_softmax(scores, dim=-1).diag() if reduction == "mean": return loss.mean() elif reduction == "sum": return loss.sum() else: return loss def nce_loss(scores: torch.Tensor, reduction: TYPE_REDUCTION = "mean") -> torch.Tensor: return (_rows_to_columns_nce_loss(scores, reduction=reduction) + _rows_to_columns_nce_loss(scores.T, reduction=reduction)) def _rows_to_columns_teacher_student_nce_loss(scores: torch.Tensor, teacher_scores: torch.Tensor, reduction: TYPE_REDUCTION_KL_DIV = "mean") -> torch.Tensor: logits = F.log_softmax(scores, dim=-1) teacher_probs = F.softmax(teacher_scores, dim=-1) return F.kl_div(logits, teacher_probs, reduction=reduction) def teacher_student_nce_loss(scores: torch.Tensor, teacher_scores: torch.Tensor, reduction: TYPE_REDUCTION_KL_DIV = "mean") -> torch.Tensor: return (_rows_to_columns_teacher_student_nce_loss(scores, teacher_scores, reduction=reduction) + _rows_to_columns_teacher_student_nce_loss(scores.T, teacher_scores.T, reduction=reduction)) class NCELoss(_Loss): @overrides(check_signature=False) def forward(self, scores: torch.Tensor) -> torch.Tensor: return nce_loss(scores, reduction=self.reduction) # noqa class TeacherStudentNCELoss(_Loss): @overrides(check_signature=False) def forward(self, scores: torch.Tensor, teacher_scores: torch.Tensor) -> torch.Tensor: return teacher_student_nce_loss(scores, teacher_scores, reduction=self.reduction) # noqa class SimilarityLoss(_Loss): @overrides(check_signature=False) def forward(self, scores: torch.Tensor) -> torch.Tensor: # Note we actually don't need all the scores. loss = - torch.log(torch.sigmoid(scores.diag())) if self.reduction == "mean": return loss.mean() elif self.reduction == "sum": return loss.sum() else: return loss
2,447
36.090909
105
py
fitclip
fitclip-main/aligner/text_video_retrieval.py
from collections import OrderedDict from typing import Iterable, Mapping, Optional, Sequence, Tuple, Union import torch import torch.distributed.nn from overrides import overrides from torch import nn from torchmetrics import Metric, Recall from aligner.encoder.video_text_encoder import TYPE_OUTPUT from aligner.metrics import MedianRank, Rank from aligner.video_text_module import TYPE_INPUT, VideoTextLightningModule from util.tensor_utils import all_gather class TextVideoRetrievalLightningModule(VideoTextLightningModule): # noqa def __init__(self, *args, dataset_names: Optional[Iterable[str]] = None, compute_rank: bool = False, **kwargs) -> None: super().__init__(*args, **kwargs) metrics_dict = {"r1": Recall(), "r5": Recall(top_k=5), "r10": Recall(top_k=10), "mr": MedianRank()} if compute_rank: metrics_dict["rank"] = Rank() self.dataset_names = list(dataset_names) if dataset_names else None self.multiple_datasets = self.dataset_names is not None and len(self.dataset_names) > 1 if self.multiple_datasets: assert all("_" not in name for name in self.dataset_names), \ "Underscores in dataset names are problematic because of how we get their corresponding metrics." self.metrics: Mapping[str, Metric] = nn.ModuleDict((f"{name}_{dataset_name}", metric.clone()) # noqa for dataset_name in self.dataset_names for name, metric in metrics_dict.items()) else: self.metrics: Mapping[str, Metric] = nn.ModuleDict(metrics_dict) @overrides(check_signature=False) def validation_step(self, batch: TYPE_INPUT, batch_idx: int = 0, dataloader_idx: Optional[int] = None) -> Tuple[TYPE_OUTPUT, Optional[int]]: return self._step(batch, batch_idx), dataloader_idx def _validation_dataset_step_end(self, output: TYPE_OUTPUT, dataset_name: Optional[str] = None) -> TYPE_OUTPUT: encoded_video, encoded_text = all_gather(self, output) batch_size = len(encoded_video) logit_scale = self.logit_scale.exp() scores = logit_scale * encoded_video @ encoded_text.T loss = self.loss(scores) # Note that we need to pass the batch size in the first step log # as it can't be easily inferred by PL in our case. key = "loss/val" + ("" if dataset_name is None else f"_{dataset_name}") self.log(key, loss, prog_bar=True, batch_size=batch_size, add_dataloader_idx=False) return encoded_video, encoded_text @overrides(check_signature=False) def validation_step_end(self, output: Tuple[TYPE_OUTPUT, int]) -> TYPE_OUTPUT: step_output, data_loader_idx = output assert self.multiple_datasets == (data_loader_idx is not None) dataset_name = self.dataset_names[data_loader_idx] if self.multiple_datasets else None return self._validation_dataset_step_end(step_output, dataset_name=dataset_name) def _validate_dataset(self, outputs: Sequence[TYPE_OUTPUT], dataset_name: Optional[str] = None) -> None: assert self.multiple_datasets == (dataset_name is not None) encoded_videos, encoded_texts = (torch.cat(x) for x in zip(*outputs)) batch_size = len(encoded_videos) scores = encoded_texts @ encoded_videos.T target = torch.arange(scores.shape[-1], device=scores.device) for name, metric in self.metrics.items(): if not dataset_name or name.endswith(f"_{dataset_name}"): metric(scores, target) # Note that we need to pass the batch size in the first step log # as it can't be easily inferred by PL in our case. self.log(name, metric, prog_bar=True, batch_size=batch_size, add_dataloader_idx=False) @overrides(check_signature=False) def validation_epoch_end(self, outputs: Union[Sequence[TYPE_OUTPUT], Sequence[Sequence[TYPE_OUTPUT]]]) -> None: if self.multiple_datasets: for i, (name, dataset_output) in enumerate(zip(self.dataset_names, outputs)): # Necessary to set the current data loader ID so PL knows to which one the logged metrics belong # (because it returns the metrics by data loader). self._current_dataloader_idx = i self._validate_dataset(dataset_output, dataset_name=name) # noqa self._current_dataloader_idx = None else: self._validate_dataset(outputs) if "rank" in self.metrics: self.print(self.metrics["rank"].compute().tolist()) @overrides def load_state_dict(self, state_dict: "OrderedDict[str, torch.Tensor]", strict: bool = True): # If it's exactly this class, then ignore any teacher-related thing. # We do it here, so we can control it more, and avoid bugs with a general solution. if type(self) is TextVideoRetrievalLightningModule: incompatible_keys = super().load_state_dict(state_dict, strict=False) unexpected_keys = set(incompatible_keys.unexpected_keys) for key in incompatible_keys.unexpected_keys: if key.startswith("teacher"): unexpected_keys.remove(key) # We then do as in super: if strict: error_msgs = [] if unexpected_keys: unexpected_key_str = ", ".join(f'"{k}"' for k in unexpected_keys) error_msgs.append(f"Unexpected key(s) in state_dict: {unexpected_key_str}. ") if incompatible_keys.missing_keys: missing_keys_str = ', '.join(f'"{k}"' for k in incompatible_keys.missing_keys) error_msgs.append(f"Missing key(s) in state_dict: {missing_keys_str}. ") if error_msgs: error_msgs_str = "\n\t".join(error_msgs) raise RuntimeError(f"Error(s) in loading state_dict for {self.__class__.__name__}:\n\t" f"{error_msgs_str}") return incompatible_keys else: return super().load_state_dict(state_dict, strict)
6,325
46.924242
115
py
fitclip
fitclip-main/aligner/video_text_classification.py
import logging import math from typing import Any, Iterable, Mapping, Optional, Sequence, TypeVar import torch from overrides import overrides from pytorch_lightning.callbacks import RichProgressBar from pytorch_lightning.utilities.apply_func import apply_to_collection from torch import nn from torchmetrics import Accuracy, Metric from aligner.encoder.video_text_encoder import VideoTextEncoder from aligner.metrics import MedianRank from aligner.video_text_module import VideoTextLightningModule from util import iter_utils LOGGER = logging.getLogger(__name__) T = TypeVar("T") def batch_tokenized_text(tokenized: Mapping[str, Sequence[T]], n: int) -> Iterable[Mapping[str, T]]: tokenized_dicts = {k: iter(iter_utils.batch_sequence(v, n)) for k, v in tokenized.items()} length = math.ceil(len(next(iter(tokenized.values()))) / n) for _ in range(length): yield {k: next(tokenized_dicts[k]) for k in tokenized} class VideoTextClassificationLightningModule(VideoTextLightningModule): # noqa def __init__(self, encoder: VideoTextEncoder, labels: Iterable[str], templates: Optional[Iterable[str]], return_metrics_by_class: bool = False, **kwargs) -> None: super().__init__(encoder, **kwargs) labels = list(labels) label_count = len(labels) # If different templates are provided, we used them for each label # and reset the labels to be {labels} x {templates}. if templates: templates = list(templates) self.template_count = len(templates) labels = [template.format(label) for label in labels for template in templates] else: self.template_count = 1 # We tokenize all the labels but defer the encoding until the model is in the device. tokenized_labels = encoder.get_tokenizer()(labels) device = next(encoder.parameters()).device tokenized_labels = apply_to_collection(tokenized_labels, torch.Tensor, torch.Tensor.to, device) self.tokenized_labels = nn.ParameterDict(apply_to_collection(tokenized_labels, torch.Tensor, nn.Parameter, requires_grad=False)) # We encode just one label to allocate the size correctly. encoded_text = self.encoder.encode_text({k: v[:1] for k, v in tokenized_labels.items()}) self.encoded_labels = nn.Parameter(torch.empty(label_count, encoded_text.shape[-1]), requires_grad=False) self.metrics: Mapping[str, Metric] = nn.ModuleDict({"a1": Accuracy(), "a5": Accuracy(top_k=5), "mr": MedianRank()}) if return_metrics_by_class: self.metrics_by_class = nn.ModuleDict({f"a1_{k}": Accuracy() for k in range(label_count)}) else: self.metrics_by_class = None def _on_start(self) -> None: # Note that for training they should be encoded at running time, not here. # But we aren't training any text classification model but evaluating them. # # We compute them here and not during init because here the model is already in the device. # This is especially much faster than in CPU (init) when using templates. batch_size = 32 callback = next(callback for callback in self.trainer.callbacks if isinstance(callback, RichProgressBar)) progress = callback.progress if self.trainer.is_global_zero: progress_task = progress.add_task( description="Encoding the labels", total=math.ceil(len(next(iter(self.tokenized_labels.values()))) / batch_size)) else: progress_task = None encoded_label_list = [] for tokenized_labels_batch in batch_tokenized_text(self.tokenized_labels, batch_size): encoded_label_list.append(self.encoder.encode_text(tokenized_labels_batch)) if progress_task is not None: progress.update(progress_task, advance=1) encoded_labels = torch.cat(encoded_label_list) encoded_labels = encoded_labels.reshape(-1, self.template_count, encoded_labels.shape[1]).mean(dim=1) self.encoded_labels.copy_(encoded_labels) if progress_task is not None: # If we remove it, it later fails, not sure why. So we just hide it. progress.update(progress_task, visible=False) @overrides def on_validation_start(self) -> None: self._on_start() @overrides def on_test_start(self) -> None: self._on_start() @overrides def on_predict_start(self) -> None: self._on_start() @overrides(check_signature=False) def forward(self, video: torch.Tensor) -> torch.Tensor: return self.encoder.encode_video(video) @ self.encoded_labels.T @overrides(check_signature=False) def validation_step(self, batch: Mapping[str, Any], _batch_idx: int = 0) -> None: scores = self(batch["video"]) label_id = batch["target"][1] for name, metric in self.metrics.items(): metric(scores, label_id) # Note that we need to pass the batch size in the first step log # as it can't be easily inferred by PL in our case. self.log(name, metric, prog_bar=True, batch_size=len(batch["video"])) if self.metrics_by_class is not None: for scores_instance, label_id_instance in zip(scores, label_id): metric = self.metrics_by_class[f"a1_{label_id_instance}"] metric(scores_instance.unsqueeze(0), label_id_instance.unsqueeze(0)) self.log(f"a1_{label_id_instance}", metric, batch_size=1) @overrides(check_signature=False) def predict_step(self, batch: Mapping[str, Any], _batch_idx: int = 0) -> Mapping[str, torch.Tensor]: return { "predictions": self(batch["video"]).argmax(dim=-1), "labels": batch["target"][1], "video_ids": batch["video_id"], }
6,045
41.879433
114
py
fitclip
fitclip-main/aligner/cli.py
import copy import logging import warnings from types import MethodType from typing import Any, Mapping, Optional, Tuple, Type import hydra import pytorch_lightning as pl from cached_path import cached_path from omegaconf import DictConfig from pytorch_lightning import seed_everything from torch.optim import Optimizer from aligner.data.data_module_group import DataModuleStructuredGroup, EvalDataModuleGroup, MixedBatchDataModule, \ TrainAndEvalDataModules from aligner.data.video_data_module import ENCODER_OR_ENCODER_MAP, VideoClassificationDataModule from aligner.encoder.video_text_encoder import VideoTextEncoder from aligner.video_text_classification import VideoTextClassificationLightningModule from aligner.video_text_module import VideoTextLightningModule LOGGER = logging.getLogger(__name__) # This is because PL can't automatically infer the batch size, that's needed for logging. But we set it manually # within the modules. warnings.filterwarnings("ignore", message=r"^Trying to infer the `batch_size` from an ambiguous collection\. .+") def fullname(klass: Type[Any]) -> str: return f"{klass.__module__}.{klass.__qualname__}" def set_logging_level(level: int) -> None: logging.basicConfig(level=level) # `basicConfig` will only work for new loggers, so we also need to set up the existing ones: for logger in logging.root.manager.loggerDict.values(): if isinstance(logger, logging.Logger): # Otherwise, it could be a `logging.PlaceHolder`. logger.setLevel(level) logging.getLogger().setLevel(level) # The root logger is not present in the previous iterable. def init_cli(cfg: DictConfig) -> None: if cfg.get("silent"): set_logging_level(logging.WARNING) else: set_logging_level(logging.INFO) if "seed" in cfg: seed_everything(cfg.seed, workers=True) def instantiate_data_module(cfg: DictConfig, encoder: ENCODER_OR_ENCODER_MAP) -> pl.LightningDataModule: kwargs = {} if cfg._target_ in {fullname(klass) for klass in [DataModuleStructuredGroup, EvalDataModuleGroup, MixedBatchDataModule]}: if isinstance(cfg.data_modules, Mapping): kwargs["data_modules"] = {k: instantiate_data_module(v, encoder=encoder) # noqa for k, v in cfg.data_modules.items()} else: kwargs["data_modules"] = {instantiate_data_module(cfg_dm, encoder=encoder) for cfg_dm in cfg.data_modules} # Convert because otherwise the passed `data_modules` is a `DictConfig` instead of a `dict` and # `train_dataloader` can't respect the same collection type as `DictConfig` can't have normal classes. kwargs["_convert_"] = "all" elif cfg._target_ == fullname(TrainAndEvalDataModules): kwargs["train_data_module"] = instantiate_data_module(cfg.train_data_module, encoder=encoder) kwargs["eval_data_module"] = instantiate_data_module(cfg.eval_data_module, encoder=encoder) else: kwargs["encoder"] = encoder # Necessary as well when the encoder is a dict. kwargs["_convert_"] = "all" return hydra.utils.instantiate(cfg, **kwargs) def create_model_data_module_trainer_and_ckpt_path( cfg: DictConfig, model_kwargs: Optional[Mapping[str, Any]] = None) -> Tuple[VideoTextLightningModule, pl.LightningDataModule, pl.Trainer, str]: model_kwargs = model_kwargs or {} LOGGER.info(f"Instantiating encoder <{getattr(cfg.encoder, '_target_', type(cfg.encoder).__name__)}>…") encoder: ENCODER_OR_ENCODER_MAP = hydra.utils.instantiate(cfg.encoder) if isinstance(encoder, Mapping) and cfg.get("use_student_encoder_for_data_preprocessing"): encoder_for_data_preprocessing = encoder["student"] else: encoder_for_data_preprocessing = encoder LOGGER.info("Encoder instantiated.") LOGGER.info(f"Instantiating data module <{cfg.data._target_}>…") data_module = instantiate_data_module(cfg.data, encoder=encoder_for_data_preprocessing) LOGGER.info("Data module instantiated.") LOGGER.info(f"Instantiating model <{cfg.model._target_}>…") if isinstance(encoder, Mapping): model_kwargs.setdefault("encoder", encoder["student"]) model_kwargs.setdefault("teacher", encoder["teacher"]) else: model_kwargs.setdefault("encoder", encoder) if isinstance(data_module, VideoClassificationDataModule): assert isinstance(encoder_for_data_preprocessing, VideoTextEncoder), \ "Encoder can't be a mapping and has to support text when doing classification." cfg.model._target_ = fullname(VideoTextClassificationLightningModule) model_kwargs.setdefault("labels", data_module.categories) model_kwargs.setdefault("templates", data_module.templates) if prompts_path := cfg.get("prompts"): # noqa with open(cached_path(prompts_path)) as file: model_kwargs.setdefault("prompts", [stripped_line for line in file if (stripped_line := line.strip())]) # noqa model: VideoTextLightningModule = hydra.utils.instantiate(cfg.model, **model_kwargs) LOGGER.info("Model instantiated.") if "optimizer" in cfg: LOGGER.info(f"Instantiating Optimizer <{cfg.optimizer._target_}>…") def configure_optimizers(self: pl.LightningModule) -> Optimizer: if (lr_ := self.hparams.get("lr")) is not None: # To be used by auto LR find. cfg.optimizer["lr"] = lr_ return hydra.utils.instantiate(cfg.optimizer, self.parameters()) model.configure_optimizers = MethodType(configure_optimizers, model) LOGGER.info("Optimizer instantiated.") LOGGER.info(f"Instantiating trainer <{cfg.trainer._target_}>…") trainer: pl.Trainer = hydra.utils.instantiate(cfg.trainer) LOGGER.info("Trainer instantiated.") # We do what `model.save_hyperparameters(cfg)` would do but without needing a current frame to get the args from. # It turns out that, even if you provide args, it still checks the current frame for args, and set those # conditioned by the provided args. model._log_hyperparams = trainer.logger model._set_hparams(cfg) # noqa model._hparams_initial = copy.deepcopy(model._hparams) ckpt_path = cached_path(cfg.checkpoint_path) if cfg.get("path") else None return model, data_module, trainer, ckpt_path
6,809
44.099338
119
py
fitclip
fitclip-main/aligner/wise.py
import copy from typing import Mapping, TypeVar import torch from torch import nn T = TypeVar("T", bound=nn.Module) def wise_state_dict(model1: T, model2: T, weight_for_2: float = 0.5) -> Mapping[str, torch.Tensor]: state_dict1 = dict(model1.named_parameters()) state_dict2 = dict(model2.named_parameters()) assert set(state_dict1) == set(state_dict2) return {k: (1 - weight_for_2) * state_dict1[k] + weight_for_2 * state_dict2[k] for k in state_dict1} def wise(model1: T, model2: T, weight_for_2: float = 0.5, copy_model1: bool = True) -> T: assert type(model1) is type(model2) model = copy.deepcopy(model1 if copy_model1 else model2) model.load_state_dict(wise_state_dict(model1, model2, weight_for_2=weight_for_2)) # noqa return model
779
31.5
104
py
fitclip
fitclip-main/aligner/metrics.py
import torch from overrides import overrides from torchmetrics import Metric class Rank(Metric): is_differentiable: bool = False higher_is_better: bool = False full_state_update: bool = False def __init__(self, **kwargs) -> None: super().__init__(**kwargs) self.add_state("ranks", default=[], dist_reduce_fx="cat") @overrides(check_signature=False) def update(self, predictions: torch.Tensor, target: torch.Tensor) -> None: sorted_predicted_positions = predictions.argsort(dim=1, descending=True) ranks = torch.where(sorted_predicted_positions == target.unsqueeze(-1))[1] # noqa self.ranks.append(ranks) @overrides def compute(self) -> torch.Tensor: # It could be already reduced depending on when we call it (e.g., at the epoch end). return self.ranks if isinstance(self.ranks, torch.Tensor) else torch.cat(self.ranks) class MeanRank(Rank): @overrides def compute(self) -> torch.Tensor: return super().compute().mean() + 1 class MedianRank(Rank): @overrides def compute(self) -> torch.Tensor: return super().compute().median() + 1
1,162
30.432432
92
py
fitclip
fitclip-main/aligner/transforms.py
"""From https://github.com/pytorch/vision/blob/993325d/references/video_classification/transforms.py""" import random from typing import Any import torch import torch.nn as nn from overrides import overrides from torchvision.transforms import InterpolationMode, RandomResizedCrop, functional as F from util.tensor_utils import pad class ConvertBHWCtoBCHW(nn.Module): """Convert tensor from (B, H, W, C) to (B, C, H, W).""" @overrides(check_signature=False) def forward(self, v: torch.Tensor) -> torch.Tensor: return v.permute(0, 3, 1, 2) class ConvertBCHWtoCBHW(nn.Module): """Convert tensor from (B, C, H, W) to (C, B, H, W).""" @overrides(check_signature=False) def forward(self, v: torch.Tensor) -> torch.Tensor: return v.permute(1, 0, 2, 3) # Added by me: class ConvertBHWCtoCBHW(nn.Module): """Convert tensor from (B, H, W, C) to (C, B, H, W).""" @overrides(check_signature=False) def forward(self, v: torch.Tensor) -> torch.Tensor: return v.permute(3, 0, 1, 2) class PadToMinFrames: def __init__(self, min_frames: int, frame_dim: int = 0, padding_value: Any = 0) -> None: self.min_frames = min_frames self.frame_dim = frame_dim self.padding_value = padding_value def __call__(self, video: torch.Tensor) -> torch.Tensor: return pad(video, min_size=self.min_frames, dim=self.frame_dim, value=self.padding_value) class MaxFrames: def __init__(self, max_frames: int, frame_dim: int = 0) -> None: self.max_frames = max_frames self.frame_dim = frame_dim def __call__(self, video: torch.Tensor) -> torch.Tensor: return video[(slice(None),) * self.frame_dim + (slice(None, self.max_frames),)] class RandomResizedCropWithRandomInterpolation(RandomResizedCrop): @overrides def forward(self, img: torch.Tensor) -> torch.Tensor: i, j, h, w = self.get_params(img, self.scale, self.ratio) # noqa interpolation = random.choice([InterpolationMode.BILINEAR, InterpolationMode.BICUBIC]) return F.resized_crop(img, i, j, h, w, self.size, interpolation)
2,123
33.258065
103
py
fitclip
fitclip-main/aligner/encoder/videoclip_video_text_encoder.py
import os from typing import Iterable, Iterator, Optional import torch from overrides import overrides from torchvision import transforms as T from transformers import AutoTokenizer from aligner.data.frame_sampler import ConsecutiveFrameSampler, FrameSampler from aligner.encoder.s3dg import S3DG from aligner.encoder.video_encoder import TYPE_TRANSFORM, TYPE_VIDEO_INPUT, float_standard_denormalize from aligner.encoder.video_text_encoder import TYPE_TEXT_INPUT, TYPE_TOKENIZER, VideoTextEncoder from aligner.encoder.videoclip import MMFusionSeparate from aligner.transforms import ConvertBHWCtoCBHW, PadToMinFrames from util.typing_utils import TYPE_PATH class VideoClipVideoTextEncoder(VideoTextEncoder): def __init__(self, video_encoder_pretrained_path: Optional[TYPE_PATH] = None, model_pretrained_path: Optional[TYPE_PATH] = None, num_frames: int = 32, max_tokens: int = 64) -> None: super().__init__() self.num_frames = num_frames self.max_tokens = max_tokens self.video_encoder = S3DG() if video_encoder_pretrained_path: self.video_encoder.load_state_dict(torch.load(video_encoder_pretrained_path)) self.model = MMFusionSeparate(max_video_len=num_frames) if model_pretrained_path: self.model.load_state_dict(torch.load(model_pretrained_path)) os.environ["TOKENIZERS_PARALLELISM"] = "0" self.tokenizer = AutoTokenizer.from_pretrained(self.model.model_name) @overrides(check_signature=False) def encode_video(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: batch_size, clip_count = video.shape[:2] assert batch_size == 1, "Only batch_size = 1 is supported for now." device = video.device # FIXME: VideoCLIP uses up to 32 clips per video, which complicates our implementation. # These clips are randomly sampled when there's more than 32 clips. # These clips are composed of non-overlapping 32 consecutive frames, and the video is sampled at 30 fps. video_features = self.video_encoder(video).view(batch_size, clip_count, self.video_encoder.output_size) video_mask = torch.ones((batch_size, self.num_frames), dtype=torch.bool, device=device) text = torch.tensor([[self.tokenizer.cls_token_id, self.tokenizer.sep_token_id]], device=device) \ .expand(batch_size, 2) text_mask = torch.ones((batch_size, 2), dtype=torch.bool, device=device) return self.model.forward_video(video_features, video_mask, text, text_mask) @overrides(check_signature=False) def encode_text(self, text: TYPE_TEXT_INPUT) -> torch.Tensor: return self.model.forward_text(text["input_ids"], text["attention_mask"]) def _tokenize(self, texts: Iterable[str]) -> TYPE_TEXT_INPUT: texts = [f"{self.tokenizer.sep_token} {text}" for text in texts] return self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_tokens) @overrides def get_tokenizer(self) -> TYPE_TOKENIZER: return self._tokenize @overrides def decode_text(self, text: TYPE_TEXT_INPUT) -> Iterator[str]: return self.tokenizer.batch_decode(text["input_ids"]) @overrides def get_train_frame_sampler(self) -> FrameSampler: raise NotImplementedError @overrides def get_eval_frame_sampler(self) -> FrameSampler: return ConsecutiveFrameSampler(self.num_frames, fps=30) @overrides def get_train_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: raise NotImplementedError @overrides def get_eval_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: return T.Compose([ ConvertBHWCtoCBHW(), T.ConvertImageDtype(dtype), T.Resize(224), T.CenterCrop(224), PadToMinFrames(self.num_frames, frame_dim=1), ]) @property @overrides def should_pad_batch(self) -> bool: return False @overrides def to_bchw(self, t: torch.Tensor) -> torch.Tensor: return t.permute(0, 2, 1, 3, 4) @overrides def denormalize_video_tensor(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: return float_standard_denormalize(video)
4,268
39.657143
120
py
fitclip
fitclip-main/aligner/encoder/mil_nce_video_text_encoder.py
import re from typing import Any, Iterable, Iterator, Mapping, Optional, Union import numpy as np import torch from cached_path import cached_path from overrides import overrides from torch import nn from torchvision import transforms as T from aligner.data.frame_sampler import ConsecutiveFrameSampler, FrameSampler from aligner.encoder.s3dg import S3DG from aligner.encoder.video_encoder import TYPE_TRANSFORM, float_standard_denormalize from aligner.encoder.video_text_encoder import TYPE_TEXT_INPUT, TYPE_TOKENIZER, TYPE_VIDEO_INPUT, VideoTextEncoder from aligner.transforms import ConvertBHWCtoCBHW, PadToMinFrames from util.typing_utils import TYPE_PATH def load_pretrained_video_encoder(path: TYPE_PATH, map_location: Optional[Union[str, torch.device]] = None) -> Mapping[str, Any]: checkpoint = torch.load(path, map_location=map_location) state_dict = get_video_encoder_state_dict_from_pretrained_mil_nce_checkpoint(checkpoint) \ if "state_dict" in checkpoint else checkpoint # Backward compatibility, also with the MIL-NCE paper pretrained one. return {k: v for k, v in state_dict.items() if not k.startswith("text_module.")} def load_pretrained_text_encoder(path: TYPE_PATH, map_location: Optional[Union[str, torch.device]] = None) -> Mapping[str, Any]: checkpoint = torch.load(path, map_location=map_location) if "state_dict" in checkpoint: return get_text_encoder_state_dict_from_pretrained_mil_nce_checkpoint(checkpoint) elif any(k.startswith("text_module.") for k in checkpoint): # Backward compatibility, also with a MIL-NCE paper pretrained one. prefix = "text_module." return {k[len(prefix):]: v for k, v in checkpoint.items() if k.startswith(prefix)} else: return checkpoint def get_video_encoder_state_dict_from_pretrained_mil_nce_checkpoint( checkpoint: Mapping[str, Any]) -> Mapping[str, torch.Tensor]: pl_module_state_dict = checkpoint["state_dict"] # Look for the corresponding encoder, with backward compatibility. prefix = "encoder." if any(k.startswith("encoder.") for k in pl_module_state_dict.keys()) else "video_encoder." return {k[len(prefix):]: v for k, v in pl_module_state_dict.items() if k.startswith(prefix)} def get_text_encoder_state_dict_from_pretrained_mil_nce_checkpoint( checkpoint: Mapping[str, Any]) -> Mapping[str, torch.Tensor]: pl_module_state_dict = checkpoint["state_dict"] # Look for the corresponding encoder, with backward compatibility. prefix = "encoder.text_module." if any(k.startswith("encoder.text_module.") for k in pl_module_state_dict.keys()) \ else "text_encoder." return {k[len(prefix):]: v for k, v in pl_module_state_dict.items() if k.startswith(prefix)} class GlobalMaxPool1d(nn.Module): @overrides(check_signature=False) def forward(self, t: torch.Tensor) -> torch.Tensor: return t.max(dim=1)[0] class MilNceTextEncoder(nn.Module): def __init__(self, output_size: int = 512, vocab_size: int = 66250, word_embedding_size: int = 300, embedding: Optional[torch.Tensor] = None, hidden_size: int = 2048) -> None: super().__init__() # noinspection SpellCheckingInspection self.word_embd = nn.Embedding(vocab_size, word_embedding_size) if embedding is None \ else nn.Embedding.from_pretrained(embedding) self.fc1 = nn.Linear(self.word_embd.embedding_dim, hidden_size) self.relu = nn.ReLU(inplace=True) self.max_pooling = GlobalMaxPool1d() self.fc2 = nn.Linear(hidden_size, output_size) @overrides(check_signature=False) def forward(self, input_ids: torch.Tensor) -> torch.Tensor: text = self.word_embd(input_ids) text = self.relu(self.fc1(text)) text = self.max_pooling(text) return self.fc2(text) def truncate_or_pad_1d_tensor(tensor: torch.Tensor, size: int, fill_value: Any = 0) -> torch.Tensor: if len(tensor) >= size: return tensor[:size] else: padded_tensor = torch.full((size,), fill_value, dtype=tensor.dtype, device=tensor.device, requires_grad=tensor.requires_grad) padded_tensor[:len(tensor)] = tensor return padded_tensor class MilNceTokenizer: RE_WORD = re.compile(r"[\w']+") def __init__(self, vocab: Mapping[str, int], max_tokens: int = 20, lowercase: bool = True) -> None: super().__init__() self.vocab = vocab self.max_tokens = max_tokens self.lowercase = lowercase self.indices_to_tokens = {i: token for token, i in vocab.items()} def _tokenize(self, text: str) -> Iterator[str]: if self.lowercase: text = text.lower() return self.RE_WORD.findall(text) def _index(self, tokens: Iterable[str]) -> torch.Tensor: tokens_in_vocab_tensor = torch.tensor([self.vocab[word] for word in tokens if word in self.vocab], dtype=torch.long) return truncate_or_pad_1d_tensor(tokens_in_vocab_tensor, self.max_tokens) def __call__(self, text: str) -> TYPE_TEXT_INPUT: return {"input_ids": self._index(self._tokenize(text))} def decode(self, ids: Iterable[int]) -> str: return " ".join(self.indices_to_tokens[i] for i in ids if i != 0) class MilNceVideoTextEncoder(VideoTextEncoder): def __init__(self, vocab_path: TYPE_PATH = "https://www.rocq.inria.fr/cluster-willow/amiech/howto100m/s3d_dict.npy", pretrained_path: Optional[TYPE_PATH] = None, max_tokens: int = 20, num_frames: int = 16) -> None: super().__init__() self.video_encoder = S3DG() self.text_encoder = MilNceTextEncoder() vocab: Mapping[str, int] = {t.item(): i + 1 for i, t in enumerate(np.load(cached_path(vocab_path)))} self.tokenizer = MilNceTokenizer(vocab=vocab, max_tokens=max_tokens) self.num_frames = num_frames if pretrained_path: pretrained_path = cached_path(pretrained_path) self.video_encoder.load_state_dict(load_pretrained_video_encoder(pretrained_path, # noqa map_location="cpu")) self.text_encoder.load_state_dict(load_pretrained_text_encoder(pretrained_path, # noqa map_location="cpu")) @overrides(check_signature=False) def encode_video(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: return self.video_encoder(video) @overrides(check_signature=False) def encode_text(self, text: TYPE_TEXT_INPUT) -> torch.Tensor: return self.text_encoder(text["input_ids"]) def _tokenize(self, texts: Iterable[str]) -> TYPE_TEXT_INPUT: tokenized = [self.tokenizer(text) for text in texts] return {k: torch.stack([t[k] for t in tokenized]) for k in next(iter(tokenized), [])} @overrides def get_tokenizer(self) -> TYPE_TOKENIZER: return self._tokenize @overrides def decode_text(self, text: TYPE_TEXT_INPUT) -> Iterator[str]: for text_instance in text["input_ids"]: yield self.tokenizer.decode(text_instance.tolist()) @overrides def get_train_frame_sampler(self) -> FrameSampler: raise NotImplementedError @overrides def get_eval_frame_sampler(self) -> FrameSampler: return ConsecutiveFrameSampler(self.num_frames, fps=5) @overrides def get_train_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: raise NotImplementedError @overrides def get_eval_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: return T.Compose([ ConvertBHWCtoCBHW(), T.ConvertImageDtype(dtype), T.Resize(224), T.CenterCrop(224), PadToMinFrames(self.num_frames, frame_dim=1), ]) @property @overrides def should_pad_batch(self) -> bool: return False @overrides def to_bchw(self, t: torch.Tensor) -> torch.Tensor: return t.permute(0, 2, 1, 3, 4) @overrides def denormalize_video_tensor(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: return float_standard_denormalize(video)
8,365
41.040201
120
py
fitclip
fitclip-main/aligner/encoder/video_text_encoder.py
from abc import abstractmethod from typing import Callable, Iterable, Iterator, Mapping, Tuple import torch from overrides import overrides from aligner.encoder.video_encoder import TYPE_VIDEO_INPUT, VideoEncoder TYPE_TEXT_INPUT = Mapping[str, torch.Tensor] TYPE_OUTPUT = Tuple[torch.Tensor, torch.Tensor] TYPE_TOKENIZER = Callable[[Iterable[str]], Mapping[str, torch.Tensor]] class VideoTextEncoder(VideoEncoder): @abstractmethod def encode_text(self, text: TYPE_TEXT_INPUT) -> torch.Tensor: raise NotImplementedError @overrides(check_signature=False) def forward(self, video: TYPE_VIDEO_INPUT, text: TYPE_TEXT_INPUT) -> TYPE_OUTPUT: return self.encode_video(video), self.encode_text(text) @abstractmethod def get_tokenizer(self) -> TYPE_TOKENIZER: raise NotImplementedError @abstractmethod def decode_text(self, text: TYPE_TEXT_INPUT) -> Iterator[str]: """Decodes a batch of texts.""" raise NotImplementedError
994
30.09375
85
py
fitclip
fitclip-main/aligner/encoder/video_encoder.py
from abc import abstractmethod from typing import Callable, Optional, Tuple import torch from overrides import overrides from torch import nn from aligner.data.frame_sampler import FrameSampler TYPE_VIDEO_INPUT = torch.Tensor TYPE_TRANSFORM = Callable[[torch.Tensor], torch.Tensor] class VideoEncoder(nn.Module): @abstractmethod def encode_video(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: raise NotImplementedError @overrides(check_signature=False) def forward(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: return self.encode_video(video) @abstractmethod def get_train_frame_sampler(self) -> FrameSampler: raise NotImplementedError @abstractmethod def get_eval_frame_sampler(self) -> FrameSampler: raise NotImplementedError @abstractmethod def get_train_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: raise NotImplementedError @abstractmethod def get_eval_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: raise NotImplementedError @property # Don't set as abstract method to avoid some boilerplate in subclasses. def should_pad_batch(self) -> bool: raise NotImplementedError @abstractmethod def to_bchw(self, t: torch.Tensor) -> torch.Tensor: raise NotImplementedError @abstractmethod def denormalize_video_tensor(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: """Converts a transformed video tensor into an unsigned 8-bit integer tensor in the range 0-255.""" raise NotImplementedError def float_standard_denormalize(video: TYPE_VIDEO_INPUT, mean: Optional[Tuple[float, float, float]] = None, std: Optional[Tuple[float, float, float]] = None) -> torch.Tensor: if std is not None: video *= torch.tensor(std, device=video.device, dtype=video.dtype).view(-1, 1, 1) if mean is not None: video += torch.tensor(mean, device=video.device, dtype=video.dtype).view(-1, 1, 1) return (video * 255).to(torch.uint8) # noqa
2,121
32.15625
107
py
fitclip
fitclip-main/aligner/encoder/slip.py
# All rights reserved. import gzip import html from collections import OrderedDict from functools import lru_cache from typing import Iterable, Iterator import ftfy import numpy as np import regex as re import timm import torch import torch.distributed as dist import torch.nn as nn import torch.nn.functional as F from cached_path import cached_path from torch import autograd @lru_cache() def default_bpe(): return cached_path("https://github.com/facebookresearch/SLIP/raw/main/bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a significant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~") + 1)) + list(range(ord("¡"), ord("¬") + 1)) + list(range(ord("®"), ord("ÿ") + 1)) cs = bs[:] n = 0 for b in range(2 ** 8): if b not in bs: bs.append(b) cs.append(2 ** 8 + n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer: def __init__(self, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') merges = merges[1:49152 - 256 - 2 + 1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v + '</w>' for v in vocab] for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile( r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token + '</w>' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i + 1] == second: new_word.append(first + second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join(self.decoder[token] for token in tokens) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text def __call__(self, texts, context_length=77): if isinstance(texts, str): texts = [texts] sot_token = self.encoder["<|startoftext|>"] eot_token = self.encoder["<|endoftext|>"] all_tokens = [[sot_token] + self.encode(text) + [eot_token] for text in texts] result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) for i, tokens in enumerate(all_tokens): tokens = tokens[:context_length] result[i, :len(tokens)] = torch.tensor(tokens) if len(result) == 1: return result[0] return result def is_dist_avail_and_initialized() -> bool: return dist.is_available() and dist.is_initialized() def get_world_size() -> int: return dist.get_world_size() if is_dist_avail_and_initialized() else 1 def get_rank() -> int: return dist.get_rank() if is_dist_avail_and_initialized() else 0 def all_gather_batch(tensors): """ Performs all_gather operation on the provided tensors. """ # Queue the gathered tensors world_size = get_world_size() # There is no need for reduction in the single-proc case if world_size == 1: return tensors tensor_list = [] for tensor in tensors: tensor_all = [torch.ones_like(tensor) for _ in range(world_size)] dist.all_gather( tensor_all, tensor, async_op=False # performance opt ) tensor_list.append(tensor_all) return [torch.cat(tensor_all) for tensor_all in tensor_list] class GatherLayer(autograd.Function): # noqa """ Gather tensors from all workers with support for backward propagation: This implementation does not cut the gradients as torch.distributed.all_gather does. """ @staticmethod def forward(ctx, x): # noqa output = [torch.zeros_like(x) for _ in range(dist.get_world_size())] dist.all_gather(output, x) return tuple(output) @staticmethod def backward(ctx, *grads): all_gradients = torch.stack(grads) dist.all_reduce(all_gradients) return all_gradients[dist.get_rank()] def all_gather_batch_with_grad(tensors: Iterable[torch.Tensor]) -> Iterator[torch.Tensor]: """ Performs all_gather operation on the provided tensors. Graph remains connected for backward grad computation. """ return tensors if get_world_size() == 1 else [torch.cat(GatherLayer.apply(tensor)) for tensor in tensors] class CLIPLoss(nn.Module): def __init__(self): super().__init__() self.labels = None self.last_local_batch_size = None def forward(self, outputs): image_embed = outputs['image_embed'] text_embed = outputs['text_embed'] logit_scale = outputs['logit_scale'] local_batch_size = image_embed.size(0) if local_batch_size != self.last_local_batch_size: self.labels = local_batch_size * get_rank() + torch.arange( local_batch_size, device=image_embed.device ) self.last_local_batch_size = local_batch_size # normalized features image_embed = F.normalize(image_embed, dim=-1, p=2) text_embed = F.normalize(text_embed, dim=-1, p=2) # gather features from all GPUs image_embed_all, text_embed_all = all_gather_batch([image_embed, text_embed]) # cosine similarity as logits logits_per_image = logit_scale * image_embed @ text_embed_all.t() logits_per_text = logit_scale * text_embed @ image_embed_all.t() loss = (F.cross_entropy(logits_per_image, self.labels) + F.cross_entropy(logits_per_text, self.labels)) / 2 # compute accuracy with torch.no_grad(): pred = torch.argmax(logits_per_image, dim=-1) correct = pred.eq(self.labels).sum() acc = 100 * correct / local_batch_size return {'loss': loss, 'clip_loss': loss, 'clip_acc': acc} class SIMCLRLoss(nn.Module): """ This is the SimCLR loss in https://arxiv.org/abs/2002.05709 The embedding vectors are assumed to have size (2 x batch_size, embedding_dim) and the memory layout that can be reshaped into shape (2, batch_size, embedding_dim). This memory layout is consistent with the SimCLR collator in https://github.com/facebookresearch/vissl/blob/master/vissl/data/collators/simclr_collator.py Config params: temperature (float): the temperature to be applied on the logits """ def __init__(self, temperature=0.1): super().__init__() self.tau = temperature self.labels = None self.masks = None self.last_local_batch_size = None def forward(self, outputs): q_a = outputs['aug1_embed'] q_b = outputs['aug2_embed'] q_a = F.normalize(q_a, dim=-1, p=2) q_b = F.normalize(q_b, dim=-1, p=2) local_batch_size = q_a.size(0) k_a, k_b = all_gather_batch_with_grad([q_a, q_b]) if local_batch_size != self.last_local_batch_size: self.labels = local_batch_size * get_rank() + torch.arange( local_batch_size, device=q_a.device ) total_batch_size = local_batch_size * get_world_size() self.masks = F.one_hot(self.labels, total_batch_size) * 1e9 self.last_local_batch_size = local_batch_size logits_aa = torch.matmul(q_a, k_a.transpose(0, 1)) / self.tau logits_aa = logits_aa - self.masks logits_bb = torch.matmul(q_b, k_b.transpose(0, 1)) / self.tau logits_bb = logits_bb - self.masks logits_ab = torch.matmul(q_a, k_b.transpose(0, 1)) / self.tau logits_ba = torch.matmul(q_b, k_a.transpose(0, 1)) / self.tau loss_a = F.cross_entropy(torch.cat([logits_ab, logits_aa], dim=1), self.labels) loss_b = F.cross_entropy(torch.cat([logits_ba, logits_bb], dim=1), self.labels) loss = (loss_a + loss_b) / 2 # divide by 2 to average over all samples # compute accuracy with torch.no_grad(): pred = torch.argmax(torch.cat([logits_ab, logits_aa], dim=1), dim=-1) correct = pred.eq(self.labels).sum() acc = 100 * correct / local_batch_size return {'loss': loss, 'ssl_loss': loss, 'ssl_acc': acc} class SLIPLoss(nn.Module): def __init__(self, ssl_loss, ssl_scale): super().__init__() self.clip_loss = CLIPLoss() self.ssl_loss = ssl_loss self.ssl_scale = ssl_scale def forward(self, outputs): clip_loss_dict = self.clip_loss(outputs) clip_loss = clip_loss_dict['clip_loss'] clip_acc = clip_loss_dict['clip_acc'] ssl_loss_dict = self.ssl_loss(outputs) ssl_loss = ssl_loss_dict['ssl_loss'] ssl_acc = ssl_loss_dict['ssl_acc'] return {'loss': clip_loss + self.ssl_scale * ssl_loss, 'clip_loss': clip_loss, 'clip_acc': clip_acc, 'ssl_loss': ssl_loss, 'ssl_acc': ssl_acc} class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): # noqa return x * torch.sigmoid(1.702 * x) # noqa class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision vision_width: int, vision_model: nn.Module, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int, **kwargs, ): super().__init__() self.context_length = context_length self.vision_width = vision_width self.visual = vision_model self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask(), ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.image_projection = nn.Parameter(torch.empty(vision_width, embed_dim)) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([]) * np.log(1 / 0.07)) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) nn.init.normal_(self.image_projection, std=self.vision_width ** -0.5) nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask def encode_image(self, image): x = self.visual(image) x = x @ self.image_projection return x def encode_text(self, text): x = self.token_embedding(text) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_embed = self.encode_image(image) text_embed = self.encode_text(text) return {'image_embed': image_embed, 'text_embed': text_embed, 'logit_scale': self.logit_scale.exp()} def _build_mlp(in_dim, mlp_dim, out_dim): return nn.Sequential(OrderedDict([ ("layer1", nn.Linear(in_dim, mlp_dim)), ("bn1", nn.SyncBatchNorm(mlp_dim)), ("relu1", nn.ReLU(inplace=True)), ("layer2", nn.Linear(mlp_dim, mlp_dim)), ("bn2", nn.SyncBatchNorm(mlp_dim)), ("relu2", nn.ReLU(inplace=True)), ("layer3", nn.Linear(mlp_dim, out_dim)), ])) class SIMCLR(nn.Module): def __init__(self, # vision vision_width: int, vision_model: nn.Module, # ssl ssl_mlp_dim: int, ssl_emb_dim: int, **kwargs, # noqa ): super().__init__() self.vision_width = vision_width self.visual = vision_model self.image_mlp = _build_mlp(in_dim=vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim) def encode_image(self, image): return self.visual(image) def forward(self, aug1, aug2): h1 = self.visual(aug1) h2 = self.visual(aug2) aug1_embed = self.image_mlp(h1) aug2_embed = self.image_mlp(h2) return {'aug1_embed': aug1_embed, 'aug2_embed': aug2_embed} class SLIP(CLIP): def __init__(self, ssl_mlp_dim: int, ssl_emb_dim: int, **kwargs): super().__init__(**kwargs) self.image_mlp = _build_mlp(in_dim=self.vision_width, mlp_dim=ssl_mlp_dim, out_dim=ssl_emb_dim) def forward(self, image, text, aug1, aug2): # noqa aug1_embed = self.image_mlp(self.visual(aug1)) aug2_embed = self.image_mlp(self.visual(aug2)) image_embed = self.encode_image(image) text_embed = self.encode_text(text) return {'image_embed': image_embed, 'text_embed': text_embed, 'logit_scale': self.logit_scale.exp(), 'aug1_embed': aug1_embed, 'aug2_embed': aug2_embed} def get_loss(model, ssl_temp, ssl_scale): if model.startswith('SLIP'): ssl_loss = SIMCLRLoss(temperature=ssl_temp) return SLIPLoss(ssl_loss, ssl_scale) if model.startswith('CLIP'): return CLIPLoss() if model.startswith('SIMCLR'): return SIMCLRLoss(temperature=ssl_temp) def get_metric_names(model): if model.startswith('SLIP'): return ['loss', 'clip_loss', 'ssl_loss', 'clip_acc', 'ssl_acc'] elif model.startswith('CLIP'): return ['loss', 'clip_loss', 'clip_acc'] else: return ['loss', 'ssl_loss', 'ssl_acc'] @timm.models.registry.register_model def vit_small_mocov3_patch16_224(**kwargs): return timm.models.vision_transformer._create_vision_transformer("vit_small_patch16_224", patch_size=16, embed_dim=384, depth=12, num_heads=12, **kwargs) def CLIP_VITS16(**kwargs): vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) model = CLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def SIMCLR_VITS16(**kwargs): vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) model = SIMCLR(vision_width=384, vision_model=vision_model, **kwargs) return model def SLIP_VITS16(**kwargs): vision_model = timm.create_model('vit_small_mocov3_patch16_224', num_classes=0) model = SLIP(embed_dim=512, vision_width=384, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def CLIP_VITB16(**kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) model = CLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def SIMCLR_VITB16(**kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) model = SIMCLR(vision_width=768, vision_model=vision_model, **kwargs) return model def SLIP_VITB16(**kwargs): vision_model = timm.create_model('vit_base_patch16_224', num_classes=0) model = SLIP(embed_dim=512, vision_width=768, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def CLIP_VITL16(**kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) model = CLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model def SIMCLR_VITL16(**kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) model = SIMCLR(vision_width=1024, vision_model=vision_model, **kwargs) return model def SLIP_VITL16(**kwargs): vision_model = timm.create_model('vit_large_patch16_224', num_classes=0) model = SLIP(embed_dim=512, vision_width=1024, vision_model=vision_model, context_length=77, vocab_size=49408, transformer_width=512, transformer_heads=8, transformer_layers=12, **kwargs) return model
22,773
34.640063
120
py
fitclip
fitclip-main/aligner/encoder/s3dg.py
# Initially copied from the MIL-NCE repo. """Contains the definition for Gated Separable 3D network (S3D-G). """ from typing import Literal, Tuple import torch from overrides import overrides from torch import nn from torch.nn.common_types import _size_3_t, _size_6_t class InceptionBlock(nn.Module): def __init__(self, input_dim: int, num_outputs_0_0a: int, num_outputs_1_0a: int, num_outputs_1_0b: int, num_outputs_2_0a: int, num_outputs_2_0b: int, num_outputs_3_0b: int, gating: bool = True) -> None: super().__init__() self.conv_b0 = STConv3D(input_dim, num_outputs_0_0a, kernel_size=1) self.conv_b1_a = STConv3D(input_dim, num_outputs_1_0a, kernel_size=1) self.conv_b1_b = STConv3D(num_outputs_1_0a, num_outputs_1_0b, kernel_size=3, padding=1, separable=True) self.conv_b2_a = STConv3D(input_dim, num_outputs_2_0a, kernel_size=1) self.conv_b2_b = STConv3D(num_outputs_2_0a, num_outputs_2_0b, kernel_size=3, padding=1, separable=True) self.maxpool_b3 = torch.nn.MaxPool3d(kernel_size=3, stride=1, padding=1) self.conv_b3_b = STConv3D(input_dim, num_outputs_3_0b, 1) self.gating = gating self.output_dim = num_outputs_0_0a + num_outputs_1_0b + num_outputs_2_0b + num_outputs_3_0b if gating: self.gating_b0 = SelfGating(num_outputs_0_0a) self.gating_b1 = SelfGating(num_outputs_1_0b) self.gating_b2 = SelfGating(num_outputs_2_0b) self.gating_b3 = SelfGating(num_outputs_3_0b) @overrides(check_signature=False) def forward(self, input_: torch.Tensor) -> torch.Tensor: b0 = self.conv_b0(input_) b1 = self.conv_b1_a(input_) b1 = self.conv_b1_b(b1) b2 = self.conv_b2_a(input_) b2 = self.conv_b2_b(b2) b3 = self.maxpool_b3(input_) b3 = self.conv_b3_b(b3) if self.gating: b0 = self.gating_b0(b0) b1 = self.gating_b1(b1) b2 = self.gating_b2(b2) b3 = self.gating_b3(b3) return torch.cat((b0, b1, b2, b3), dim=1) class SelfGating(nn.Module): """Feature gating as used in S3D-G. """ def __init__(self, input_dim: int) -> None: super().__init__() self.fc = nn.Linear(input_dim, input_dim) self.sigmoid = nn.modules.activation.Sigmoid() @overrides(check_signature=False) def forward(self, input_: torch.Tensor) -> torch.Tensor: spatiotemporal_average = input_.mean(dim=[2, 3, 4]) weights = self.fc(spatiotemporal_average) weights = self.sigmoid(weights) return weights[:, :, None, None, None] * input_ def _size3_to_spatial_temporal(size: _size_3_t, fill_value: int) -> Tuple[_size_3_t, _size_3_t]: size = nn.modules.conv._triple(size) return (fill_value, size[1], size[2]), (size[0], fill_value, fill_value) class STConv3D(nn.Module): def __init__(self, input_dim: int, output_dim: int, kernel_size: _size_3_t, stride: _size_3_t = 1, padding: _size_3_t = 0, separable: bool = False) -> None: super().__init__() self.separable = separable self.relu = nn.ReLU(inplace=True) if separable: assert (isinstance(kernel_size, int) and kernel_size != 1) or kernel_size[0] != 1 spatial_kernel_size, temporal_kernel_size = _size3_to_spatial_temporal(kernel_size, fill_value=1) spatial_stride, temporal_stride = _size3_to_spatial_temporal(stride, fill_value=1) spatial_padding, temporal_padding = _size3_to_spatial_temporal(padding, fill_value=0) self.conv1 = nn.Conv3d(input_dim, output_dim, kernel_size=spatial_kernel_size, stride=spatial_stride, padding=spatial_padding, bias=False) self.conv2 = nn.Conv3d(output_dim, output_dim, kernel_size=temporal_kernel_size, stride=temporal_stride, padding=temporal_padding, bias=False) self.bn2 = nn.BatchNorm3d(output_dim) else: self.conv1 = nn.Conv3d(input_dim, output_dim, kernel_size=kernel_size, stride=stride, # noqa padding=padding, bias=False) self.bn1 = nn.BatchNorm3d(output_dim) @overrides(check_signature=False) def forward(self, input_: torch.Tensor) -> torch.Tensor: out = self.relu(self.bn1(self.conv1(input_))) if self.separable: out = self.relu(self.bn2(self.conv2(out))) return out def _pad_top_bottom(kernel_dim: int, stride_val: int) -> Tuple[int, int]: pad_along = max(kernel_dim - stride_val, 0) pad_top_ = pad_along // 2 pad_bottom_ = pad_along - pad_top_ return pad_top_, pad_bottom_ def _get_padding_shape(kernel_size: _size_3_t, stride: _size_3_t) -> _size_6_t: kernel_size = nn.modules.conv._triple(kernel_size) stride = nn.modules.conv._triple(stride) padding_shape = [padding_value for pair in zip(kernel_size, stride) for padding_value in _pad_top_bottom(*pair)] depth_top = padding_shape.pop(0) depth_bottom = padding_shape.pop(0) padding_shape.append(depth_top) padding_shape.append(depth_bottom) return tuple(padding_shape) class MaxPool3dTFPadding(torch.nn.Module): def __init__(self, kernel_size: _size_3_t, stride: _size_3_t, padding: Literal["SAME"] = "SAME") -> None: super().__init__() if padding == "SAME": self.padding_shape = _get_padding_shape(kernel_size, stride) self.pad = torch.nn.ConstantPad3d(self.padding_shape, 0) else: raise ValueError(f"Padding strategy not supported: {padding}") self.pool = torch.nn.MaxPool3d(kernel_size, stride, ceil_mode=True) @overrides(check_signature=False) def forward(self, input_: torch.Tensor) -> torch.Tensor: input_ = self.pad(input_) return self.pool(input_) class S3DG(nn.Module): def __init__(self, embedding_size: int = 512, space_to_depth: bool = True, init: Literal["default", "kaiming_normal"] = "default", use_last_layer: bool = True) -> None: super().__init__() self.use_last_layer = use_last_layer self.space_to_depth = space_to_depth if space_to_depth: self.conv1 = STConv3D(24, 64, kernel_size=(2, 4, 4), stride=1, padding=(1, 2, 2), separable=False) # noqa else: self.conv1 = STConv3D(3, 64, kernel_size=(3, 7, 7), stride=2, padding=(1, 3, 3), separable=False) # noqa self.conv_2b = STConv3D(64, 64, kernel_size=1, separable=False) self.conv_2c = STConv3D(64, 192, kernel_size=3, padding=1, separable=True) self.gating = SelfGating(192) self.maxpool_2a = MaxPool3dTFPadding(kernel_size=(1, 3, 3), stride=(1, 2, 2)) self.maxpool_3a = MaxPool3dTFPadding(kernel_size=(1, 3, 3), stride=(1, 2, 2)) self.mixed_3b = InceptionBlock(192, 64, 96, 128, 16, 32, 32) self.mixed_3c = InceptionBlock(self.mixed_3b.output_dim, 128, 128, 192, 32, 96, 64) self.maxpool_4a = MaxPool3dTFPadding(kernel_size=3, stride=2) self.mixed_4b = InceptionBlock(self.mixed_3c.output_dim, 192, 96, 208, 16, 48, 64) self.mixed_4c = InceptionBlock(self.mixed_4b.output_dim, 160, 112, 224, 24, 64, 64) self.mixed_4d = InceptionBlock(self.mixed_4c.output_dim, 128, 128, 256, 24, 64, 64) self.mixed_4e = InceptionBlock(self.mixed_4d.output_dim, 112, 144, 288, 32, 64, 64) self.mixed_4f = InceptionBlock(self.mixed_4e.output_dim, 256, 160, 320, 32, 128, 128) self.maxpool_5a = self.maxPool3d_5a_2x2 = MaxPool3dTFPadding(kernel_size=2, stride=2) self.mixed_5b = InceptionBlock(self.mixed_4f.output_dim, 256, 160, 320, 32, 128, 128) self.mixed_5c = InceptionBlock(self.mixed_5b.output_dim, 384, 192, 384, 48, 128, 128) self.fc = nn.Linear(self.mixed_5c.output_dim, embedding_size) if init == "kaiming_normal": for m in self.modules(): if isinstance(m, nn.Conv3d): nn.init.kaiming_normal_(m.weight, mode="fan_in", nonlinearity="relu") elif isinstance(m, nn.BatchNorm3d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) @property def output_size(self) -> int: return self.fc.out_features if self.use_last_layer else self.mixed_5c.output_dim @staticmethod def _space_to_depth(input_: torch.Tensor) -> torch.Tensor: B, C, T, H, W = input_.shape input_ = input_.view(B, C, T // 2, 2, H // 2, 2, W // 2, 2) input_ = input_.permute(0, 3, 5, 7, 1, 2, 4, 6) input_ = input_.contiguous().view(B, 8 * C, T // 2, H // 2, W // 2) return input_ @overrides(check_signature=False) def forward(self, input_: torch.Tensor) -> torch.Tensor: if self.space_to_depth: input_ = self._space_to_depth(input_) net = self.conv1(input_) if self.space_to_depth: net = net[:, :, 1:, 1:, 1:] net = self.maxpool_2a(net) net = self.conv_2b(net) net = self.conv_2c(net) if self.gating: net = self.gating(net) net = self.maxpool_3a(net) net = self.mixed_3b(net) net = self.mixed_3c(net) net = self.maxpool_4a(net) net = self.mixed_4b(net) net = self.mixed_4c(net) net = self.mixed_4d(net) net = self.mixed_4e(net) net = self.mixed_4f(net) net = self.maxpool_5a(net) net = self.mixed_5b(net) net = self.mixed_5c(net) net = torch.mean(net, dim=(2, 3, 4)) if self.use_last_layer: return self.fc(net) else: return net
9,814
43.817352
118
py
fitclip
fitclip-main/aligner/encoder/frozen_in_time.py
import logging import sys from typing import Any, Dict, Literal, Mapping, MutableMapping, Optional, Tuple, Union import numpy as np import timm import torch import torch.nn as nn import torch.nn.functional as F from cached_path import TYPE_PATH, cached_path from transformers import AutoModel from aligner.encoder import frozen_in_time_stub from aligner.encoder.video_transformer import SpaceTimeTransformer LOGGER = logging.getLogger(__name__) STATE_DICT_MODULE_KEY = "module." def state_dict_data_parallel_fix(load_state_dict: MutableMapping[str, Any], curr_state_dict: MutableMapping[str, Any]) -> MutableMapping[str, Any]: first_load_key = next(iter(load_state_dict.keys())) first_curr_key = next(iter(curr_state_dict.keys())) if not first_curr_key.startswith(STATE_DICT_MODULE_KEY) and first_load_key.startswith(STATE_DICT_MODULE_KEY): return {k[len(STATE_DICT_MODULE_KEY):]: v for k, v in load_state_dict.items()} elif first_curr_key.startswith(STATE_DICT_MODULE_KEY) and not first_load_key.startswith(STATE_DICT_MODULE_KEY): return {STATE_DICT_MODULE_KEY + k: v for k, v in load_state_dict.items()} else: return load_state_dict class BaseModel(nn.Module): """Base class for all models""" def __str__(self) -> str: return f"{super().__str__()}\n" \ f"Trainable parameters: {sum(np.prod(p.size()) for p in self.parameters() if p.requires_grad)}" class FrozenInTime(BaseModel): def __init__(self, video_params: Dict[str, Any], text_params: Dict[str, Any], projection_dim: int = 256, load_checkpoint: Optional[TYPE_PATH] = None, projection: Literal["", "minimal"] = "minimal", load_temporal_fix: Literal["zeros", "interp", "bilinear"] = "zeros") -> None: super().__init__() self.video_params = video_params self.text_params = text_params self.load_temporal_fix = load_temporal_fix if not text_params["pretrained"]: raise ValueError("HuggingFace text models require `pretrained` init.") transformers_modeling_utils_logger = logging.getLogger("transformers.modeling_utils") transformers_modeling_utils_logger.disabled = True self.text_model = AutoModel.from_pretrained(text_params["model"]) transformers_modeling_utils_logger.disabled = False pretrained = video_params["pretrained"] if video_params["model"] == "SpaceTimeTransformer": num_frames = video_params.get("num_frames", 4) time_init = video_params.get("time_init", "zeros") attention_style = video_params.get("attention_style", "frozen-in-time") arch_config = video_params.get("arch_config", "base_patch16_224") if arch_config == "base_patch16_224": vit_model = timm.models.vision_transformer.vit_base_patch16_224(pretrained=pretrained) model = SpaceTimeTransformer(num_frames=num_frames, time_init=time_init, attention_style=attention_style) else: raise ValueError(f"Unrecognized arch_config: {arch_config}") model.head = nn.Identity() model.pre_logits = nn.Identity() ftr_dim = model.embed_dim if not load_checkpoint: vit_checkpoint = vit_model.state_dict() model.load_state_dict(vit_checkpoint, strict=False) self.video_model = model else: raise ValueError(f"{video_params['model']} not supported") # for backwards compatibility (old models) self.video_model.fc = nn.Identity() # Project to a common embedding if projection == "minimal": txt_proj = nn.Sequential(nn.ReLU(), nn.Linear(self.text_model.config.hidden_size, projection_dim)) vid_proj = nn.Sequential(nn.Linear(ftr_dim, projection_dim)) elif projection == "": txt_proj = nn.Identity() vid_proj = nn.Identity() else: raise ValueError(f"Unrecognized projection: {projection}") self.txt_proj = txt_proj self.vid_proj = vid_proj if load_checkpoint: load_checkpoint = cached_path(load_checkpoint) sys.modules["parse_config"] = frozen_in_time_stub LOGGER.info("Loading frozen-in-time checkpoint…") # `map_location="cpu"` to avoid bloating GPU=0 with each process' copy of it. checkpoint = torch.load(load_checkpoint, map_location="cpu") del sys.modules["parse_config"] state_dict = checkpoint["state_dict"] new_state_dict = state_dict_data_parallel_fix(state_dict, self.state_dict()) new_state_dict = self._inflate_positional_embeds(new_state_dict) self.load_state_dict(new_state_dict, strict=True) # noqa LOGGER.info("Checkpoint loaded.") def forward(self, data: Mapping[str, Any], return_embeds: bool = True) -> Union[torch.Tensor, Tuple[torch.Tensor, torch.Tensor]]: text_data = data["text"] video_data = data["video"] text_embeddings = self.compute_text(text_data) video_embeddings = self.compute_video(video_data) if return_embeds: return text_embeddings, video_embeddings return sim_matrix(text_embeddings, video_embeddings) def compute_text(self, text_data: Mapping[str, Any]) -> torch.Tensor: if self.text_params["model"].startswith("bert"): text_embeddings = self.text_model(text_data["input_ids"], attention_mask=text_data["attention_mask"])[ "pooler_output"] elif self.text_params["model"].startswith("distilbert"): text_embeddings = self.text_model(**text_data).last_hidden_state[:, 0, :] else: raise ValueError(f"Unrecognized text model: {self.text_params['model']}") return self.txt_proj(text_embeddings) def compute_video(self, video_data: Mapping[str, Any]) -> torch.Tensor: video_embeddings = self.video_model(video_data) return self.vid_proj(video_embeddings) def _inflate_positional_embeds(self, new_state_dict: MutableMapping[str, Any]) -> Mapping[str, Any]: # allow loading of timesformer with fewer num_frames curr_keys = set(self.state_dict().keys()) if "video_model.temporal_embed" in new_state_dict and "video_model.temporal_embed" in curr_keys: load_temporal_embed = new_state_dict["video_model.temporal_embed"] load_num_frames = load_temporal_embed.shape[1] curr_num_frames = self.video_params["num_frames"] embed_dim = load_temporal_embed.shape[2] if load_num_frames != curr_num_frames: if load_num_frames > curr_num_frames: LOGGER.warning(f"The loaded {self.video_params['model']} model has MORE frames than the current " f"one. Loading weights, filling in the extras via {self.load_temporal_fix}") new_temporal_embed = load_temporal_embed[:, :curr_num_frames, :] else: LOGGER.warning(f"The loaded {self.video_params['model']} model has FEWER frames than the current " f"one. Loading weights, filling in the extras via {self.load_temporal_fix}") if self.load_temporal_fix == "zeros": new_temporal_embed = torch.zeros([load_temporal_embed.shape[0], curr_num_frames, embed_dim]) new_temporal_embed[:, :load_num_frames] = load_temporal_embed elif self.load_temporal_fix in ["interp", "bilinear"]: # interpolate # unsqueeze so pytorch thinks it's an image mode = "nearest" if self.load_temporal_fix == "bilinear": mode = "bilinear" load_temporal_embed = load_temporal_embed.unsqueeze(0) new_temporal_embed = F.interpolate(load_temporal_embed, (curr_num_frames, embed_dim), mode=mode).squeeze(0) else: raise ValueError(f"Unrecognized load_temporal_fix: {self.load_temporal_fix}") new_state_dict["video_model.temporal_embed"] = new_temporal_embed # allow loading with smaller spatial patches. assumes custom border crop, to append the # border patches to the input sequence if "video_model.pos_embed" in new_state_dict and "video_model.pos_embed" in curr_keys: load_pos_embed = new_state_dict["video_model.pos_embed"] load_num_patches = load_pos_embed.shape[1] curr_pos_embed = self.state_dict()["video_model.pos_embed"] if load_num_patches != curr_pos_embed.shape[1]: raise ValueError( "Loading models with different spatial resolution / patch number not yet implemented, sorry.") return new_state_dict def sim_matrix(a: torch.Tensor, b: torch.Tensor, eps: float = 1e-8) -> torch: a_n, b_n = a.norm(dim=1)[:, None], b.norm(dim=1)[:, None] a_norm = a / torch.max(a_n, eps * torch.ones_like(a_n)) # noqa b_norm = b / torch.max(b_n, eps * torch.ones_like(b_n)) # noqa return torch.mm(a_norm, b_norm.transpose(0, 1))
9,799
49.515464
119
py
fitclip
fitclip-main/aligner/encoder/frozen_in_time_video_text_encoder.py
import os from typing import Iterable, Iterator import torch from overrides import overrides from torchvision import transforms as T from transformers import AutoTokenizer from aligner.data.frame_sampler import FrameSampler, RandomFromUniformIntervalsFrameSampler, UniformFrameSampler from aligner.encoder.frozen_in_time import FrozenInTime from aligner.encoder.video_encoder import TYPE_TRANSFORM, TYPE_VIDEO_INPUT, float_standard_denormalize from aligner.encoder.video_text_encoder import TYPE_TEXT_INPUT, TYPE_TOKENIZER, VideoTextEncoder from aligner.transforms import ConvertBHWCtoBCHW, RandomResizedCropWithRandomInterpolation def _normalize(t: torch.Tensor, eps: float = 1e-8) -> torch.Tensor: return t / torch.max(t.norm(dim=1, keepdim=True), eps * torch.ones_like(t)) # noqa class FrozenInTimeVideoTextEncoder(VideoTextEncoder): # FIXME: set the max tokens by default as in CLIP, also to avoid spending too much memory when using prompts. def __init__(self, model: FrozenInTime, image_size: int = 224, num_frames: int = 4, max_tokens: int = 77) -> None: super().__init__() self.model = model os.environ["TOKENIZERS_PARALLELISM"] = "0" self.tokenizer = AutoTokenizer.from_pretrained(model.text_params["model"]) self.normalize = T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)) self.image_size = image_size self.num_frames = num_frames self.max_tokens = max_tokens @overrides(check_signature=False) def encode_video(self, video: TYPE_VIDEO_INPUT, eps: float = 1e-8) -> torch.Tensor: return _normalize(self.model.compute_video(video), eps=eps) @overrides(check_signature=False) def encode_text(self, text: TYPE_TEXT_INPUT, eps: float = 1e-8) -> torch.Tensor: return _normalize(self.model.compute_text(text), eps=eps) def _tokenize(self, texts: Iterable[str]) -> TYPE_TEXT_INPUT: texts = texts if isinstance(texts, (list, tuple)) else list(texts) return self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True, max_length=self.max_tokens) @overrides def get_tokenizer(self) -> TYPE_TOKENIZER: return self._tokenize @overrides def decode_text(self, text: TYPE_TEXT_INPUT) -> Iterator[str]: return self.tokenizer.batch_decode(text["input_ids"], skip_special_tokens=True) @overrides def get_train_frame_sampler(self) -> FrameSampler: return RandomFromUniformIntervalsFrameSampler(self.num_frames) @overrides def get_eval_frame_sampler(self) -> FrameSampler: return UniformFrameSampler(self.num_frames) @overrides def get_train_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: return T.Compose([ ConvertBHWCtoBCHW(), T.ConvertImageDtype(dtype), RandomResizedCropWithRandomInterpolation(self.image_size, scale=(0.5, 1.0)), T.RandomHorizontalFlip(), self.normalize, ]) @overrides def get_eval_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: return T.Compose([ ConvertBHWCtoBCHW(), T.ConvertImageDtype(dtype), T.Resize(self.image_size), T.CenterCrop(self.image_size), self.normalize, ]) @property @overrides def should_pad_batch(self) -> bool: return True @overrides def to_bchw(self, t: torch.Tensor) -> torch.Tensor: return t @overrides def denormalize_video_tensor(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: return float_standard_denormalize(video, mean=self.normalize.mean, std=self.normalize.std)
3,686
37.810526
118
py
fitclip
fitclip-main/aligner/encoder/videoclip.py
import torch import torch.utils.checkpoint from torch import nn from transformers import AutoConfig, BertModel, BertPreTrainedModel from transformers.activations import ACT2FN from transformers.models.bert.modeling_bert import BertEmbeddings, BertEncoder class VideoTokenMLP(nn.Module): def __init__(self, config): super().__init__() input_dim = config.input_dim if hasattr(config, "input_dim") else 512 self.linear1 = nn.Linear(input_dim, config.hidden_size) self.LayerNorm = nn.LayerNorm(config.hidden_size) self.activation = ACT2FN[config.hidden_act] self.linear2 = nn.Linear(config.hidden_size, config.hidden_size) def forward(self, hidden_states): hidden_states = self.linear1(hidden_states) hidden_states = self.activation(hidden_states) hidden_states = self.LayerNorm(hidden_states) hidden_states = self.linear2(hidden_states) return hidden_states class MMBertEmbeddings(BertEmbeddings): def __init__(self, config): super().__init__(config) self.max_video_len = config.max_video_len if hasattr(config, "use_seg_emb") and config.use_seg_emb: """the original VLM paper uses seg_embeddings for temporal space. although not used it changed the randomness of initialization. we keep it for reproducibility. """ self.seg_embeddings = nn.Embedding(256, config.hidden_size) def forward( # noqa self, input_ids, input_video_embeds, token_type_ids=None, position_ids=None, inputs_embeds=None, ): input_tensor = input_ids if input_ids is not None else inputs_embeds if input_video_embeds is not None: input_shape = ( input_tensor.size(0), input_tensor.size(1) + input_video_embeds.size(1), ) else: input_shape = (input_tensor.size(0), input_tensor.size(1)) if position_ids is None: """ Auto skip position embeddings for text only case. use cases: (1) action localization and segmentation: feed in len-1 dummy video token needs text part to skip input_video_embeds.size(1) for the right position_ids for video [SEP] and rest text tokens. (2) MMFusionShare for two forward passes: in `forward_text`: input_video_embeds is None. need to skip video [SEP] token. # video_len + 1: [CLS] + video_embed # self.max_video_len + 1: [SEP] for video. # self.max_video_len + 2: [SEP] for video. # self.max_video_len + input_ids.size(1): rest for text. """ if input_video_embeds is not None: video_len = input_video_embeds.size(1) starting_offset = self.max_video_len + 1 # video [SEP] ending_offset = self.max_video_len + input_ids.size(1) else: video_len = 0 starting_offset = self.max_video_len + 2 # first text token. ending_offset = self.max_video_len + input_ids.size(1) + 1 position_ids = torch.cat([ self.position_ids[:, :video_len + 1], self.position_ids[:, starting_offset:ending_offset] ], dim=1) if token_type_ids is None: token_type_ids = torch.zeros( input_shape, dtype=torch.long, device=self.position_ids.device ) """ the format of input_ids is [CLS] [SEP] caption [SEP] padding. the goal is to build [CLS] video tokens [SEP] caption [SEP] . """ if inputs_embeds is None: inputs_embeds = self.word_embeddings(input_ids) if input_video_embeds is not None: inputs_mm_embeds = torch.cat([ inputs_embeds[:, :1], input_video_embeds, inputs_embeds[:, 1:] ], dim=1) else: # text only for `MMFusionShare`. inputs_mm_embeds = inputs_embeds position_embeddings = self.position_embeddings(position_ids) token_type_embeddings = self.token_type_embeddings(token_type_ids) embeddings = inputs_mm_embeds + position_embeddings embeddings += token_type_embeddings embeddings = self.LayerNorm(embeddings) embeddings = self.dropout(embeddings) return embeddings class MultiLayerAttentionMaskBertEncoder(BertEncoder): """extend BertEncoder with the capability of multiple layers of attention mask.""" def forward( # noqa self, hidden_states, attention_mask=None, head_mask=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=False, output_hidden_states=False, return_dict=False, ): all_hidden_states = () if output_hidden_states else None all_attentions = () if output_attentions else None for i, layer_module in enumerate(self.layer): if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) layer_head_mask = head_mask[i] if head_mask is not None else None layer_attention_mask = ( attention_mask[:, i, :, :, :] if attention_mask.dim() == 5 else attention_mask ) if getattr(self.config, "gradient_checkpointing", False): def create_custom_forward(module): def custom_forward(*inputs): return module(*inputs, output_attentions) return custom_forward layer_outputs = torch.utils.checkpoint.checkpoint( create_custom_forward(layer_module), hidden_states, layer_attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, ) else: layer_outputs = layer_module( hidden_states, layer_attention_mask, layer_head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions, ) hidden_states = layer_outputs[0] if output_attentions: all_attentions = all_attentions + (layer_outputs[1],) if output_hidden_states: all_hidden_states = all_hidden_states + (hidden_states,) return tuple( v for v in [hidden_states, all_hidden_states, all_attentions] if v is not None ) class MMBertModel(BertModel): """MMBertModel has MMBertEmbedding to support video tokens.""" def __init__(self, config, add_pooling_layer=True): # noqa super().__init__(config) # overwrite embedding self.embeddings = MMBertEmbeddings(config) self.encoder = MultiLayerAttentionMaskBertEncoder(config) self.init_weights() # noqa def forward( self, input_ids=None, input_video_embeds=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, encoder_hidden_states=None, encoder_attention_mask=None, output_attentions=None, output_hidden_states=None, return_dict=None, separate_forward_split=None, ): output_attentions = ( output_attentions if output_attentions is not None else self.config.output_attentions # noqa ) output_hidden_states = ( output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states # noqa ) return_dict = ( return_dict if return_dict is not None else self.config.use_return_dict # noqa ) if input_ids is not None and inputs_embeds is not None: raise ValueError( "You cannot specify both input_ids " "and inputs_embeds at the same time" ) elif input_ids is not None: if input_video_embeds is not None: input_shape = ( input_ids.size(0), input_ids.size(1) + input_video_embeds.size(1), ) else: input_shape = ( input_ids.size(0), input_ids.size(1), ) elif inputs_embeds is not None: if input_video_embeds is not None: input_shape = ( inputs_embeds.size(0), inputs_embeds.size(1) + input_video_embeds.size(1), ) else: input_shape = ( input_ids.size(0), input_ids.size(1), ) else: raise ValueError( "You have to specify either input_ids or inputs_embeds") device = (inputs_embeds if input_ids is None else input_ids).device if attention_mask is None: attention_mask = torch.ones(input_shape, device=device) if token_type_ids is None: token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device) # We can provide a self-attention mask of dimensions # [batch_size, from_seq_length, to_seq_length] # ourselves in which case # we just need to make it broadcastable to all heads. extended_attention_mask: torch.Tensor = \ self.get_extended_attention_mask( attention_mask, input_shape, device) # If a 2D or 3D attention mask is provided for the cross-attention # we need to make broadcastable to # [batch_size, num_heads, seq_length, seq_length] if self.config.is_decoder and encoder_hidden_states is not None: # noqa ( encoder_batch_size, encoder_sequence_length, _, ) = encoder_hidden_states.size() encoder_hidden_shape = ( encoder_batch_size, encoder_sequence_length) if encoder_attention_mask is None: encoder_attention_mask = torch.ones( encoder_hidden_shape, device=device) encoder_extended_attention_mask = self.invert_attention_mask( # noqa encoder_attention_mask ) else: encoder_extended_attention_mask = None # Prepare head mask if needed # 1.0 in head_mask indicate we keep the head # attention_probs has shape bsz x n_heads x N x N # input head_mask has shape [num_heads] or # [num_hidden_layers x num_heads] # and head_mask is converted to shape # [num_hidden_layers x batch x num_heads x seq_length x seq_length] head_mask = self.get_head_mask( # noqa head_mask, self.config.num_hidden_layers) # noqa embedding_output = self.embeddings( input_ids, input_video_embeds, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds, ) if separate_forward_split is not None: split_embedding_output = \ embedding_output[:, :separate_forward_split] split_extended_attention_mask = extended_attention_mask[ :, :, :, :separate_forward_split, :separate_forward_split ] split_encoder_outputs = self.encoder( split_embedding_output, attention_mask=split_extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) assert ( len(split_encoder_outputs) <= 2 ), "we do not support merge on attention for now." encoder_outputs = [[split_encoder_outputs[0]]] if len(split_encoder_outputs) == 2: encoder_outputs.append([]) for _all_hidden_states in split_encoder_outputs[1]: encoder_outputs[-1].append([_all_hidden_states]) split_embedding_output = \ embedding_output[:, separate_forward_split:] split_extended_attention_mask = extended_attention_mask[ :, :, :, separate_forward_split:, separate_forward_split: ] split_encoder_outputs = self.encoder( split_embedding_output, attention_mask=split_extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) assert len(split_encoder_outputs) <= 2, "we do not support merge on attention for now." encoder_outputs[0].append(split_encoder_outputs[0]) encoder_outputs[0] = torch.cat(encoder_outputs[0], dim=1) if len(split_encoder_outputs) == 2: for layer_idx, _all_hidden_states in enumerate( split_encoder_outputs[1] ): encoder_outputs[1][layer_idx].append(_all_hidden_states) encoder_outputs[1][layer_idx] = torch.cat( encoder_outputs[1][layer_idx], dim=1 ) encoder_outputs = tuple(encoder_outputs) else: encoder_outputs = self.encoder( embedding_output, attention_mask=extended_attention_mask, head_mask=head_mask, encoder_hidden_states=encoder_hidden_states, encoder_attention_mask=encoder_extended_attention_mask, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict, ) sequence_output = encoder_outputs[0] pooled_output = None if self.pooler is None else self.pooler(sequence_output) # noqa return (sequence_output, pooled_output) + encoder_outputs[1:] def get_extended_attention_mask(self, attention_mask, input_shape, device): """This is borrowed from `modeling_utils.py` with the support of multi-layer attention masks. The second dim is expected to be number of layers. See `MMAttentionMaskProcessor`. Makes broadcastable attention and causal masks so that future and masked tokens are ignored. Arguments: attention_mask (:obj:`torch.Tensor`): Mask with ones indicating tokens to attend to, zeros for tokens to ignore. input_shape (:obj:`Tuple[int]`): The shape of the input to the model. device: (:obj:`torch.device`): The device of the input to the model. Returns: :obj:`torch.Tensor` The extended attention mask, with the same dtype as :obj:`attention_mask.dtype`. """ # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length] ourselves # in which case we just need to make it broadcastable to all heads. if attention_mask.dim() == 4: extended_attention_mask = attention_mask[:, :, None, :, :] extended_attention_mask = extended_attention_mask.to(dtype=self.dtype) # noqa; fp16 compatibility extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 return extended_attention_mask else: return super().get_extended_attention_mask(attention_mask, input_shape, device) # noqa class MMBertForEncoder(BertPreTrainedModel): """A BertModel for Contrastive Learning.""" def __init__(self, config): super().__init__(config) self.videomlp = VideoTokenMLP(config) self.bert = MMBertModel(config) self.init_weights() # noqa def forward( self, input_ids=None, input_video_embeds=None, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, output_attentions=None, output_hidden_states=None, return_dict=None, ): return_dict = self.config.use_return_dict if return_dict is None else return_dict # noqa video_tokens = None if input_video_embeds is None else self.videomlp(input_video_embeds) return self.bert(input_ids, video_tokens, attention_mask=attention_mask, token_type_ids=token_type_ids, # noqa position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, output_attentions=output_attentions, output_hidden_states=output_hidden_states, return_dict=return_dict) class MMFusion(nn.Module): """a MMPT wrapper class for MMBert style models. TODO: move isolated mask to a subclass. """ def __init__(self, max_video_len: int = 32, last_iso_layer: int = 12, num_hidden_video_layers: int = 6): super().__init__() self.model_name = "bert-base-uncased" transformer_config = AutoConfig.from_pretrained(self.model_name) self.hidden_size = transformer_config.hidden_size self.is_train = False # 0 means no iso; 1-12 means iso up to that layer. self.num_hidden_layers = transformer_config.num_hidden_layers self.last_iso_layer = last_iso_layer model_config = AutoConfig.from_pretrained(self.model_name) model_config.max_video_len = max_video_len # TODO: make each model a set of config class. if hasattr(model_config, "num_layers"): model_config.num_layers = num_hidden_video_layers else: model_config.num_hidden_layers = num_hidden_video_layers self.video_encoder = MMBertForEncoder.from_pretrained(self.model_name, config=model_config) # exact same NLP model from HuggingFace transformer. self.text_encoder = AutoConfig.from_pretrained("bert-base-uncased") def forward( self, caps, cmasks, vfeats, vmasks, **kwargs ): raise NotImplementedError( "Please derive MMFusion module." ) def _mm_on_the_fly( self, cmasks, vmasks, attention_mask ): """helper function for mask, seg_ids and token_type_ids.""" if attention_mask is None: attention_mask = self._mm_attention_mask(cmasks, vmasks) """ 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 | first sequence | second sequence | """ token_type_ids = torch.cat([ torch.zeros((vmasks.size(0), vmasks.size(1) + 2), dtype=torch.long, device=vmasks.device), torch.ones((cmasks.size(0), cmasks.size(1) - 2), dtype=torch.long, device=cmasks.device)], dim=1) return attention_mask, token_type_ids def _mm_attention_mask(self, cmasks, vmasks): assert cmasks.size(0) == vmasks.size(0), "{}, {}, {}, {}".format( str(cmasks.size()), str(vmasks.size()), str(cmasks.size(0)), str(vmasks.size(0)), ) mm_mask = torch.cat([cmasks[:, :1], vmasks, cmasks[:, 1:]], dim=1) if self.last_iso_layer == 0: # hard attention mask. return mm_mask else: # a gpu iso mask; 0 : num_iso_layer is isolated; # num_iso_layer: are MM-fused. # make an iso layer batch_size = cmasks.size(0) iso_mask = self._make_iso_mask(batch_size, cmasks, vmasks) mm_mask = mm_mask[:, None, :].repeat(1, mm_mask.size(-1), 1) iso_mm_masks = [] # hard attention mask. iso_mask = iso_mask[:, None, :, :].repeat(1, self.last_iso_layer, 1, 1) iso_mm_masks.append(iso_mask) if self.last_iso_layer < self.num_hidden_layers: mm_mask = mm_mask[:, None, :, :].repeat(1, self.num_hidden_layers - self.last_iso_layer, 1, 1) iso_mm_masks.append(mm_mask) iso_mm_masks = torch.cat(iso_mm_masks, dim=1) return iso_mm_masks def _make_iso_mask(self, batch_size, cmasks, vmasks): # noqa cls_self_mask = torch.cat( [ torch.ones( (batch_size, 1), dtype=torch.bool, device=cmasks.device), torch.zeros( (batch_size, cmasks.size(1) + vmasks.size(1) - 1), dtype=torch.bool, device=cmasks.device) ], dim=1) iso_video_mask = torch.cat( [ # [CLS] is not used. torch.zeros( (batch_size, 1), dtype=torch.bool, device=cmasks.device ), vmasks, # assume to be 1. cmasks[:, 1:2], # 2 means [CLS] + [SEP] torch.zeros( (batch_size, cmasks.size(1) - 2), dtype=torch.bool, device=cmasks.device, ), ], dim=1, ) iso_text_mask = torch.cat( [ torch.zeros( (batch_size, 2 + vmasks.size(1)), dtype=torch.bool, device=cmasks.device, ), # [CLS] is not used. cmasks[:, 2:], # assume to be 1. ], dim=1, ) cls_self_mask = cls_self_mask[:, None, :] iso_video_mask = iso_video_mask[:, None, :].repeat( 1, vmasks.size(1) + 1, 1) iso_text_mask = iso_text_mask[:, None, :].repeat( 1, cmasks.size(1) - 2, 1) return torch.cat([cls_self_mask, iso_video_mask, iso_text_mask], dim=1) def _pooling_vt_layer( self, layered_sequence_output, cmasks, vmasks ): layer_idx = self.last_iso_layer \ if self.last_iso_layer > 0 else self.num_hidden_layers hidden_state = layered_sequence_output[layer_idx] # also output pooled_video and pooled_text. batch_size = cmasks.size(0) # pool the modality. text_offset = vmasks.size(1) + 2 # [CLS] + [SEP] # video tokens + [SEP] video_outputs = hidden_state[:, 1:text_offset] video_attention_mask = torch.cat( [ vmasks, torch.ones((batch_size, 1), dtype=torch.bool, device=vmasks.device), ], dim=1, ) assert video_outputs.size(1) == video_attention_mask.size(1) pooled_video = (torch.sum(video_outputs * video_attention_mask.unsqueeze(-1), dim=1) / video_attention_mask.sum(1, keepdim=True)) # pooled_video = torch.mean(video_outputs[0], dim=1) # text tokens + [SEP] text_attention_mask = cmasks[:, 2:] text_outputs = hidden_state[:, text_offset:] assert text_outputs.size(1) == text_attention_mask.size(1) pooled_text = torch.sum( text_outputs * text_attention_mask.unsqueeze(-1), dim=1 ) / text_attention_mask.sum(1, keepdim=True) return pooled_video, pooled_text class MMFusionSeparate(MMFusion): def forward( self, caps, cmasks, vfeats, vmasks, attention_mask=None, video_label=None, text_label=None, output_hidden_states=False, **kwargs ): pooled_video = self.forward_video( vfeats, vmasks, caps, cmasks, output_hidden_states ) pooled_text = self.forward_text( caps, cmasks, output_hidden_states ) return {"pooled_video": pooled_video, "pooled_text": pooled_text} def forward_video( self, vfeats, vmasks, caps, cmasks, output_hidden_states=False, **kwargs # noqa ): input_ids = caps[:, :2] attention_mask = torch.cat([cmasks[:, :1], vmasks, cmasks[:, 1:2]], dim=1) token_type_ids = torch.zeros( (vmasks.size(0), vmasks.size(1) + 2), dtype=torch.long, device=vmasks.device) outputs = self.video_encoder( input_ids=input_ids, input_video_embeds=vfeats, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True ) video_outputs = outputs[0] if output_hidden_states: return video_outputs batch_size = cmasks.size(0) video_attention_mask = torch.cat([torch.zeros((batch_size, 1), dtype=torch.bool, device=vmasks.device), vmasks, torch.ones((batch_size, 1), dtype=torch.bool, device=vmasks.device)], dim=1) assert video_outputs.size(1) == video_attention_mask.size(1) video_attention_mask = video_attention_mask.type(video_outputs.dtype) / video_attention_mask.sum(1, keepdim=True) return torch.bmm(video_outputs.transpose(2, 1), video_attention_mask.unsqueeze(2)).squeeze(-1) def forward_text( self, caps, cmasks, output_hidden_states=False, **kwargs # noqa ): input_ids = torch.cat([ caps[:, :1], caps[:, 2:], ], dim=1) attention_mask = torch.cat([ cmasks[:, :1], cmasks[:, 2:] ], dim=1) # different from sharing, we use all-0 type. token_type_ids = torch.zeros( (cmasks.size(0), cmasks.size(1) - 1), dtype=torch.long, device=cmasks.device) outputs = self.text_encoder( input_ids=input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, output_hidden_states=True ) text_outputs = outputs[0] if output_hidden_states: return text_outputs batch_size = caps.size(0) # text tokens + [SEP] text_attention_mask = torch.cat([torch.zeros((batch_size, 1), dtype=torch.bool, device=cmasks.device), cmasks[:, 2:]], dim=1) assert text_outputs.size(1) == text_attention_mask.size(1) text_attention_mask = text_attention_mask.type(text_outputs.dtype) / text_attention_mask.sum(1, keepdim=True) return torch.bmm(text_outputs.transpose(2, 1), text_attention_mask.unsqueeze(2)).squeeze(-1)
28,028
38.256303
119
py
fitclip
fitclip-main/aligner/encoder/video_transformer.py
""" Implementations of Video Transformers in PyTorch A PyTorch implementation of space-time transformer as described in 'Frozen in Time: A Joint Image and Video Encoder for End-to-End Retrieval' - https://arxiv.org/abs/2104.00650 A PyTorch implementation of timesformer as described in 'Is Space-Time Attention All You Need for Video Understanding?' - https://arxiv.org/abs/2102.05095 Acknowledgments: - This code builds on Ross Wightman's vision_transformer code in pytorch-image-models: https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py - It is also inspired by lucidrains timesformer implementation: https://github.com/lucidrains/TimeSformer-pytorch Hacked together by Max Bain """ from collections import OrderedDict from functools import partial import torch from einops import rearrange, repeat from timm.models.layers import DropPath, to_2tuple, trunc_normal_ from torch import einsum, nn def attn(q, k, v): sim = einsum('b i d, b j d -> b i j', q, k) attn = sim.softmax(dim=-1) out = einsum('b i j, b j d -> b i d', attn, v) return out class Mlp(nn.Module): def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.): super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.fc1 = nn.Linear(in_features, hidden_features) self.act = act_layer() self.fc2 = nn.Linear(hidden_features, out_features) self.drop = nn.Dropout(drop) def forward(self, x): x = self.fc1(x) x = self.act(x) x = self.drop(x) x = self.fc2(x) x = self.drop(x) return x class VideoPatchEmbed(nn.Module): """ Video to Patch Embedding """ def __init__(self, img_size=224, patch_size=16, in_chans=3, embed_dim=768, num_frames=8): super().__init__() img_size = to_2tuple(img_size) patch_size = to_2tuple(patch_size) num_patches = (img_size[1] // patch_size[1]) * (img_size[0] // patch_size[0]) * num_frames self.img_size = img_size self.patch_size = patch_size self.num_patches = num_patches self.num_frames = num_frames self.embed_dim = embed_dim self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size) def forward(self, x): B, F, C, H, W = x.shape assert F <= self.num_frames x = x.view(-1, C, H, W) x = self.proj(x) return x class VarAttention(nn.Module): def __init__(self, dim, num_heads=8, qkv_bias=False, qk_scale=None, attn_drop=0., proj_drop=0., initialize='random'): super().__init__() self.num_heads = num_heads head_dim = dim // num_heads # NOTE scale factor was wrong in my original version, can set manually to be compat with prev weights self.scale = qk_scale or head_dim ** -0.5 self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias) self.proj = nn.Linear(dim, dim) if initialize == 'zeros': self.qkv.weight.data.fill_(0) self.qkv.bias.data.fill_(0) # fill proj weight with 1 here to improve training dynamics. Otherwise temporal attention inputs # are multiplied by 0*0, which is hard for the model to move out of. self.proj.weight.data.fill_(1) self.proj.bias.data.fill_(0) self.attn_drop = nn.Dropout(attn_drop) self.proj_drop = nn.Dropout(proj_drop) def forward(self, x, einops_from, einops_to, **einops_dims): h = self.num_heads # project x to q, k, v values q, k, v = self.qkv(x).chunk(3, dim=-1) q, k, v = map(lambda t: rearrange(t, 'b n (h d) -> (b h) n d', h=h), (q, k, v)) q *= self.scale # splice out CLS token at index 1 (cls_q, q_), (cls_k, k_), (cls_v, v_) = map(lambda t: (t[:, 0:1], t[:, 1:]), (q, k, v)) # let CLS token attend to key / values of all patches across time and space cls_out = attn(cls_q, k, v) # rearrange across time or space q_, k_, v_ = map(lambda t: rearrange(t, f'{einops_from} -> {einops_to}', **einops_dims), (q_, k_, v_)) # expand cls token keys and values across time or space and concat r = q_.shape[0] // cls_k.shape[0] cls_k, cls_v = map(lambda t: repeat(t, 'b () d -> (b r) () d', r=r), (cls_k, cls_v)) k_ = torch.cat((cls_k, k_), dim=1) v_ = torch.cat((cls_v, v_), dim=1) # attention out = attn(q_, k_, v_) # merge back time or space out = rearrange(out, f'{einops_to} -> {einops_from}', **einops_dims) # concat back the cls token out = torch.cat((cls_out, out), dim=1) # merge back the heads out = rearrange(out, '(b h) n d -> b n (h d)', h=h) # to out x = self.proj(out) x = self.proj_drop(x) return x class SpaceTimeBlock(nn.Module): def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm, time_init='zeros', attention_style='frozen-in-time'): super().__init__() self.norm1 = norm_layer(dim) self.attn = VarAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.timeattn = VarAttention( dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop, initialize=time_init) # NOTE: drop path for stochastic depth, we shall see if this is better than dropout here self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.norm3 = norm_layer(dim) self.attention_style = attention_style def forward(self, x, einops_from_space, einops_to_space, einops_from_time, einops_to_time, time_n, space_f): time_output = self.timeattn(self.norm3(x), einops_from_time, einops_to_time, n=time_n) time_residual = x + time_output space_output = self.attn(self.norm1(time_residual), einops_from_space, einops_to_space, f=space_f) if self.attention_style == 'frozen-in-time': space_residual = x + self.drop_path(space_output) else: raise NotImplementedError x = space_residual + self.drop_path(self.mlp(self.norm2(space_residual))) return x class SpaceTimeTransformer(nn.Module): """ Vision Transformer A PyTorch impl of : `Space-Time Transformer` from Frozen-in-time - by Max Bain. https://arxiv.org/abs/2104.00650 Based off: - ViT implementation from the timm library [https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py] lucidrains timesformer implementation [https://github.com/lucidrains/TimeSformer-pytorch]. Notable differences: - allows for variable length input frames (<= num_frames) - allows for variable length input resolution (<= (img_size, img_size)) [UNTESTED] - different attention block mechanism """ def __init__(self, img_size=224, patch_size=16, in_chans=3, num_classes=1000, embed_dim=768, depth=12, num_heads=12, mlp_ratio=4., qkv_bias=True, qk_scale=None, representation_size=None, drop_rate=0., attn_drop_rate=0., drop_path_rate=0., hybrid_backbone=None, norm_layer=None, num_frames=8, time_init='rand', attention_style='frozen-in-time'): """ Args: img_size (int, tuple): input image size patch_size (int, tuple): patch size in_chans (int): number of input channels num_classes (int): number of classes for classification head embed_dim (int): embedding dimension depth (int): depth of transformer num_heads (int): number of attention heads mlp_ratio (int): ratio of mlp hidden dim to embedding dim qkv_bias (bool): enable bias for qkv if True qk_scale (float): override default qk scale of head_dim ** -0.5 if set representation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if set drop_rate (float): dropout rate attn_drop_rate (float): attention dropout rate drop_path_rate (float): stochastic depth rate hybrid_backbone (nn.Module): CNN backbone to use in-place of PatchEmbed module norm_layer: (nn.Module): normalization layer num_frames: (int) maximum number of frames expected as input time_init: (str) how to initialise the time attention layer, 'zeros' allows for the timesformer to start off as ViT. attention_style: (str) how to attend to space and time. """ super().__init__() self.num_classes = num_classes self.num_features = self.embed_dim = embed_dim # num_features for consistency with other models self.num_frames = num_frames self.embed_dim = embed_dim norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6) if hybrid_backbone is not None: raise NotImplementedError('hybrid backbone not implemented') else: self.patch_embed = VideoPatchEmbed( img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim, num_frames=num_frames) num_patches = self.patch_embed.num_patches self.patches_per_frame = num_patches // num_frames self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) self.pos_embed = nn.Parameter( torch.zeros(1, self.patches_per_frame + 1, embed_dim)) # remember to take pos_embed[1:] for tiling over time self.temporal_embed = nn.Parameter(torch.zeros(1, num_frames, embed_dim)) self.pos_drop = nn.Dropout(p=drop_rate) dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] # stochastic depth decay rule self.blocks = nn.ModuleList([ SpaceTimeBlock( dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale, drop=drop_rate, attn_drop=attn_drop_rate, drop_path=dpr[i], norm_layer=norm_layer, time_init=time_init, attention_style=attention_style) for i in range(depth)]) self.norm = norm_layer(embed_dim) # Representation layer if representation_size: self.num_features = representation_size self.pre_logits = nn.Sequential(OrderedDict([ ('fc', nn.Linear(embed_dim, representation_size)), ('act', nn.Tanh()) ])) else: self.pre_logits = nn.Identity() # Classifier head self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity() trunc_normal_(self.pos_embed, std=.02) trunc_normal_(self.cls_token, std=.02) # if num_frames > 1, then we perform ViT inflation and initialise time attention to zero so not necessary. if num_frames == 1: self.apply(self._init_weights) # einops transformations self.einops_from_space = 'b (f n) d' self.einops_to_space = '(b f) n d' self.einops_from_time = 'b (f n) d' self.einops_to_time = '(b n) f d' @staticmethod def _init_weights(m): if isinstance(m, nn.Linear): trunc_normal_(m.weight, std=.02) if isinstance(m, nn.Linear) and m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.LayerNorm): nn.init.constant_(m.bias, 0) nn.init.constant_(m.weight, 1.0) @torch.jit.ignore def no_weight_decay(self): return {'pos_embed', 'cls_token'} def get_classifier(self): return self.head def reset_classifier(self, num_classes): self.num_classes = num_classes self.head = nn.Linear(self.embed_dim, num_classes) if num_classes > 0 else nn.Identity() def forward_features(self, x): b, curr_frames, channels, _, _ = x.shape x = self.patch_embed(x) x = x.flatten(2).transpose(2, 1) x = x.reshape(b, -1, self.patch_embed.embed_dim) BF = x.shape[0] cls_tokens = self.cls_token.expand(BF, -1, -1) # stole cls_tokens impl from Phil Wang, thanks x = torch.cat((cls_tokens, x), dim=1) # positional embed needs to be tiled for each frame (this does [1,2,3] --> [1,2,3,1,2,3]...) cls_embed = self.pos_embed[:, 0, :].unsqueeze(1) tile_pos_embed = self.pos_embed[:, 1:, :].repeat(1, self.num_frames, 1) # temporal embed needs to be repeated within each frame (this does [1,2,3] --> [1,1,1,2,2,2,3,3,3]...) tile_temporal_embed = self.temporal_embed.repeat_interleave(self.patches_per_frame, 1) total_pos_embed = tile_pos_embed + tile_temporal_embed total_pos_embed = torch.cat([cls_embed, total_pos_embed], dim=1) curr_patches = x.shape[1] x = x + total_pos_embed[:, :curr_patches] x = self.pos_drop(x) n = self.patches_per_frame f = curr_frames for blk in self.blocks: x = blk(x, self.einops_from_space, self.einops_to_space, self.einops_from_time, self.einops_to_time, time_n=n, space_f=f) x = self.norm(x)[:, 0] x = self.pre_logits(x) return x def forward(self, x): x = self.forward_features(x) x = self.head(x) return x
14,253
40.800587
120
py
fitclip
fitclip-main/aligner/encoder/clip_video_text_encoder.py
import os.path import shutil import tempfile from typing import Iterable, Iterator, Tuple import torch from cached_path import cached_path from clip import clip from clip.model import CLIP from overrides import overrides from torch import nn from torchvision import transforms as T from aligner.data.frame_sampler import FrameSampler, RandomFromUniformIntervalsFrameSampler, UniformFrameSampler from aligner.encoder.video_encoder import TYPE_TRANSFORM, float_standard_denormalize from aligner.encoder.video_text_encoder import TYPE_TEXT_INPUT, TYPE_TOKENIZER, TYPE_VIDEO_INPUT, VideoTextEncoder from aligner.transforms import ConvertBHWCtoBCHW, RandomResizedCropWithRandomInterpolation # By default, `clip.load` uses part in half and part in single precision for GPU. # But this may cause issues with the teacher-student model, and we can actually control it from the trainer. def load_clip_in_float32(*args, **kwargs) -> Tuple[nn.Module, TYPE_TRANSFORM]: model, transform = clip.load(*args, **kwargs) model.float() return model, transform # Necessary to use from Hydra so to get the first element of the tuple from `clip.load`. # It also does more stuff than `clip.load`. def load_clip_model(name: str, *args, **kwargs) -> nn.Module: temp_filepaths = [] try: if "://" in name: name = cached_path(name) elif os.path.exists(name) and not os.path.isdir(name) and not os.path.isfile(name): # It could be a pipe. It could be created by a process substitution. # We copy it to a file because `clip.load` has a check that it's a file (and hence not a pipe). with tempfile.NamedTemporaryFile(delete=False) as output_file, open(name, "rb") as input_file: shutil.copyfileobj(input_file, output_file) name = output_file.name temp_filepaths.append(name) # We don't use the logic scale from CLIP but ours, so it may not exist. Here we need to re-create the variable, # so it doesn't fail when loading this `state_dict`. if os.path.exists(name): # It doesn't apply if it's a model name. state_dict = torch.load(name) if "logit_scale" not in state_dict: state_dict["logit_scale"] = torch.tensor(float("nan")) with tempfile.NamedTemporaryFile(delete=False) as file: # We create a new file to respect the original one. torch.save(state_dict, file) name = file.name temp_filepaths.append(name) if not args: # If `args` is not empty, then `device` was set for `clip.load`. kwargs.setdefault("device", "cpu") # To avoid bloating GPU 0 with each process' copy of it. return load_clip_in_float32(name, *args, **kwargs)[0] finally: for path in temp_filepaths: os.remove(path) def _tokenize(texts: Iterable[str]) -> TYPE_TEXT_INPUT: return {"input_ids": clip.tokenize(texts, truncate=True)} # noqa class ClipVideoTextEncoder(VideoTextEncoder): def __init__(self, model: CLIP, num_frames: int = 4) -> None: super().__init__() self.model = model self.normalize = T.Normalize(mean=(0.48145466, 0.4578275, 0.40821073), std=(0.26862954, 0.26130258, 0.27577711)) self.num_frames = num_frames # Indirectly unregister the param as we don't use it and would otherwise give problems while training. if hasattr(self.model, "logit_scale"): delattr(self.model, "logit_scale") @overrides def encode_video(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: batch_size = video.shape[0] images = video.view(-1, *video.shape[2:]) encoded_video = self.model.encode_image(images) encoded_video = encoded_video / encoded_video.norm(dim=-1, keepdim=True) # Averaging the representations is the same as averaging the predictions: # <t, (i1+i2)/2> = 1/2 <t, i1+i2> = (<t, i1> + <t, i2>) / 2 return encoded_video.view(batch_size, -1, *encoded_video.shape[1:]).mean(dim=1) @overrides def encode_text(self, text: TYPE_TEXT_INPUT) -> torch.Tensor: encoded_texts = self.model.encode_text(text["input_ids"]) return encoded_texts / encoded_texts.norm(dim=-1, keepdim=True) @overrides def get_tokenizer(self) -> TYPE_TOKENIZER: return _tokenize @overrides def decode_text(self, text: TYPE_TEXT_INPUT) -> Iterator[str]: for text_instance in text: yield clip._tokenizer.decode(text_instance["input_ids"]) @overrides def get_train_frame_sampler(self) -> FrameSampler: return RandomFromUniformIntervalsFrameSampler(self.num_frames) @overrides def get_eval_frame_sampler(self) -> FrameSampler: return UniformFrameSampler(self.num_frames) @overrides def get_train_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: size = self.model.visual.input_resolution return T.Compose([ ConvertBHWCtoBCHW(), T.ConvertImageDtype(dtype), RandomResizedCropWithRandomInterpolation(size, scale=(0.5, 1.0)), T.RandomHorizontalFlip(), self.normalize, ]) @overrides def get_eval_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: size = self.model.visual.input_resolution return T.Compose([ ConvertBHWCtoBCHW(), T.ConvertImageDtype(dtype), T.Resize(size, interpolation=T.InterpolationMode.BICUBIC), T.CenterCrop(size), self.normalize, ]) @property @overrides def should_pad_batch(self) -> bool: return True @overrides def to_bchw(self, t: torch.Tensor) -> torch.Tensor: return t @overrides def denormalize_video_tensor(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: return float_standard_denormalize(video, mean=self.normalize.mean, std=self.normalize.std)
6,022
39.972789
120
py
fitclip
fitclip-main/aligner/encoder/slip_video_text_encoder.py
from typing import Iterable, Iterator, Union import torch from cached_path import cached_path from overrides import overrides from torchvision import transforms as T from aligner.data.frame_sampler import FrameSampler, UniformFrameSampler from aligner.encoder import slip from aligner.encoder.slip import CLIP, SLIP, SimpleTokenizer from aligner.encoder.video_encoder import TYPE_TRANSFORM, float_standard_denormalize from aligner.encoder.video_text_encoder import TYPE_TEXT_INPUT, TYPE_TOKENIZER, TYPE_VIDEO_INPUT, VideoTextEncoder from aligner.transforms import ConvertBHWCtoBCHW from util.typing_utils import TYPE_PATH def load_model(path: TYPE_PATH) -> Union[CLIP, SLIP]: checkpoint = torch.load(cached_path(path), map_location="cpu") args = checkpoint["args"] model = getattr(slip, args.model)(rand_embed=False, ssl_mlp_dim=args.ssl_mlp_dim, ssl_emb_dim=args.ssl_emb_dim) model.load_state_dict({k.replace("module.", ""): v for k, v in checkpoint["state_dict"].items()}) return model class SlipVideoTextEncoder(VideoTextEncoder): def __init__(self, model: Union[CLIP, SLIP], num_frames: int = 4) -> None: super().__init__() self.model = model self.tokenizer = SimpleTokenizer() self.num_frames = num_frames # Indirectly unregister the param as we don't use it and would otherwise give problems while training. if hasattr(self.model, "logit_scale"): delattr(self.model, "logit_scale") @overrides def encode_video(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: batch_size = video.shape[0] # noqa images = video.view(-1, *video.shape[2:]) encoded_video = self.model.encode_image(images) encoded_video = encoded_video / encoded_video.norm(dim=-1, keepdim=True) # Averaging the representations is the same as averaging the predictions: # <t, (i1+i2)/2> = 1/2 <t, i1+i2> = (<t, i1> + <t, i2>) / 2 return encoded_video.view(batch_size, -1, *encoded_video.shape[1:]).mean(dim=1) @overrides def encode_text(self, text: TYPE_TEXT_INPUT) -> torch.Tensor: encoded_texts = self.model.encode_text(text["input_ids"]) return encoded_texts / encoded_texts.norm(dim=-1, keepdim=True) def _tokenize(self, texts: Iterable[str]) -> TYPE_TEXT_INPUT: return {"input_ids": self.tokenizer(texts)} @overrides def get_tokenizer(self) -> TYPE_TOKENIZER: return self._tokenize @overrides def decode_text(self, text: TYPE_TEXT_INPUT) -> Iterator[str]: for text_instance in text: yield self.tokenizer.decode(text_instance["input_ids"]) @overrides def get_train_frame_sampler(self) -> FrameSampler: raise NotImplementedError @overrides def get_eval_frame_sampler(self) -> FrameSampler: return UniformFrameSampler(self.num_frames) @overrides def get_train_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: raise NotImplementedError @overrides def get_eval_transform(self, dtype: torch.dtype) -> TYPE_TRANSFORM: size = 224 return T.Compose([ ConvertBHWCtoBCHW(), T.ConvertImageDtype(dtype), T.Resize(size), T.CenterCrop(size), T.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)), ]) @property @overrides def should_pad_batch(self) -> bool: return True @overrides def to_bchw(self, t: torch.Tensor) -> torch.Tensor: return t @overrides def denormalize_video_tensor(self, video: TYPE_VIDEO_INPUT) -> torch.Tensor: return float_standard_denormalize(video, mean=self.normalize.mean, std=self.normalize.std)
3,736
36.37
115
py
fitclip
fitclip-main/aligner/data/youcook2.py
import os from glob import iglob from typing import Optional, Tuple import pandas as pd from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.video_data_module import VideoTextDataModule from aligner.data.video_text_dataset import VideoTextDataset from util.typing_utils import TYPE_PATH VAL_VIDEO_INFO_FILE_PATH = "https://raw.githubusercontent.com/antoine77340/MIL-NCE_HowTo100M/master/csv/" \ "validation_youcook.csv" # Videos can also be obtained from https://www.rocq.inria.fr/cluster-willow/amiech/Youcook2_val.zip!validation VAL_VIDEOS_FOLDER = "/datasets/yc2_mil_nce_val/" class YouCook2(VideoTextDataset): def __init__(self, video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, **kwargs) -> None: self.video_info = pd.read_csv(cached_path(video_info_file_path), dtype={"task": str}) video_folder = cached_path(videos_folder) video_paths = (next(iglob(os.path.join(video_folder, row.task, f"{row.video_id}.*"))) for _, row in self.video_info.iterrows()) super().__init__(video_paths=video_paths, **kwargs) @overrides def _get_target(self, video_idx: int) -> str: return self.video_info.loc[video_idx, "text"] @overrides def _get_times(self, video_idx: int) -> Tuple[Optional[float], Optional[float]]: row = self.video_info.loc[video_idx] return row.start, row.end class YouCook2DataModule(VideoTextDataModule): # noqa def __init__(self, val_video_info_file_path: TYPE_PATH = VAL_VIDEO_INFO_FILE_PATH, val_videos_folder: TYPE_PATH = VAL_VIDEOS_FOLDER, **kwargs) -> None: super().__init__(**kwargs) self.val_video_info_file_path = val_video_info_file_path self.val_videos_folder = val_videos_folder @overrides def val_dataloader(self) -> DataLoader: dataset = YouCook2(video_info_file_path=self.val_video_info_file_path, videos_folder=self.val_videos_folder, **self._create_dataset_encoder_kwargs(train=False)) return self._create_dataloader(dataset, train=False)
2,183
41
116
py
fitclip
fitclip-main/aligner/data/moments_in_time.py
import functools import os from typing import Mapping, Tuple import pandas as pd from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.video_data_module import VideoClassificationDataModule from aligner.data.video_dataset import VideoDataset from util.typing_utils import TYPE_PATH from util.video_utils import get_sorted_videos_in_folder CATEGORIES_FILE_PATH = "/datasets/moments-in-time/moments_categories.txt" VAL_VIDEO_INFO_FILE_PATH = "/datasets/moments-in-time/validationSet.csv" VAL_VIDEOS_FOLDER = "/datasets/moments-in-time/validation" class MomentsInTime(VideoDataset): def __init__(self, categories: Mapping[str, int], video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, **kwargs) -> None: super().__init__(video_paths=get_sorted_videos_in_folder(cached_path(videos_folder)), **kwargs) self.categories = categories self.video_info = pd.read_csv(cached_path(video_info_file_path), names=["path", "category", "agreement", "disagreement"], index_col="path") @functools.lru_cache @overrides def _get_video_id(self, video_idx: int) -> str: path = self.video_paths[video_idx] folder_path, filename = os.path.split(path) folder_name = os.path.basename(folder_path) return os.path.join(folder_name, filename) @overrides def _get_target(self, video_idx: int) -> Tuple[str, int]: video_id = self._get_video_id(video_idx) category = self.video_info.loc[video_id, "category"] return category, self.categories[category] class MomentsInTimeDataModule(VideoClassificationDataModule): # noqa categories = {} # Necessary because it's an abstract property. See https://stackoverflow.com/a/42529760/1165181 def __init__(self, categories_file_path: TYPE_PATH = CATEGORIES_FILE_PATH, val_video_info_file_path: TYPE_PATH = VAL_VIDEO_INFO_FILE_PATH, val_videos_folder: TYPE_PATH = VAL_VIDEOS_FOLDER, **kwargs) -> None: super().__init__(**kwargs) self.val_video_info_file_path = val_video_info_file_path self.val_videos_folder = val_videos_folder with open(cached_path(categories_file_path)) as file: self.categories = {} for line in file: category, id_ = line.rstrip().split(",") self.categories[category] = int(id_) @overrides def val_dataloader(self) -> DataLoader: dataset = MomentsInTime(categories=self.categories, video_info_file_path=self.val_video_info_file_path, videos_folder=self.val_videos_folder, **self._create_dataset_encoder_kwargs(train=False)) return self._create_dataloader(dataset, train=False)
2,916
43.19697
116
py
fitclip
fitclip-main/aligner/data/frame_sampler.py
import itertools from abc import ABC, abstractmethod from typing import Optional, Sequence import torch from overrides import overrides from util.iter_utils import pairwise from util.video_utils import resample class FrameSampler(ABC): """Returns the frame indices to seek for the given clip start and end frame indices.""" @abstractmethod def __call__(self, start_frame: int, end_frame: int, fps: float) -> Sequence[int]: raise NotImplementedError class RandomFromUniformIntervalsFrameSampler(FrameSampler): def __init__(self, max_frames: int) -> None: super().__init__() self.max_frames = max_frames @overrides def __call__(self, start_frame: int, end_frame: int, fps: float) -> Sequence[int]: num_frames = min(self.max_frames, end_frame - start_frame + 1) ticks = torch.linspace(start=start_frame, end=end_frame, steps=num_frames + 1, dtype=torch.int) return [torch.randint(a, b + 1, size=()) for a, b in pairwise(ticks)] class UniformFrameSampler(FrameSampler): def __init__(self, max_frames: int) -> None: super().__init__() self.max_frames = max_frames @overrides def __call__(self, start_frame: int, end_frame: int, fps: float) -> Sequence[int]: num_frames = min(self.max_frames, end_frame - start_frame + 1) ticks = torch.linspace(start=start_frame, end=end_frame, steps=num_frames + 1, dtype=torch.int) return [torch.round((a + b) / 2).to(torch.int) for a, b in pairwise(ticks)] class FixedFrameFromUniformIntervalsFrameSampler(FrameSampler): def __init__(self, max_frames: int, frame_index_from_interval_start: int) -> None: super().__init__() self.max_frames = max_frames self.frame_index_from_interval_start = frame_index_from_interval_start @overrides def __call__(self, start_frame: int, end_frame: int, fps: float) -> Sequence[int]: num_frames = min(self.max_frames, end_frame - start_frame + 1) ticks = torch.linspace(start=start_frame, end=end_frame + 1, steps=num_frames + 1, dtype=torch.int) return ticks[:-1] + self.frame_index_from_interval_start class ConsecutiveFrameSampler(FrameSampler): def __init__(self, max_frames: int, fps: Optional[int] = None) -> None: super().__init__() self.max_frames = max_frames self.fps = fps @overrides def __call__(self, start_frame: int, end_frame: int, fps: float) -> Sequence[int]: if self.fps: indices = resample(num_frames=self.max_frames, original_fps=fps, new_fps=self.fps) else: indices = range(self.max_frames) smallest_possible_end = min(end_frame, start_frame + indices[-1]) if isinstance(smallest_possible_end, torch.Tensor): smallest_possible_end = smallest_possible_end.item() # To avoid a warning in the floor division. start = start_frame + (end_frame - smallest_possible_end) // 2 return list(itertools.takewhile(lambda i: i <= end_frame, (start + i for i in indices)))
3,069
38.87013
109
py
fitclip
fitclip-main/aligner/data/video_reader.py
import logging from abc import ABC, abstractmethod from typing import Sequence, Union import PIL import decord import numpy as np import torch import torchvision.datasets import torchvision.transforms.functional from overrides import overrides from util.typing_utils import TYPE_PATH LOGGER = logging.getLogger(__name__) class VideoReader(ABC): def __init__(self, path: TYPE_PATH) -> None: # noqa pass def __call__(self, indices: Sequence[int]) -> torch.Tensor: raise NotImplementedError @abstractmethod def __len__(self) -> int: raise NotImplementedError @abstractmethod def time_to_indices(self, time: Union[float, Sequence[float]]) -> np.ndarray: raise NotImplementedError @abstractmethod def get_avg_fps(self) -> float: raise NotImplementedError @staticmethod def from_path(path: TYPE_PATH) -> "VideoReader": return (AccImageVideoReader if torchvision.datasets.folder.is_image_file(path) else DecordVideoReader)(path) decord.bridge.set_bridge("torch") class DecordVideoReader(VideoReader): @overrides def __init__(self, path: TYPE_PATH) -> None: super().__init__(path) # Using `width` and `height` from VideoReader is actually faster because it resizes while decoding, however # it doesn't preserve the aspect ratio (even if setting only one of the two). # Using the GPU for decoding may actually be faster, but it isn't trivial how to optimize the whole data loading # process so to accomplish it. try: self.video_reader = decord.VideoReader(path, num_threads=1) except decord.DECORDError: LOGGER.error(f"An error occurred when trying to load the video with path {path}.") self.video_reader = None @overrides def __call__(self, indices: Sequence[int]) -> torch.Tensor: if self.video_reader: try: return self.video_reader.get_batch(indices) # noqa except decord.DECORDError: # FIXME: change the handle for the path? Or how to get the path LOGGER.error(f"An error occurred when trying to read the video with path {self.video_reader._handle}" f" and indices {indices}.") return torch.zeros(len(indices), 256, 256, 3) @overrides def __len__(self) -> int: return len(self.video_reader) if self.video_reader else 1 @overrides def time_to_indices(self, time: Union[float, Sequence[float]]) -> np.ndarray: times = self.video_reader.get_frame_timestamp(range(len(self))).mean(-1) if self.video_reader else np.zeros(1) indices = np.searchsorted(times, time) # Use `np.bitwise_or` so it works both with scalars and numpy arrays. return np.where(np.bitwise_or(indices == 0, times[indices] - time <= time - times[indices - 1]), indices, indices - 1) @overrides def get_avg_fps(self) -> float: return self.video_reader.get_avg_fps() if self.video_reader else 1 torchvision.set_image_backend("accimage") class AccImageVideoReader(VideoReader): @overrides def __init__(self, path: TYPE_PATH) -> None: super().__init__(path) self.path = path @overrides def __call__(self, indices: Sequence[int]) -> torch.Tensor: try: image = torchvision.datasets.folder.accimage_loader(self.path) image_tensor = torchvision.transforms.functional.to_tensor(image) return image_tensor.permute(1, 2, 0).unsqueeze(0) except PIL.UnidentifiedImageError: # Note `accimage_loader` falls back to PIL. LOGGER.error(f"An error occurred when trying to read the image with path {self.path}.") return torch.zeros(len(indices), 256, 256, 3) @overrides def __len__(self) -> int: return 1 @overrides def time_to_indices(self, time: Union[float, Sequence[float]]) -> np.ndarray: return np.zeros_like(time, dtype=int) @overrides def get_avg_fps(self) -> float: return 1
4,118
33.90678
120
py
fitclip
fitclip-main/aligner/data/data_module_group.py
import bisect from abc import ABC from typing import Any, Callable, Iterable, Mapping, Optional, Sequence, Union import pytorch_lightning as pl from overrides import overrides from pytorch_lightning import Trainer from pytorch_lightning.trainer.states import RunningStage from pytorch_lightning.utilities.apply_func import apply_to_collection from pytorch_lightning.utilities.types import EVAL_DATALOADERS, TRAIN_DATALOADERS from torch.utils.data import BatchSampler, ConcatDataset, DataLoader, Dataset, RandomSampler, SequentialSampler from torchvision.datasets.samplers import DistributedSampler as DistributedSampler2 from aligner.data.multi_source_sampler import RoundRobinMultiSourceSampler TYPE_DM_ITERABLE_OR_MAP = Union[Iterable[pl.LightningDataModule], Mapping[str, pl.LightningDataModule]] def _data_modules_iterable(data_modules: TYPE_DM_ITERABLE_OR_MAP) -> Iterable[pl.LightningDataModule]: return data_modules.values() if isinstance(data_modules, Mapping) else data_modules def _data_loader_sequence(data_modules: TYPE_DM_ITERABLE_OR_MAP, fn: Callable[[pl.LightningDataModule], EVAL_DATALOADERS]) -> Sequence[DataLoader]: dls = (fn(dm) for dm in _data_modules_iterable(data_modules)) return [dl for dls_dm in dls for dl in ([dls_dm] if isinstance(dls_dm, DataLoader) else dls_dm)] class _DataModuleGroup(pl.LightningDataModule, ABC): def __init__(self, data_modules: TYPE_DM_ITERABLE_OR_MAP) -> None: # Before calling super because it sets `trainer`, which recursively uses these. self.data_modules = data_modules self._trainer = None super().__init__() # Use it as a property, so we can set it to the data modules when set to self. @property def trainer(self) -> Trainer: return self._trainer @trainer.setter def trainer(self, value: Trainer) -> None: self._trainer = value # `self.trainer` is set during `super().__init__`, which in turn it's called from `super().__new__`, # which we can't control and happens before `self.data_modules` even exists. # So we need to handle the case where the attribute doesn't exist. for dm in _data_modules_iterable(getattr(self, "data_modules", [])): dm.trainer = value @overrides def prepare_data(self) -> None: for dm in _data_modules_iterable(self.data_modules): dm.prepare_data() @overrides def setup(self, stage: Optional[str] = None) -> None: for dm in _data_modules_iterable(self.data_modules): dm.setup(stage) class EvalDataModuleGroup(_DataModuleGroup): # noqa @overrides def val_dataloader(self) -> EVAL_DATALOADERS: return _data_loader_sequence(self.data_modules, lambda dm: dm.val_dataloader()) @overrides def test_dataloader(self) -> EVAL_DATALOADERS: return _data_loader_sequence(self.data_modules, lambda dm: dm.test_dataloader()) @overrides def predict_dataloader(self) -> EVAL_DATALOADERS: return _data_loader_sequence(self.data_modules, lambda dm: dm.predict_dataloader()) class DataModuleStructuredGroup(EvalDataModuleGroup): @overrides def train_dataloader(self) -> TRAIN_DATALOADERS: return apply_to_collection(self.data_modules, pl.LightningDataModule, lambda dm: dm.train_dataloader()) class ConcatDatasetWithDatasetKey(ConcatDataset): """A `ConcatDataset` that returns the corresponding dataset key for each item. It supposes the underlying datasets all return mapping items. """ def __init__(self, datasets: Union[Iterable[Dataset], Mapping[str, Dataset]]) -> None: super().__init__(datasets.values() if isinstance(datasets, Mapping) else datasets) self.keys = list(datasets.keys()) if isinstance(datasets, Mapping) else range(len(self.datasets)) @overrides(check_signature=False) def __getitem__(self, i: int) -> Mapping[Any, Any]: item = super().__getitem__(i) dataset_idx = bisect.bisect_right(self.cumulative_sizes, i) return {**item, "dataset": self.keys[dataset_idx]} def _add_distributed_sampler(data_loaders: EVAL_DATALOADERS, mode: RunningStage) -> EVAL_DATALOADERS: assert all(apply_to_collection(data_loaders, DataLoader, lambda dl: isinstance(dl.sampler, SequentialSampler))) return apply_to_collection( data_loaders, DataLoader, lambda dl: Trainer._update_dataloader(dl, DistributedSampler2(dl.dataset), mode=mode)) class MixedBatchDataModule(EvalDataModuleGroup): """A data module that combines many data modules during training, with the same dataset composition for each batch, but separately for evaluation.""" def __init__(self, *args, train_sequence_sizes: Union[int, Iterable[int], Mapping[str, int]] = 1, **kwargs) -> None: super().__init__(*args, **kwargs) if isinstance(train_sequence_sizes, Mapping): assert isinstance(self.data_modules, Mapping) self.train_sequence_sizes = [train_sequence_sizes[k] for k in self.data_modules] else: self.train_sequence_sizes = train_sequence_sizes if isinstance(self.train_sequence_sizes, int): self.train_batch_size = len(self.data_modules) * self.train_sequence_sizes else: self.train_batch_size = sum(self.train_sequence_sizes) @overrides def train_dataloader(self) -> TRAIN_DATALOADERS: data_loaders = apply_to_collection(self.data_modules, pl.LightningDataModule, lambda dm: dm.train_dataloader()) datasets = apply_to_collection(data_loaders, DataLoader, lambda dl: dl.dataset) dataset = ConcatDatasetWithDatasetKey(datasets) sub_samplers = [RandomSampler(dataset) for dataset in dataset.datasets] # noqa sampler = RoundRobinMultiSourceSampler(sub_samplers, sequence_sizes=self.train_sequence_sizes, mode="max_size_cycle") data_loader_iterable = data_loaders.values() if isinstance(data_loaders, Mapping) else data_loaders # We suppose each data module has the same args for the train data loader creation for the values obtained # here from the first data loader. first_data_loader = next(iter(data_loader_iterable)) # We have to create the batch sampler manually for the distributed setting. # This is because we need to control how each batch is formed. If we don't do this, the distributed sampler # comes before the batch sampling, and the mix composition of the batches won't be the intended one. # # For simplicity, we apply it regardless of distributed/non-distributed setup. batch_sampler = BatchSampler(sampler, batch_size=self.train_batch_size, drop_last=True) if self.trainer._accelerator_connector.is_distributed: # We need to manually set the distributed sampler instead of doing it automatically with Pytorch Lightning # because we're using a custom sampler. # # This version of DistributedSampler accounts for having a sampler as input. # # BTW, there's a similar one (`DistributedSamplerWrapper`) in batch_sampler = DistributedSampler2(batch_sampler) # We need to set the sampler as a `batch_sampler` so it activates the auto-collation in the data loader. data_loader = DataLoader(dataset, batch_sampler=batch_sampler, num_workers=first_data_loader.num_workers, collate_fn=first_data_loader.collate_fn, pin_memory=first_data_loader.pin_memory, timeout=first_data_loader.timeout, worker_init_fn=first_data_loader.worker_init_fn, multiprocessing_context=first_data_loader.multiprocessing_context, prefetch_factor=first_data_loader.prefetch_factor, persistent_workers=first_data_loader.persistent_workers) if self.trainer._accelerator_connector.is_distributed: # PL only sets the epoch to the sampler, not to the batch sampler. This is because the distributed # sampler is typically the former not the latter. # Note that setting the epoch is necessary for shuffling, so every epoch has different batches. data_loader.sampler.set_epoch = lambda epoch: batch_sampler.set_epoch(epoch) return data_loader def _add_distributed_sampler_maybe(self, data_loaders: EVAL_DATALOADERS, mode: RunningStage) -> EVAL_DATALOADERS: if self.trainer._accelerator_connector.is_distributed: return _add_distributed_sampler(data_loaders, mode) else: return data_loaders @overrides def val_dataloader(self) -> EVAL_DATALOADERS: return self._add_distributed_sampler_maybe(super().val_dataloader(), RunningStage.VALIDATING) @overrides def test_dataloader(self) -> EVAL_DATALOADERS: return self._add_distributed_sampler_maybe(super().test_dataloader(), RunningStage.TESTING) @overrides def predict_dataloader(self) -> EVAL_DATALOADERS: return self._add_distributed_sampler_maybe(super().predict_dataloader(), RunningStage.PREDICTING) class TrainAndEvalDataModules(_DataModuleGroup): def __init__(self, train_data_module: pl.LightningDataModule, eval_data_module: pl.LightningDataModule) -> None: super().__init__([train_data_module, eval_data_module]) @overrides def train_dataloader(self) -> TRAIN_DATALOADERS: return self.data_modules[0].train_dataloader() # noqa @overrides def val_dataloader(self) -> EVAL_DATALOADERS: return self.data_modules[1].val_dataloader() # noqa @overrides def test_dataloader(self) -> EVAL_DATALOADERS: return self.data_modules[1].test_dataloader() # noqa @overrides def predict_dataloader(self) -> EVAL_DATALOADERS: return self.data_modules[1].predict_dataloader() # noqa
10,134
47.492823
120
py
fitclip
fitclip-main/aligner/data/multi_source_sampler.py
import itertools import math import sys from typing import Generic, Iterable, Iterator, Literal, TypeVar, Union from torch.utils.data import Sampler T_co = TypeVar("T_co", covariant=True) # We don't use `CycleIterator` from PyTorch Lightning because when used along with `itertools.islice`, # it always creates a new iterator and wrongly starts from scratch because it's both an iterable and iterator (seems # like the function calls `iter` internally). class CycleSampler(Generic[T_co]): def __init__(self, data_source: Iterable[T_co], length: int = sys.maxsize) -> None: self.length = length self.data_source = data_source def __iter__(self) -> Iterator[T_co]: if not self.length: return counter = 0 while True: it = iter(self.data_source) for elem in it: yield elem counter += 1 if counter >= self.length: return def __len__(self) -> int: return self.length class RoundRobinMultiSourceSampler(Sampler[int]): """ It supposes the dataset passed along to the `DataLoader` instance is a `ConcatDataset` instance. Recommended to use with `drop_last=True`. Some inspiration comes from the module `pytorch_lightning.trainer.supporters`. """ def __init__(self, sub_samplers: Iterable[Iterable[int]], sequence_sizes: Union[int, Iterable[int]] = 1, mode: Literal["min_size", "max_size_cycle"] = "min_size") -> None: sub_samplers = list(sub_samplers) sequence_sizes = list(sequence_sizes) if isinstance(sequence_sizes, Iterable) \ else [sequence_sizes] * len(sub_samplers) assert len(sub_samplers) == len(sequence_sizes) assert all(len(sampler) for sampler in sub_samplers), ("All sub-samplers need to support `len` and be " # noqa "non-zero.") assert all(s > 0 for s in sequence_sizes) super().__init__(sub_samplers) self.sub_samplers = sub_samplers self.sequence_sizes = sequence_sizes self.mode = mode for sampler in self.sub_samplers: sampler._original_len = len(sampler) # noqa if mode == "max_size_cycle": max_cycle, max_i = max((math.floor(cycle), - i) for i, cycle in enumerate(self._cycles())) max_i *= -1 # Trick to get the first sampler index among those of max cycle size. # Use a large number instead of the default inf because `len` can fail otherwise. self.sub_samplers = [sampler if i == max_i else CycleSampler(sampler, length=sys.maxsize) for i, sampler in enumerate(self.sub_samplers)] for i, sampler in enumerate(self.sub_samplers): if i != max_i: sampler._original_len = len(sampler.data_source) # noqa def _cycles(self) -> Iterator[float]: for sampler, seq_size in zip(self.sub_samplers, self.sequence_sizes): yield len(sampler) / seq_size def __iter__(self) -> Iterator[int]: iterators = [iter(sampler) for sampler in self.sub_samplers] while True: cum_size_in_concat_dataset = 0 for it, size, sampler in zip(iterators, self.sequence_sizes, self.sub_samplers): i = -1 for i, n in enumerate(itertools.islice(it, size)): yield cum_size_in_concat_dataset + n if i < size - 1: return cum_size_in_concat_dataset += sampler._original_len # noqa def __len__(self) -> int: # Note in "max_size_cycle" mode the longest sampler will actually be the smallest one because the rest are # repeated infinitely. min_cycle, min_i = min((math.floor(cycle), i) for i, cycle in enumerate(self._cycles())) return (sum(seq_size * (min_cycle + int(i < min_i)) for i, seq_size in enumerate(self.sequence_sizes)) + len(self.sub_samplers[min_i]) % self.sequence_sizes[min_i])
4,191
38.92381
119
py
fitclip
fitclip-main/aligner/data/video_data_module.py
import multiprocessing from abc import ABC, abstractmethod from typing import Any, Iterable, Mapping, MutableMapping, Optional, Union import pytorch_lightning as pl import torch.cuda from overrides import overrides from pytorch_lightning.utilities.apply_func import apply_to_collection from torch.utils.data import DataLoader from aligner.data.frame_sampler import FrameSampler from aligner.data.video_dataset import VideoDataset from aligner.encoder.video_encoder import TYPE_TRANSFORM, VideoEncoder from aligner.encoder.video_text_encoder import VideoTextEncoder ENCODER_OR_ENCODER_MAP = Union[VideoEncoder, Mapping[str, VideoEncoder]] def precision_to_dtype(precision: Union[str, int]) -> torch.dtype: if precision == 32: return torch.float elif precision == 64: return torch.float64 elif precision in {16, "mixed"}: return torch.float16 else: raise ValueError(f"Unsupported precision value: {precision}") class VideoDataModule(pl.LightningDataModule, ABC): def __init__(self, encoder: ENCODER_OR_ENCODER_MAP, batch_size: Optional[int] = 1, eval_batch_size: Optional[int] = 32, num_workers: int = multiprocessing.cpu_count() // max(torch.cuda.device_count(), 1)) -> None: super().__init__() self.encoder = encoder self.batch_size = batch_size self.eval_batch_size = eval_batch_size self.num_workers = num_workers def _create_transform(self, train: bool) -> Union[TYPE_TRANSFORM, Mapping[str, TYPE_TRANSFORM]]: float_precision = self.trainer.precision_plugin.precision dtype = precision_to_dtype(float_precision) return apply_to_collection(self.encoder, VideoEncoder, lambda e: (e.get_train_transform if train else e.get_eval_transform)(dtype)) def _create_frame_sampler(self, train: bool) -> Union[FrameSampler, Mapping[str, FrameSampler]]: return apply_to_collection(self.encoder, VideoEncoder, lambda e: e.get_train_frame_sampler() if train else e.get_eval_frame_sampler()) def _create_dataset_encoder_kwargs(self, train: bool) -> MutableMapping[str, Any]: # FIXME: Disable the cache because it seems like a new dataset is created by PL every time. return {"frame_sampler": self._create_frame_sampler(train=train), "transform": self._create_transform(train=train), "pad_batch": apply_to_collection(self.encoder, VideoEncoder, lambda e: e.should_pad_batch), "cache": False} def _create_dataloader(self, dataset: VideoDataset, train: bool) -> DataLoader: # Drop last in train so the NCE loss isn't smaller in the charts for the last batch. # Also, don't waste one step with fewer memory, where we could have the next one with more memory. batch_size = self.batch_size if train else self.eval_batch_size return DataLoader(dataset, batch_size=batch_size, num_workers=self.num_workers, pin_memory=True, persistent_workers=self.num_workers > 0, collate_fn=getattr(dataset, "collate", None), shuffle=train, drop_last=train) @overrides def predict_dataloader(self) -> DataLoader: return self.val_dataloader() class VideoTextDataModule(VideoDataModule, ABC): def __init__(self, encoder: Union[VideoTextEncoder, Mapping[str, VideoTextEncoder]], **kwargs) -> None: super().__init__(encoder=encoder, **kwargs) @overrides def _create_dataset_encoder_kwargs(self, train: bool) -> MutableMapping[str, Any]: kwargs = super()._create_dataset_encoder_kwargs(train=train) kwargs["tokenizer"] = apply_to_collection(self.encoder, VideoEncoder, lambda e: e.get_tokenizer()) return kwargs class VideoClassificationDataModule(VideoDataModule, ABC): @property @abstractmethod def categories(self) -> Mapping[str, int]: raise NotImplementedError @property def templates(self) -> Optional[Iterable[str]]: return None
4,101
44.577778
114
py
fitclip
fitclip-main/aligner/data/video_text_dataset.py
from abc import ABC from typing import Mapping, Union from torch.utils.data.dataloader import default_collate from aligner.data.tokenizer_collate import MappingTokenizerCollate from aligner.data.video_dataset import VideoDataset from aligner.encoder.video_text_encoder import TYPE_TOKENIZER class VideoTextDataset(VideoDataset, ABC): def __init__(self, tokenizer: Union[TYPE_TOKENIZER, Mapping[str, TYPE_TOKENIZER]], target_key_name: str = "text", **kwargs) -> None: super().__init__(target_key_name=target_key_name, **kwargs) self.collate = MappingTokenizerCollate(tokenizer, target_key_name, default_collate_fn=getattr(self, "collate", default_collate))
744
42.823529
117
py
fitclip
fitclip-main/aligner/data/hmdb.py
import functools import glob import os from typing import Iterable, Literal, Mapping, Optional, Tuple from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.ucf import UCF_101_TEMPLATES from aligner.data.video_data_module import VideoClassificationDataModule from aligner.data.video_dataset import VideoDataset from util.typing_utils import TYPE_PATH TRAIN_TAG = 1 TEST_TAG = 2 class Hmdb(VideoDataset): def __init__(self, categories: Mapping[str, int], splits_folder: TYPE_PATH, split: Literal[1, 2, 3], tag: Literal[1, 2], videos_folder: TYPE_PATH, **kwargs) -> None: self.categories = categories videos_folder = cached_path(videos_folder) video_paths = [] for path in glob.iglob(os.path.join(cached_path(splits_folder), f"*_test_split{split}.txt")): category = os.path.basename(path).rsplit("_", maxsplit=2)[0] with open(path) as file: for line in file: filename, file_tag = line.strip().split(maxsplit=1) file_tag = int(file_tag) if file_tag == tag: video_paths.append(os.path.join(videos_folder, category, filename)) super().__init__(video_paths=video_paths, **kwargs) @functools.lru_cache @overrides def _get_video_id(self, video_idx: int) -> str: path = self.video_paths[video_idx] folder_path, filename = os.path.split(path) folder_name = os.path.basename(folder_path) return os.path.join(folder_name, filename) @functools.lru_cache @overrides def _get_target(self, video_idx: int) -> Tuple[str, int]: video_id = self._get_video_id(video_idx) folder_name = os.path.dirname(video_id) category = folder_name.replace("_", " ") return category, self.categories[category] class HmdbDataModule(VideoClassificationDataModule): # noqa categories = {} # Necessary because it's an abstract property. See https://stackoverflow.com/a/42529760/1165181 def __init__(self, categories_file_path: TYPE_PATH, splits_folder: TYPE_PATH, split: Literal[1, 2, 3], videos_folder: TYPE_PATH, **kwargs) -> None: super().__init__(**kwargs) self.splits_folder = splits_folder self.split = split self.videos_folder = videos_folder with open(cached_path(categories_file_path)) as file: self.categories = {line.strip(): i for i, line in enumerate(file)} @property @overrides def templates(self) -> Optional[Iterable[str]]: return UCF_101_TEMPLATES @overrides def train_dataloader(self) -> DataLoader: dataset = Hmdb(categories=self.categories, splits_folder=self.splits_folder, split=self.split, tag=TRAIN_TAG, videos_folder=self.videos_folder, # noqa **self._create_dataset_encoder_kwargs(train=True)) return self._create_dataloader(dataset, train=True) @overrides def val_dataloader(self) -> DataLoader: dataset = Hmdb(categories=self.categories, splits_folder=self.splits_folder, split=self.split, tag=TEST_TAG, videos_folder=self.videos_folder, # noqa **self._create_dataset_encoder_kwargs(train=False)) return self._create_dataloader(dataset, train=False)
3,441
39.023256
116
py
fitclip
fitclip-main/aligner/data/webvid.py
import os import pandas as pd from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.video_data_module import VideoTextDataModule from aligner.data.video_dataset import VideoDataset from aligner.data.video_text_dataset import VideoTextDataset from util.typing_utils import TYPE_PATH from util.video_utils import get_sorted_videos_in_folder TRAIN_VIDEO_INFO_FILE_PATH = "/datasets/webvid/results_2M_train.csv" # noinspection SpellCheckingInspection TRAIN_VIDEOS_FOLDER = "/datasets/webvid/videos_low_resolution/train/webvid_lowres/" VAL_VIDEO_INFO_FILE_PATH = "/datasets/webvid/results_2M_val.csv" # noinspection SpellCheckingInspection VAL_VIDEOS_FOLDER = "/datasets/webvid/videos_low_resolution/val/val_lowres/" class WebVid(VideoTextDataset): def __init__(self, video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, filter_videos_from_info_file: bool = False, **kwargs) -> None: # noinspection SpellCheckingInspection self.video_info = pd.read_csv(cached_path(video_info_file_path), index_col="videoid", dtype={"videoid": str}) if filter_videos_from_info_file: video_paths = (cached_path(os.path.join(videos_folder, f"{video_id}.mp4")) for video_id, _ in self.video_info.iterrows()) else: video_paths = get_sorted_videos_in_folder(cached_path(videos_folder)) super().__init__(video_paths=video_paths, **kwargs) @overrides def _get_target(self, video_idx: int) -> str: video_id = self._get_video_id(video_idx) return self.video_info.loc[video_id, "name"] class WebVidDataModule(VideoTextDataModule): # noqa def __init__(self, train_video_info_file_path: TYPE_PATH = TRAIN_VIDEO_INFO_FILE_PATH, train_videos_folder: TYPE_PATH = TRAIN_VIDEOS_FOLDER, train_filter_videos_from_info_file: bool = False, val_video_info_file_path: TYPE_PATH = VAL_VIDEO_INFO_FILE_PATH, val_videos_folder: TYPE_PATH = VAL_VIDEOS_FOLDER, val_filter_videos_from_info_file: bool = False, **kwargs) -> None: super().__init__(**kwargs) self.train_video_info_file_path = train_video_info_file_path self.train_videos_folder = train_videos_folder self.train_filter_videos_from_info_file = train_filter_videos_from_info_file self.val_video_info_file_path = val_video_info_file_path self.val_videos_folder = val_videos_folder self.val_filter_videos_from_info_file = val_filter_videos_from_info_file def _dataset(self, video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, filter_videos_from_info_file: bool, train: bool) -> VideoDataset: return WebVid(video_info_file_path=video_info_file_path, videos_folder=videos_folder, filter_videos_from_info_file=filter_videos_from_info_file, **self._create_dataset_encoder_kwargs(train=train)) @overrides def train_dataloader(self) -> DataLoader: dataset = self._dataset(video_info_file_path=self.train_video_info_file_path, videos_folder=self.train_videos_folder, filter_videos_from_info_file=self.train_filter_videos_from_info_file, train=True) return self._create_dataloader(dataset, train=True) @overrides def val_dataloader(self) -> DataLoader: dataset = self._dataset(video_info_file_path=self.val_video_info_file_path, videos_folder=self.val_videos_folder, filter_videos_from_info_file=self.val_filter_videos_from_info_file, train=False) return self._create_dataloader(dataset, train=False)
3,814
49.197368
120
py
fitclip
fitclip-main/aligner/data/video_dataset.py
import collections.abc import functools import logging import os from abc import ABC, abstractmethod from typing import Any, Generic, Iterable, Mapping, Optional, Sequence, Tuple, TypeVar, Union import torch from overrides import overrides from torch.nn.utils.rnn import pad_sequence from torch.utils.data import Dataset from torch.utils.data.dataloader import default_collate from aligner.data.frame_sampler import FrameSampler from aligner.data.video_reader import VideoReader from aligner.encoder.video_encoder import TYPE_TRANSFORM from util.typing_utils import TYPE_PATH T = TypeVar("T") LOGGER = logging.getLogger(__name__) def get_filename_without_extension(path: TYPE_PATH) -> str: return os.path.basename(path).split(".", maxsplit=1)[0] # TODO: support taking multiple clips per video, where they are chosen according to some strategy. class VideoDataset(Dataset, Generic[T], ABC): def __init__(self, video_paths: Iterable[TYPE_PATH], frame_sampler: Union[FrameSampler, Mapping[str, FrameSampler]], transform: Union[TYPE_TRANSFORM, Mapping[str, TYPE_TRANSFORM]] = lambda x: x, video_key_name: str = "video", target_key_name: str = "target", pad_batch: bool = True, cache: bool = False) -> None: super().__init__() self.video_paths = video_paths if hasattr(video_paths, "__getitem__") else list(video_paths) self.target_key_name = target_key_name self.pad_batch = pad_batch self.cache = cache if isinstance(frame_sampler, Mapping): self.frame_sampler_map = {f"{video_key_name}_{k}": v for k, v in frame_sampler.items()} else: self.frame_sampler_map = {video_key_name: frame_sampler} if isinstance(transform, Mapping): self.transform_map = {f"{video_key_name}_{k}": v for k, v in transform.items()} else: self.transform_map = {video_key_name: transform} if set(self.frame_sampler_map) != set(self.transform_map): if video_key_name in self.frame_sampler_map: self.frame_sampler_map = {k: self.frame_sampler_map[video_key_name] for k in self.transform_map} elif video_key_name in self.transform_map: self.transform_map = {k: self.transform_map[video_key_name] for k in self.frame_sampler_map} else: raise ValueError("The provided keys for the frame sampler and the transform don't match.") @abstractmethod def _get_target(self, video_idx: int) -> T: """Returns the target associated with `self.video_paths[video_idx]`.""" raise NotImplementedError @functools.lru_cache def _get_video_id(self, video_idx: int) -> str: return get_filename_without_extension(self.video_paths[video_idx]) def _get_times(self, video_idx: int) -> Tuple[Optional[float], Optional[float]]: """Returns the video clip start and end times for the given video index, if any.""" return None, None @functools.lru_cache(maxsize=None) def _cached_get_item(self, video_idx: int) -> Mapping[str, Union[torch.Tensor, str, T]]: path = self.video_paths[video_idx] video_id = self._get_video_id(video_idx) video_reader = VideoReader.from_path(path) start_time, end_time = self._get_times(video_idx) start_frame_idx = 0 if start_time is None else video_reader.time_to_indices(start_time).item() end_frame_idx = len(video_reader) - 1 if end_time is None else video_reader.time_to_indices(end_time).item() idxs_map = {k: frame_sampler(start_frame_idx, end_frame_idx, fps=video_reader.get_avg_fps()) for k, frame_sampler in self.frame_sampler_map.items()} frames_map = {k: video_reader(idxs) for k, idxs in idxs_map.items()} return { self.target_key_name: self._get_target(video_idx), "video_id": video_id, **{k: transform(frames_map[k]) for k, transform in self.transform_map.items()}, } @overrides def __getitem__(self, video_idx: int) -> Mapping[str, Union[torch.Tensor, str, T]]: # Note we have to explicitly pass `self` to the wrapped one. fn = self._cached_get_item if self.cache else functools.partial(self._cached_get_item.__wrapped__, self) # noqa return fn(video_idx) def __len__(self) -> int: return len(self.video_paths) def _collate(self, batch: Sequence[Any]) -> Any: if self.pad_batch: elem = batch[0] if isinstance(elem, torch.Tensor): return pad_sequence(batch, batch_first=True) # noqa elif isinstance(elem, collections.abc.Mapping): return {k: self._collate([d[k] for d in batch]) if k in self.transform_map else default_collate([d[k] for d in batch]) for k in elem} return default_collate(batch) def collate(self, batch: Sequence[Any]) -> Any: # Use an auxiliary function instead of doing it directly here because it's recursive, and it may also be # overridden. so in the recursion the overridden version may be called instead of this one. return self._collate(batch)
5,261
43.59322
120
py
fitclip
fitclip-main/aligner/data/tokenizer_collate.py
import collections.abc from abc import ABC, abstractmethod from typing import Any, Callable, Iterable, Mapping, Sequence, Tuple, Union from overrides import overrides from pytorch_lightning.utilities.apply_func import apply_to_collection from torch.utils.data.dataloader import default_collate from aligner.encoder.video_text_encoder import TYPE_TOKENIZER # Derived from `default_collate`. def batch_tokenize_collate(batch: Sequence[Any], tokenizer: TYPE_TOKENIZER) -> Any: elem = batch[0] elem_type = type(elem) if isinstance(elem, (str, bytes)): return tokenizer(batch) elif isinstance(elem, collections.abc.Mapping): return {k: batch_tokenize_collate([d[k] for d in batch], tokenizer) for k in elem} elif isinstance(elem, tuple) and hasattr(elem, '_fields'): # namedtuple return elem_type(*(batch_tokenize_collate(samples, tokenizer) for samples in zip(*batch))) elif isinstance(elem, collections.abc.Sequence): # check to make sure that the elements in batch have consistent size it = iter(batch) elem_size = len(next(it)) if not all(len(elem) == elem_size for elem in it): raise RuntimeError("Each element in sequence of batch should be of equal size.") transposed = zip(*batch) return [batch_tokenize_collate(samples, tokenizer) for samples in transposed] else: raise TypeError(f"Batch must contain strings, mappings or sequences; found {elem_type}.") class TokenizerCollate(ABC): """`DataLoader` collate function that batch-tokenizes part of the batch. The pros of batch-tokenizing during collation are: 1) We can pad at the same time, based on the longest sequence. If we tokenized in the dataset, we wouldn't know what size to take, and we may take a long one, wasting computing and especially memory. If we batch-tokenize when iterating through the data_module loader, we are in the main thread and wasting valuable time that could be used for the GPU. 2) The `tokenizers` library is written in Rust and may have some optimizations for batch-tokenizing (apart from multi-threading, which is disabled so each data_module loader worker uses one CPU core.) """ def __init__(self, tokenizer: Union[TYPE_TOKENIZER, Mapping[str, TYPE_TOKENIZER]], *, batch_tokenize_collate_fn: Callable[[Sequence[Any], TYPE_TOKENIZER], Any] = batch_tokenize_collate, default_collate_fn: Callable[[Sequence[Any]], Any] = default_collate) -> None: super().__init__() self.tokenizer = tokenizer self.batch_tokenize_collate_fn = batch_tokenize_collate_fn self.default_collate_fn = default_collate_fn @abstractmethod def _split_uncollated_batch(self, batch: Sequence[Any]) -> Tuple[Sequence[Any], Sequence[Any]]: """Splits the batch into a pair where the first element is going to be processed with the default collate function and each of the elements in the second one are going to be batch-tokenized.""" raise NotImplementedError @abstractmethod def _join_collated_batch(self, collated_with_default: Any, collated_with_tokenizer: Any) -> Any: raise NotImplementedError def __call__(self, batch: Sequence[Any]) -> Any: s1, s2 = self._split_uncollated_batch(batch) batch_tokenized = apply_to_collection(self.tokenizer, Callable, lambda t: self.batch_tokenize_collate_fn(s2, t)) return self._join_collated_batch(self.default_collate_fn(s1), batch_tokenized) class MappingTokenizerCollate(TokenizerCollate): def __init__(self, tokenizer: TYPE_TOKENIZER, keys_to_tokenize: Union[str, Iterable[str]], **kwargs) -> None: super().__init__(tokenizer, **kwargs) self.keys_to_tokenize = frozenset({keys_to_tokenize} if isinstance(keys_to_tokenize, str) else keys_to_tokenize) @overrides(check_signature=False) def _split_uncollated_batch(self, batch: Sequence[Mapping[str, Any]]) -> Tuple[Sequence[Any], Sequence[Any]]: return [{k: v for k, v in d.items() if k not in self.keys_to_tokenize} for d in batch], \ [{k: v for k, v in d.items() if k in self.keys_to_tokenize} for d in batch] @overrides(check_signature=False) def _join_collated_batch(self, collated_with_default: Any, collated_with_tokenizer: Any) -> Any: # If the tokenizer is actually composed of many tokenizers, we flatten out the structure. if isinstance(self.tokenizer, Mapping): collated_with_tokenizer = {f"{k_child}_{k_parent}": v_child for k_parent, v_parent in collated_with_tokenizer.items() for k_child, v_child in v_parent.items()} return {**collated_with_default, **collated_with_tokenizer}
4,865
53.066667
120
py
fitclip
fitclip-main/aligner/data/kinetics.py
import os from typing import Iterable, Mapping, Optional, Tuple import pandas as pd from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.video_data_module import VideoClassificationDataModule from aligner.data.video_dataset import VideoDataset from util.typing_utils import TYPE_PATH from util.video_utils import get_sorted_videos_in_folder class Kinetics(VideoDataset): def __init__(self, categories: Mapping[str, int], video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, filter_videos_from_info_file: bool = False, **kwargs) -> None: self.categories = categories self.video_info = pd.read_csv(cached_path(video_info_file_path)) self.video_info["video_id"] = \ self.video_info.agg(lambda row: f"{row.youtube_id}_{row.time_start:06}_{row.time_end:06}", axis=1) self.video_info.set_index("video_id", inplace=True) if filter_videos_from_info_file: video_paths = (cached_path(os.path.join(videos_folder, f"{video_id}.mp4")) for video_id, _ in self.video_info.iterrows()) else: video_paths = get_sorted_videos_in_folder(cached_path(videos_folder)) super().__init__(video_paths=video_paths, **kwargs) @overrides def _get_target(self, video_idx: int) -> Tuple[str, int]: video_id = self._get_video_id(video_idx) category = self.video_info.loc[video_id, "label"] return category, self.categories[category] class KineticsDataModule(VideoClassificationDataModule): # noqa categories = {} # Necessary because it's an abstract property. See https://stackoverflow.com/a/42529760/1165181 def __init__(self, categories_file_path: TYPE_PATH, train_video_info_file_path: TYPE_PATH, train_videos_folder: TYPE_PATH, val_video_info_file_path: TYPE_PATH, val_videos_folder: TYPE_PATH, test_video_info_file_path: TYPE_PATH, test_videos_folder: TYPE_PATH, train_filter_videos_from_info_file: bool = False, val_filter_videos_from_info_file: bool = False, test_filter_videos_from_info_file: bool = False, **kwargs) -> None: super().__init__(**kwargs) self.train_video_info_file_path = train_video_info_file_path self.train_videos_folder = train_videos_folder self.train_filter_videos_from_info_file = train_filter_videos_from_info_file self.val_video_info_file_path = val_video_info_file_path self.val_videos_folder = val_videos_folder self.val_filter_videos_from_info_file = val_filter_videos_from_info_file self.test_video_info_file_path = test_video_info_file_path self.test_videos_folder = test_videos_folder self.test_filter_videos_from_info_file = test_filter_videos_from_info_file with open(cached_path(categories_file_path)) as file: self.categories = {line.strip(): i for i, line in enumerate(file)} @property @overrides def templates(self) -> Optional[Iterable[str]]: return [ # From https://github.com/openai/CLIP/blob/main/data/prompts.md#kinetics700 "a photo of {}.", "a photo of a person {}.", "a photo of a person using {}.", "a photo of a person doing {}.", "a photo of a person during {}.", "a photo of a person performing {}.", "a photo of a person practicing {}.", "a video of {}.", "a video of a person {}.", "a video of a person using {}.", "a video of a person doing {}.", "a video of a person during {}.", "a video of a person performing {}.", "a video of a person practicing {}.", "a example of {}.", "a example of a person {}.", "a example of a person using {}.", "a example of a person doing {}.", "a example of a person during {}.", "a example of a person performing {}.", "a example of a person practicing {}.", "a demonstration of {}.", "a demonstration of a person {}.", "a demonstration of a person using {}.", "a demonstration of a person doing {}.", "a demonstration of a person during {}.", "a demonstration of a person performing {}.", "a demonstration of a person practicing {}.", ] def _dataset(self, video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, filter_videos_from_info_file: bool, train: bool) -> VideoDataset: return Kinetics(self.categories, video_info_file_path=video_info_file_path, videos_folder=videos_folder, filter_videos_from_info_file=filter_videos_from_info_file, **self._create_dataset_encoder_kwargs(train=train)) @overrides def train_dataloader(self) -> DataLoader: dataset = self._dataset(video_info_file_path=self.train_video_info_file_path, videos_folder=self.train_videos_folder, filter_videos_from_info_file=self.train_filter_videos_from_info_file, train=True) return self._create_dataloader(dataset, train=True) @overrides def val_dataloader(self) -> DataLoader: dataset = self._dataset(video_info_file_path=self.val_video_info_file_path, videos_folder=self.val_videos_folder, filter_videos_from_info_file=self.val_filter_videos_from_info_file, train=False) return self._create_dataloader(dataset, train=False) @overrides def test_dataloader(self) -> DataLoader: dataset = self._dataset(video_info_file_path=self.test_video_info_file_path, videos_folder=self.test_videos_folder, filter_videos_from_info_file=self.test_filter_videos_from_info_file, train=False) return self._create_dataloader(dataset, train=False)
6,115
49.131148
116
py
fitclip
fitclip-main/aligner/data/msrvtt.py
import json import os import random from typing import Literal import pandas as pd from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.video_data_module import VideoTextDataModule from aligner.data.video_dataset import VideoDataset from aligner.data.video_text_dataset import VideoTextDataset from util.typing_utils import TYPE_PATH from util.video_utils import get_sorted_videos_in_folder TYPE_CAPTION_SAMPLING_STRATEGY = Literal["first", "random"] class MsrVtt(VideoTextDataset): def __init__(self, videos_folder: TYPE_PATH, file_list_path: TYPE_PATH, annotations_path: TYPE_PATH, caption_sampling_strategy: TYPE_CAPTION_SAMPLING_STRATEGY, **kwargs) -> None: with open(cached_path(file_list_path)) as file: video_ids = {stripped_line for line in file if (stripped_line := line.strip())} # noqa video_paths = (path for path in get_sorted_videos_in_folder(cached_path(videos_folder)) if os.path.basename(path).split(".", maxsplit=1)[0] in video_ids) super().__init__(video_paths=video_paths, **kwargs) self.caption_sampling_strategy = caption_sampling_strategy with open(cached_path(annotations_path)) as file: metadata = json.load(file) self.video_info = pd.DataFrame(metadata["annotations"]) self.video_info.set_index("image_id", inplace=True) @overrides def _get_target(self, video_idx: int) -> str: video_id = self._get_video_id(video_idx) captions = self.video_info.loc[video_id, "caption"] if self.caption_sampling_strategy == "first": return captions[0] elif self.caption_sampling_strategy == "random": return random.choice(captions) else: raise ValueError(f"Invalid choice of caption sampling strategy: {self.caption_sampling_strategy}") class MsrVttDataModule(VideoTextDataModule): # noqa def __init__(self, base_path: TYPE_PATH = "https://www.robots.ox.ac.uk/~maxbain/frozen-in-time/data/MSRVTT.zip!MSRVTT/", train_file_list_rel_path: TYPE_PATH = "train_list_jsfusion.txt", # 1K-A split val_file_list_rel_path: TYPE_PATH = "val_list_jsfusion.txt", **kwargs) -> None: super().__init__(**kwargs) base_path = cached_path(base_path) self.videos_folder = os.path.join(base_path, "videos/all") self.annotation_path = os.path.join(base_path, "annotation/MSR_VTT.json") self.train_file_list_path = os.path.join(base_path, "structured-symlinks", train_file_list_rel_path) self.val_file_list_path = os.path.join(base_path, "structured-symlinks", val_file_list_rel_path) def _dataset(self, file_list_path: TYPE_PATH, caption_sampling_strategy: TYPE_CAPTION_SAMPLING_STRATEGY, train: bool) -> VideoDataset: return MsrVtt(videos_folder=self.videos_folder, file_list_path=file_list_path, annotations_path=self.annotation_path, caption_sampling_strategy=caption_sampling_strategy, **self._create_dataset_encoder_kwargs(train=train)) @overrides def train_dataloader(self) -> DataLoader: dataset = self._dataset(file_list_path=self.train_file_list_path, caption_sampling_strategy="random", train=True) return self._create_dataloader(dataset, train=True) @overrides def val_dataloader(self) -> DataLoader: dataset = self._dataset(file_list_path=self.val_file_list_path, caption_sampling_strategy="first", train=False) return self._create_dataloader(dataset, train=False)
3,743
45.8
119
py
fitclip
fitclip-main/aligner/data/didemo.py
import json import os from collections import defaultdict from cached_path import CACHE_DIR, _find_latest_cached, cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.video_data_module import VideoTextDataModule from aligner.data.video_text_dataset import VideoTextDataset from util.typing_utils import TYPE_PATH HASH_LIST_PATH = "https://raw.githubusercontent.com/LisaAnne/LocalizingMoments/master/data/yfcc100m_hash.txt" VAL_ANNOTATION_PATH = "https://raw.githubusercontent.com/LisaAnne/LocalizingMoments/master/data/val_data.json" VIDEOS_FOLDER = "https://multimedia-commons.s3-us-west-2.amazonaws.com/data/videos/mp4/" class Didemo(VideoTextDataset): def __init__(self, videos_folder: TYPE_PATH, hash_list_path: TYPE_PATH, annotations_path: TYPE_PATH, **kwargs) -> None: with open(cached_path(annotations_path)) as file: description_list_by_id = defaultdict(list) for video in json.load(file): description_list_by_id[video["video"]].append(video["description"]) self.description_paragraph_by_id = {video_id: " ".join(descriptions) for video_id, descriptions in description_list_by_id.items()} with open(cached_path(hash_list_path)) as file: hash_by_flickr_id = {} for line in file: flickr_id, hash_ = line.strip().split("\t") hash_by_flickr_id[flickr_id] = hash_ self.video_ids_by_path = {} for video_id in self.description_paragraph_by_id: flickr_id = video_id.split("_")[1] hash_ = hash_by_flickr_id[flickr_id] video_path_or_url = os.path.join(videos_folder, hash_[:3], hash_[3:6], f"{hash_}.mp4") # We only download some videos and not the whole folder. # But if it's already cached, we avoid sending a HEAD request. This is an issue if the file is updated, # but we assume it won't happen. video_path = _find_latest_cached(video_path_or_url, CACHE_DIR) or cached_path(video_path_or_url) self.video_ids_by_path[video_path] = video_id super().__init__(video_paths=self.video_ids_by_path.keys(), **kwargs) @overrides def _get_target(self, video_idx: int) -> str: video_path = self.video_paths[video_idx] video_id = self.video_ids_by_path[video_path] return self.description_paragraph_by_id[video_id] class DidemoDataModule(VideoTextDataModule): # noqa def __init__(self, videos_folder: TYPE_PATH = VIDEOS_FOLDER, hash_list_path: TYPE_PATH = HASH_LIST_PATH, val_annotation_path: TYPE_PATH = VAL_ANNOTATION_PATH, **kwargs) -> None: super().__init__(**kwargs) self.videos_folder = videos_folder self.hash_list_path = hash_list_path self.val_annotation_path = val_annotation_path @overrides def val_dataloader(self) -> DataLoader: dataset = Didemo(videos_folder=self.videos_folder, hash_list_path=self.hash_list_path, annotations_path=self.val_annotation_path, **self._create_dataset_encoder_kwargs(train=False)) return self._create_dataloader(dataset, train=False)
3,269
47.088235
119
py
fitclip
fitclip-main/aligner/data/conceptual_captions.py
import functools import os import pandas as pd from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from torchvision.datasets.folder import IMG_EXTENSIONS from aligner.data.video_data_module import VideoTextDataModule from aligner.data.video_dataset import VideoDataset from aligner.data.video_text_dataset import VideoTextDataset from util.typing_utils import TYPE_PATH from util.video_utils import get_videos_in_folder class ConceptualCaptions(VideoTextDataset): def __init__(self, video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, **kwargs) -> None: self.video_info = pd.read_csv(cached_path(video_info_file_path), names=["name", "url", "video_id"], index_col="video_id") # The version of CC3M used here was downloaded by keeping the original filenames. The issue is that the # filenames repeat, and only one of the files was kept, but we don't know which one it is from the # information file with the captions. So as a workaround, we remove the duplicate video IDs: self.video_info = self.video_info[~self.video_info.index.duplicated(keep=False)] video_paths = sorted(path for path in get_videos_in_folder(cached_path(videos_folder), extensions=IMG_EXTENSIONS) if os.path.basename(path) in self.video_info.index) super().__init__(video_paths=video_paths, **kwargs) @functools.lru_cache @overrides def _get_video_id(self, video_idx: int) -> str: return os.path.basename(self.video_paths[video_idx]) @overrides def _get_target(self, video_idx: int) -> str: video_id = self._get_video_id(video_idx) return self.video_info.loc[video_id, "name"] class ConceptualCaptionsDataModule(VideoTextDataModule): # noqa def __init__(self, train_video_info_file_path: TYPE_PATH, train_videos_folder: TYPE_PATH, val_video_info_file_path: TYPE_PATH, val_videos_folder: TYPE_PATH, **kwargs) -> None: super().__init__(**kwargs) self.train_video_info_file_path = train_video_info_file_path self.train_videos_folder = train_videos_folder self.val_video_info_file_path = val_video_info_file_path self.val_videos_folder = val_videos_folder def _dataset(self, video_info_file_path: TYPE_PATH, videos_folder: TYPE_PATH, train: bool) -> VideoDataset: return ConceptualCaptions(video_info_file_path=video_info_file_path, videos_folder=videos_folder, **self._create_dataset_encoder_kwargs(train=train)) @overrides def train_dataloader(self) -> DataLoader: dataset = self._dataset(video_info_file_path=self.train_video_info_file_path, videos_folder=self.train_videos_folder, train=True) return self._create_dataloader(dataset, train=True) @overrides def val_dataloader(self) -> DataLoader: dataset = self._dataset(video_info_file_path=self.val_video_info_file_path, videos_folder=self.val_videos_folder, train=False) return self._create_dataloader(dataset, train=False)
3,241
48.121212
116
py
fitclip
fitclip-main/aligner/data/ucf.py
import functools import os import re from typing import Iterable, Mapping, Optional, Tuple from cached_path import cached_path from overrides import overrides from torch.utils.data import DataLoader from aligner.data.video_data_module import VideoClassificationDataModule from aligner.data.video_dataset import VideoDataset from util.typing_utils import TYPE_PATH CATEGORIES_FILE_PATH = ("https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip!" "ucfTrainTestlist/classInd.txt") VAL_FILE_LIST_PATH = ("https://www.crcv.ucf.edu/data/UCF101/UCF101TrainTestSplits-RecognitionTask.zip!" "ucfTrainTestlist/testlist01.txt") VAL_VIDEOS_FOLDER = "https://www.crcv.ucf.edu/data/UCF101/UCF101.rar!UCF-101" RE_CAPITALIZED_WORDS = re.compile(r"[a-zA-Z][^A-Z]*") UCF_101_TEMPLATES = [ # From https://github.com/openai/CLIP/blob/main/data/prompts.md#ucf101 "a photo of a person {}.", "a video of a person {}.", "a example of a person {}.", "a demonstration of a person {}.", "a photo of the person {}.", "a video of the person {}.", "a example of the person {}.", "a demonstration of the person {}.", "a photo of a person using {}.", "a video of a person using {}.", "a example of a person using {}.", "a demonstration of a person using {}.", "a photo of the person using {}.", "a video of the person using {}.", "a example of the person using {}.", "a demonstration of the person using {}.", "a photo of a person doing {}.", "a video of a person doing {}.", "a example of a person doing {}.", "a demonstration of a person doing {}.", "a photo of the person doing {}.", "a video of the person doing {}.", "a example of the person doing {}.", "a demonstration of the person doing {}.", "a photo of a person during {}.", "a video of a person during {}.", "a example of a person during {}.", "a demonstration of a person during {}.", "a photo of the person during {}.", "a video of the person during {}.", "a example of the person during {}.", "a demonstration of the person during {}.", "a photo of a person performing {}.", "a video of a person performing {}.", "a example of a person performing {}.", "a demonstration of a person performing {}.", "a photo of the person performing {}.", "a video of the person performing {}.", "a example of the person performing {}.", "a demonstration of the person performing {}.", "a photo of a person practicing {}.", "a video of a person practicing {}.", "a example of a person practicing {}.", "a demonstration of a person practicing {}.", "a photo of the person practicing {}.", "a video of the person practicing {}.", "a example of the person practicing {}.", "a demonstration of the person practicing {}.", ] def _folder_name_to_category(folder_name: str) -> str: return " ".join(RE_CAPITALIZED_WORDS.findall(folder_name)) class Ucf(VideoDataset): def __init__(self, categories: Mapping[str, int], file_list_path: TYPE_PATH, videos_folder: TYPE_PATH, **kwargs) -> None: self.categories = categories videos_folder = cached_path(videos_folder) with open(cached_path(file_list_path)) as file: video_ids = (stripped_line for line in file if (stripped_line := line.strip())) super().__init__(video_paths=(os.path.join(videos_folder, path) for path in video_ids), **kwargs) @functools.lru_cache @overrides def _get_video_id(self, video_idx: int) -> str: path = self.video_paths[video_idx] folder_path, filename = os.path.split(path) folder_name = os.path.basename(folder_path) return os.path.join(folder_name, filename) @functools.lru_cache @overrides def _get_target(self, video_idx: int) -> Tuple[str, int]: video_id = self._get_video_id(video_idx) folder_name = os.path.dirname(video_id) category = _folder_name_to_category(folder_name) return category, self.categories[category] class UcfDataModule(VideoClassificationDataModule): # noqa categories = {} # Necessary because it's an abstract property. See https://stackoverflow.com/a/42529760/1165181 def __init__(self, categories_file_path: TYPE_PATH = CATEGORIES_FILE_PATH, val_file_list_path: TYPE_PATH = VAL_FILE_LIST_PATH, val_videos_folder: TYPE_PATH = VAL_VIDEOS_FOLDER, **kwargs) -> None: super().__init__(**kwargs) self.val_file_list_path = val_file_list_path self.val_videos_folder = val_videos_folder with open(cached_path(categories_file_path)) as file: self.categories = {} for line in file: id_, folder_name = line.strip().split() self.categories[_folder_name_to_category(folder_name)] = int(id_) - 1 @property @overrides def templates(self) -> Optional[Iterable[str]]: return UCF_101_TEMPLATES @overrides def val_dataloader(self) -> DataLoader: dataset = Ucf(categories=self.categories, file_list_path=self.val_file_list_path, videos_folder=self.val_videos_folder, **self._create_dataset_encoder_kwargs(train=False)) return self._create_dataloader(dataset, train=False)
5,400
40.229008
116
py
VQ-Diffusion
VQ-Diffusion-main/train.py
# VQ-Diffusion import argparse import os import warnings import time import torch from image_synthesis.modeling.build import build_model from image_synthesis.data.build import build_dataloader from image_synthesis.utils.misc import seed_everything, merge_opts_to_config, modify_config_for_debug from image_synthesis.utils.io import load_yaml_config from image_synthesis.engine.logger import Logger from image_synthesis.engine.solver import Solver from image_synthesis.distributed.launch import launch # environment variables NODE_RANK = os.environ['AZ_BATCHAI_TASK_INDEX'] if 'AZ_BATCHAI_TASK_INDEX' in os.environ else 0 NODE_RANK = int(NODE_RANK) MASTER_ADDR, MASTER_PORT = os.environ['AZ_BATCH_MASTER_NODE'].split(':') if 'AZ_BATCH_MASTER_NODE' in os.environ else ("127.0.0.1", 29500) MASTER_PORT = int(MASTER_PORT) DIST_URL = 'tcp://%s:%s' % (MASTER_ADDR, MASTER_PORT) def get_args(): parser = argparse.ArgumentParser(description='PyTorch Training script') parser.add_argument('--config_file', type=str, default='configs/vqvae_celeba_attribute_cond.yaml', help='path of config file') parser.add_argument('--name', type=str, default='', help='the name of this experiment, if not provided, set to' 'the name of config file') parser.add_argument('--output', type=str, default='OUTPUT', help='directory to save the results') parser.add_argument('--log_frequency', type=int, default=100, help='print frequency (default: 100)') parser.add_argument('--load_path', type=str, default=None, help='path to model that need to be loaded, ' 'used for loading pretrained model') parser.add_argument('--resume_name', type=str, default=None, help='resume one experiment with the given name') parser.add_argument('--auto_resume', action='store_true', help='automatically resume the training') # args for ddp parser.add_argument('--num_node', type=int, default=1, help='number of nodes for distributed training') parser.add_argument('--node_rank', type=int, default=NODE_RANK, help='node rank for distributed training') parser.add_argument('--dist_url', type=str, default=DIST_URL, help='url used to set up distributed training') parser.add_argument('--gpu', type=int, default=None, help='GPU id to use. If given, only the specific gpu will be' ' used, and ddp will be disabled') parser.add_argument('--sync_bn', action='store_true', help='use sync BN layer') parser.add_argument('--tensorboard', action='store_true', help='use tensorboard for logging') parser.add_argument('--timestamp', action='store_true', # default=True, help='use tensorboard for logging') # args for random parser.add_argument('--seed', type=int, default=None, help='seed for initializing training. ') parser.add_argument('--cudnn_deterministic', action='store_true', help='set cudnn.deterministic True') parser.add_argument('--amp', action='store_true', # default=True, help='automatic mixture of precesion') parser.add_argument('--debug', action='store_true', default=False, help='set as debug mode') # args for modify config parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() args.cwd = os.path.abspath(os.path.dirname(__file__)) if args.resume_name is not None: args.name = args.resume_name args.config_file = os.path.join(args.output, args.resume_name, 'configs', 'config.yaml') args.auto_resume = True else: if args.name == '': args.name = os.path.basename(args.config_file).replace('.yaml', '') if args.timestamp: assert not args.auto_resume, "for timstamp, auto resume is hard to find the save directory" time_str = time.strftime('%Y-%m-%d-%H-%M') args.name = time_str + '-' + args.name # modify args for debugging if args.debug: args.name = 'debug' if args.gpu is None: args.gpu = 0 args.save_dir = os.path.join(args.output, args.name) return args def main(): args = get_args() if args.seed is not None or args.cudnn_deterministic: seed_everything(args.seed, args.cudnn_deterministic) if args.gpu is not None: warnings.warn('You have chosen a specific GPU. This will completely disable ddp.') torch.cuda.set_device(args.gpu) args.ngpus_per_node = 1 args.world_size = 1 else: if args.num_node == 1: args.dist_url == "auto" else: assert args.num_node > 1 args.ngpus_per_node = torch.cuda.device_count() args.world_size = args.ngpus_per_node * args.num_node launch(main_worker, args.ngpus_per_node, args.num_node, args.node_rank, args.dist_url, args=(args,)) def main_worker(local_rank, args): args.local_rank = local_rank args.global_rank = args.local_rank + args.node_rank * args.ngpus_per_node args.distributed = args.world_size > 1 # load config config = load_yaml_config(args.config_file) config = merge_opts_to_config(config, args.opts) if args.debug: config = modify_config_for_debug(config) # get logger logger = Logger(args) logger.save_config(config) # get model model = build_model(config, args) # print(model) if args.sync_bn: model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model) # get dataloader dataloader_info = build_dataloader(config, args) # get solver solver = Solver(config=config, args=args, model=model, dataloader=dataloader_info, logger=logger) # resume if args.load_path is not None: # only load the model paramters solver.resume(path=args.load_path, # load_model=True, load_optimizer_and_scheduler=False, load_others=False) if args.auto_resume: solver.resume() # with torch.autograd.set_detect_anomaly(True): # solver.train() solver.train() if __name__ == '__main__': main()
6,809
39.058824
138
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/distributed/launch.py
import os import torch from torch import distributed as dist from torch import multiprocessing as mp # import distributed as dist_fn import image_synthesis.distributed.distributed as dist_fn def find_free_port(): import socket sock = socket.socket(socket.AF_INET, socket.SOCK_STREAM) sock.bind(("", 0)) port = sock.getsockname()[1] sock.close() return port def launch(fn, n_gpu_per_machine, n_machine=1, machine_rank=0, dist_url=None, args=()): world_size = n_machine * n_gpu_per_machine if world_size > 1: # if "OMP_NUM_THREADS" not in os.environ: # os.environ["OMP_NUM_THREADS"] = "1" if dist_url == "auto": if n_machine != 1: raise ValueError('dist_url="auto" not supported in multi-machine jobs') port = find_free_port() dist_url = f"tcp://127.0.0.1:{port}" if n_machine > 1 and dist_url.startswith("file://"): raise ValueError( "file:// is not a reliable init method in multi-machine jobs. Prefer tcp://" ) mp.spawn( distributed_worker, nprocs=n_gpu_per_machine, args=(fn, world_size, n_gpu_per_machine, machine_rank, dist_url, args), daemon=False, ) else: local_rank = 0 fn(local_rank, *args) def distributed_worker( local_rank, fn, world_size, n_gpu_per_machine, machine_rank, dist_url, args ): if not torch.cuda.is_available(): raise OSError("CUDA is not available. Please check your environments") global_rank = machine_rank * n_gpu_per_machine + local_rank try: dist.init_process_group( backend="NCCL", init_method=dist_url, world_size=world_size, rank=global_rank, ) except Exception: raise OSError("failed to initialize NCCL groups") dist_fn.synchronize() if n_gpu_per_machine > torch.cuda.device_count(): raise ValueError( f"specified n_gpu_per_machine larger than available device ({torch.cuda.device_count()})" ) torch.cuda.set_device(local_rank) if dist_fn.LOCAL_PROCESS_GROUP is not None: raise ValueError("torch.distributed.LOCAL_PROCESS_GROUP is not None") n_machine = world_size // n_gpu_per_machine for i in range(n_machine): ranks_on_i = list(range(i * n_gpu_per_machine, (i + 1) * n_gpu_per_machine)) pg = dist.new_group(ranks_on_i) if i == machine_rank: dist_fn.LOCAL_PROCESS_GROUP = pg fn(local_rank, *args)
2,604
26.712766
101
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/distributed/distributed.py
import math import pickle import torch from torch import distributed as dist from torch.utils import data LOCAL_PROCESS_GROUP = None def is_primary(): return get_rank() == 0 def get_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() def get_local_rank(): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 if LOCAL_PROCESS_GROUP is None: raise ValueError("tensorfn.distributed.LOCAL_PROCESS_GROUP is None") return dist.get_rank(group=LOCAL_PROCESS_GROUP) def synchronize(): if not dist.is_available(): return if not dist.is_initialized(): return world_size = dist.get_world_size() if world_size == 1: return dist.barrier() def get_world_size(): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() def is_distributed(): raise RuntimeError('Please debug this function!') return get_world_size() > 1 def all_reduce(tensor, op=dist.ReduceOp.SUM, async_op=False): world_size = get_world_size() if world_size == 1: return tensor dist.all_reduce(tensor, op=op, async_op=async_op) return tensor def all_gather(data): world_size = get_world_size() if world_size == 1: return [data] buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") local_size = torch.IntTensor([tensor.numel()]).to("cuda") size_list = [torch.IntTensor([1]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), 0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): world_size = get_world_size() if world_size < 2: return input_dict with torch.no_grad(): keys = [] values = [] for k in sorted(input_dict.keys()): keys.append(k) values.append(input_dict[k]) values = torch.stack(values, 0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: values /= world_size reduced_dict = {k: v for k, v in zip(keys, values)} return reduced_dict def data_sampler(dataset, shuffle, distributed): if distributed: return data.distributed.DistributedSampler(dataset, shuffle=shuffle) if shuffle: return data.RandomSampler(dataset) else: return data.SequentialSampler(dataset)
3,169
20.418919
76
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/engine/lr_scheduler.py
import torch import math # from torch.optim import AdamW, Adam from torch._six import inf from torch.optim.optimizer import Optimizer from torch.optim.lr_scheduler import _LRScheduler, CosineAnnealingLR class ReduceLROnPlateauWithWarmup(object): """Reduce learning rate when a metric has stopped improving. Models often benefit from reducing the learning rate by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a 'patience' number of epochs, the learning rate is reduced. Args: optimizer (Optimizer): Wrapped optimizer. mode (str): One of `min`, `max`. In `min` mode, lr will be reduced when the quantity monitored has stopped decreasing; in `max` mode it will be reduced when the quantity monitored has stopped increasing. Default: 'min'. factor (float): Factor by which the learning rate will be reduced. new_lr = lr * factor. Default: 0.1. patience (int): Number of epochs with no improvement after which learning rate will be reduced. For example, if `patience = 2`, then we will ignore the first 2 epochs with no improvement, and will only decrease the LR after the 3rd epoch if the loss still hasn't improved then. Default: 10. threshold (float): Threshold for measuring the new optimum, to only focus on significant changes. Default: 1e-4. threshold_mode (str): One of `rel`, `abs`. In `rel` mode, dynamic_threshold = best * ( 1 + threshold ) in 'max' mode or best * ( 1 - threshold ) in `min` mode. In `abs` mode, dynamic_threshold = best + threshold in `max` mode or best - threshold in `min` mode. Default: 'rel'. cooldown (int): Number of epochs to wait before resuming normal operation after lr has been reduced. Default: 0. min_lr (float or list): A scalar or a list of scalars. A lower bound on the learning rate of all param groups or each group respectively. Default: 0. eps (float): Minimal decay applied to lr. If the difference between new and old lr is smaller than eps, the update is ignored. Default: 1e-8. verbose (bool): If ``True``, prints a message to stdout for each update. Default: ``False``. warmup_lr: float or None, the learning rate to be touched after warmup warmup: int, the number of steps to warmup """ def __init__(self, optimizer, mode='min', factor=0.1, patience=10, threshold=1e-4, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-8, verbose=False, warmup_lr=None, warmup=0): if factor >= 1.0: raise ValueError('Factor should be < 1.0.') self.factor = factor # Attach optimizer if not isinstance(optimizer, Optimizer): raise TypeError('{} is not an Optimizer'.format( type(optimizer).__name__)) self.optimizer = optimizer if isinstance(min_lr, list) or isinstance(min_lr, tuple): if len(min_lr) != len(optimizer.param_groups): raise ValueError("expected {} min_lrs, got {}".format( len(optimizer.param_groups), len(min_lr))) self.min_lrs = list(min_lr) else: self.min_lrs = [min_lr] * len(optimizer.param_groups) self.patience = patience self.verbose = verbose self.cooldown = cooldown self.cooldown_counter = 0 self.mode = mode self.threshold = threshold self.threshold_mode = threshold_mode self.warmup_lr = warmup_lr self.warmup = warmup self.best = None self.num_bad_epochs = None self.mode_worse = None # the worse value for the chosen mode self.eps = eps self.last_epoch = 0 self._init_is_better(mode=mode, threshold=threshold, threshold_mode=threshold_mode) self._reset() def _prepare_for_warmup(self): if self.warmup_lr is not None: if isinstance(self.warmup_lr, (list, tuple)): if len(self.warmup_lr) != len(self.optimizer.param_groups): raise ValueError("expected {} warmup_lrs, got {}".format( len(self.optimizer.param_groups), len(self.warmup_lr))) self.warmup_lrs = list(self.warmup_lr) else: self.warmup_lrs = [self.warmup_lr] * len(self.optimizer.param_groups) else: self.warmup_lrs = None if self.warmup > self.last_epoch: curr_lrs = [group['lr'] for group in self.optimizer.param_groups] self.warmup_lr_steps = [max(0, (self.warmup_lrs[i] - curr_lrs[i])/float(self.warmup)) for i in range(len(curr_lrs))] else: self.warmup_lr_steps = None def _reset(self): """Resets num_bad_epochs counter and cooldown counter.""" self.best = self.mode_worse self.cooldown_counter = 0 self.num_bad_epochs = 0 def step(self, metrics): # convert `metrics` to float, in case it's a zero-dim Tensor current = float(metrics) epoch = self.last_epoch + 1 self.last_epoch = epoch if epoch <= self.warmup: self._increase_lr(epoch) else: if self.is_better(current, self.best): self.best = current self.num_bad_epochs = 0 else: self.num_bad_epochs += 1 if self.in_cooldown: self.cooldown_counter -= 1 self.num_bad_epochs = 0 # ignore any bad epochs in cooldown if self.num_bad_epochs > self.patience: self._reduce_lr(epoch) self.cooldown_counter = self.cooldown self.num_bad_epochs = 0 self._last_lr = [group['lr'] for group in self.optimizer.param_groups] def _reduce_lr(self, epoch): for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) new_lr = max(old_lr * self.factor, self.min_lrs[i]) if old_lr - new_lr > self.eps: param_group['lr'] = new_lr if self.verbose: print('Epoch {:5d}: reducing learning rate' ' of group {} to {:.4e}.'.format(epoch, i, new_lr)) def _increase_lr(self, epoch): # used for warmup for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) new_lr = max(old_lr + self.warmup_lr_steps[i], self.min_lrs[i]) param_group['lr'] = new_lr if self.verbose: print('Epoch {:5d}: increasing learning rate' ' of group {} to {:.4e}.'.format(epoch, i, new_lr)) @property def in_cooldown(self): return self.cooldown_counter > 0 def is_better(self, a, best): if self.mode == 'min' and self.threshold_mode == 'rel': rel_epsilon = 1. - self.threshold return a < best * rel_epsilon elif self.mode == 'min' and self.threshold_mode == 'abs': return a < best - self.threshold elif self.mode == 'max' and self.threshold_mode == 'rel': rel_epsilon = self.threshold + 1. return a > best * rel_epsilon else: # mode == 'max' and epsilon_mode == 'abs': return a > best + self.threshold def _init_is_better(self, mode, threshold, threshold_mode): if mode not in {'min', 'max'}: raise ValueError('mode ' + mode + ' is unknown!') if threshold_mode not in {'rel', 'abs'}: raise ValueError('threshold mode ' + threshold_mode + ' is unknown!') if mode == 'min': self.mode_worse = inf else: # mode == 'max': self.mode_worse = -inf self.mode = mode self.threshold = threshold self.threshold_mode = threshold_mode self._prepare_for_warmup() def state_dict(self): return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict): self.__dict__.update(state_dict) self._init_is_better(mode=self.mode, threshold=self.threshold, threshold_mode=self.threshold_mode) class CosineAnnealingLRWithWarmup(object): """ adjust lr: args: warmup_lr: float or None, the learning rate to be touched after warmup warmup: int, the number of steps to warmup """ def __init__(self, optimizer, T_max, last_epoch=-1, verbose=False, min_lr=0, warmup_lr=None, warmup=0): self.optimizer = optimizer self.T_max = T_max self.last_epoch = last_epoch self.verbose = verbose self.warmup_lr = warmup_lr self.warmup = warmup if isinstance(min_lr, list) or isinstance(min_lr, tuple): if len(min_lr) != len(optimizer.param_groups): raise ValueError("expected {} min_lrs, got {}".format( len(optimizer.param_groups), len(min_lr))) self.min_lrs = list(min_lr) else: self.min_lrs = [min_lr] * len(optimizer.param_groups) self.max_lrs = [lr for lr in self.min_lrs] self._prepare_for_warmup() def step(self): epoch = self.last_epoch + 1 self.last_epoch = epoch if epoch <= self.warmup: self._increase_lr(epoch) else: self._reduce_lr(epoch) def _reduce_lr(self, epoch): for i, param_group in enumerate(self.optimizer.param_groups): progress = float(epoch - self.warmup) / float(max(1, self.T_max - self.warmup)) factor = max(0.0, 0.5 * (1.0 + math.cos(math.pi * progress))) old_lr = float(param_group['lr']) new_lr = max(self.max_lrs[i] * factor, self.min_lrs[i]) param_group['lr'] = new_lr if self.verbose: print('Epoch {:5d}: reducing learning rate' ' of group {} to {:.4e}.'.format(epoch, i, new_lr)) def _increase_lr(self, epoch): # used for warmup for i, param_group in enumerate(self.optimizer.param_groups): old_lr = float(param_group['lr']) new_lr = old_lr + self.warmup_lr_steps[i] param_group['lr'] = new_lr self.max_lrs[i] = max(self.max_lrs[i], new_lr) if self.verbose: print('Epoch {:5d}: increasing learning rate' ' of group {} to {:.4e}.'.format(epoch, i, new_lr)) def _prepare_for_warmup(self): if self.warmup_lr is not None: if isinstance(self.warmup_lr, (list, tuple)): if len(self.warmup_lr) != len(self.optimizer.param_groups): raise ValueError("expected {} warmup_lrs, got {}".format( len(self.optimizer.param_groups), len(self.warmup_lr))) self.warmup_lrs = list(self.warmup_lr) else: self.warmup_lrs = [self.warmup_lr] * len(self.optimizer.param_groups) else: self.warmup_lrs = None if self.warmup > self.last_epoch: curr_lrs = [group['lr'] for group in self.optimizer.param_groups] self.warmup_lr_steps = [max(0, (self.warmup_lrs[i] - curr_lrs[i])/float(self.warmup)) for i in range(len(curr_lrs))] else: self.warmup_lr_steps = None def state_dict(self): return {key: value for key, value in self.__dict__.items() if key != 'optimizer'} def load_state_dict(self, state_dict): self.__dict__.update(state_dict) self._prepare_for_warmup()
11,992
40.071918
128
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/engine/clip_grad_norm.py
from torch.nn.utils import clip_grad_norm_ class ClipGradNorm(object): def __init__(self, start_iteration=0, end_iteration=-1, # if negative, the norm will be always clipped max_norm=0.5): self.start_iteration = start_iteration self.end_iteration = end_iteration self.max_norm = max_norm self.last_epoch = -1 def __call__(self, parameters): self.last_epoch += 1 clip = False if self.last_epoch >= self.start_iteration: clip = True if self.end_iteration > 0 and self.last_epoch < self.end_iteration: clip = True if clip: clip_grad_norm_(parameters, max_norm=self.max_norm) def state_dict(self): return {key: value for key, value in self.__dict__.items()} def load_state_dict(self, state_dict): self.__dict__.update(state_dict)
935
29.193548
81
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/engine/logger.py
from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import time import sys import torch from image_synthesis.utils.io import write_args, save_config_to_yaml from image_synthesis.distributed.distributed import is_primary import torch.utils.tensorboard as tensorboard # USE_TENSORBOARD = True # try: # import tensorboard # except: # USE_TENSORBOARD = False class Logger(object): def __init__(self, args): self.args = args self.save_dir = args.save_dir self.is_primary = is_primary() if self.is_primary: os.makedirs(self.save_dir, exist_ok=True) # save the args and config self.config_dir = os.path.join(self.save_dir, 'configs') os.makedirs(self.config_dir, exist_ok=True) file_name = os.path.join(self.config_dir, 'args.txt') write_args(args, file_name) log_dir = os.path.join(self.save_dir, 'logs') if not os.path.exists(log_dir): os.makedirs(log_dir, exist_ok=True) self.text_writer = open(os.path.join(log_dir, 'log.txt'), 'a') # 'w') if args.tensorboard: self.log_info('using tensorboard') self.tb_writer = torch.utils.tensorboard.SummaryWriter(log_dir=log_dir) # tensorboard.SummaryWriter(log_dir=log_dir) else: self.tb_writer = None def save_config(self, config): if self.is_primary: save_config_to_yaml(config, os.path.join(self.config_dir, 'config.yaml')) def log_info(self, info, check_primary=True): if self.is_primary or (not check_primary): print(info) if self.is_primary: info = str(info) time_str = time.strftime('%Y-%m-%d-%H-%M') info = '{}: {}'.format(time_str, info) if not info.endswith('\n'): info += '\n' self.text_writer.write(info) self.text_writer.flush() def add_scalar(self, **kargs): """Log a scalar variable.""" if self.is_primary: if self.tb_writer is not None: self.tb_writer.add_scalar(**kargs) def add_scalars(self, **kargs): """Log a scalar variable.""" if self.is_primary: if self.tb_writer is not None: self.tb_writer.add_scalars(**kargs) def add_image(self, **kargs): """Log a scalar variable.""" if self.is_primary: if self.tb_writer is not None: self.tb_writer.add_image(**kargs) def add_images(self, **kargs): """Log a scalar variable.""" if self.is_primary: if self.tb_writer is not None: self.tb_writer.add_images(**kargs) def close(self): if self.is_primary: self.text_writer.close() self.tb_writer.close()
3,005
32.4
132
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/engine/ema.py
import torch import copy class EMA(object): def __init__(self, model, decay=0.99, update_interval=1, device=torch.device('cpu')): self.decay = decay self.update_iterval = update_interval self.device = device self.model = model with torch.no_grad(): if hasattr(model, 'get_ema_model') and callable(model.get_ema_model): self.ema_model = copy.deepcopy(model.get_ema_model()) self.cur_state_dict = model.get_ema_model().state_dict() else: self.ema_model = copy.deepcopy(model) self.cur_state_dict = model.state_dict() self.ema_model.to(self.device) self.cur_state_dict = {k: v.clone().to(self.device) for k, v in self.cur_state_dict.items()} def update(self, iteration): if (iteration + 1) % self.update_iterval == 0: # print('{} Update ema'.format(iteration)) if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): cur_state_dict = self.model.get_ema_model().state_dict() else: cur_state_dict = self.model.state_dict() ema_state_dict = self.ema_model.state_dict() for k in ema_state_dict.keys(): ema_state_dict[k] = ema_state_dict[k] * self.decay + cur_state_dict[k].clone().to(self.device) * (1-self.decay) self.ema_model.load_state_dict(ema_state_dict) def state_dict(self): return self.ema_model.state_dict() def load_state_dict(self, state_dict, strict=True): state_dict_ = {k: v.clone().to(self.device) for k, v in state_dict.items()} self.ema_model.load_state_dict(state_dict_, strict=strict) def modify_to_inference(self): # get current model if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): self.cur_state_dict = self.model.get_ema_model().state_dict() else: self.cur_state_dict = self.model.state_dict() self.cur_state_dict = {k: v.clone().to(self.device) for k, v in self.cur_state_dict.items()} ema_state_dict = self.ema_model.state_dict() ema_state_dict = {k: v.to(self.model.device) for k, v in ema_state_dict.items()} if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): self.model.get_ema_model().load_state_dict(ema_state_dict) else: self.model.load_state_dict(ema_state_dict) def modify_to_train(self): self.cur_state_dict = {k: v.clone().to(self.model.device) for k, v in self.cur_state_dict.items()} if hasattr(self.model, 'get_ema_model') and callable(self.model.get_ema_model): self.model.get_ema_model().load_state_dict(self.cur_state_dict) else: self.model.load_state_dict(self.cur_state_dict)
2,968
42.028986
127
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/utils/misc.py
import importlib import random import numpy as np import torch import warnings import os def seed_everything(seed, cudnn_deterministic=False): """ Function that sets seed for pseudo-random number generators in: pytorch, numpy, python.random Args: seed: the integer value seed for global random state """ if seed is not None: print(f"Global seed set to {seed}") random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) if cudnn_deterministic: torch.backends.cudnn.deterministic = True warnings.warn('You have chosen to seed training. ' 'This will turn on the CUDNN deterministic setting, ' 'which can slow down your training considerably! ' 'You may see unexpected behavior when restarting ' 'from checkpoints.') def merge_opts_to_config(config, opts): def modify_dict(c, nl, v): if len(nl) == 1: c[nl[0]] = type(c[nl[0]])(v) else: # print(nl) c[nl[0]] = modify_dict(c[nl[0]], nl[1:], v) return c if opts is not None and len(opts) > 0: assert len(opts) % 2 == 0, "each opts should be given by the name and values! The length shall be even number!" for i in range(len(opts) // 2): name = opts[2*i] value = opts[2*i+1] config = modify_dict(config, name.split('.'), value) return config def modify_config_for_debug(config): config['dataloader']['num_workers'] = 0 config['dataloader']['batch_size'] = 1 return config def get_model_parameters_info(model): # for mn, m in model.named_modules(): parameters = {'overall': {'trainable': 0, 'non_trainable': 0, 'total': 0}} for child_name, child_module in model.named_children(): parameters[child_name] = {'trainable': 0, 'non_trainable': 0} for pn, p in child_module.named_parameters(): if p.requires_grad: parameters[child_name]['trainable'] += p.numel() else: parameters[child_name]['non_trainable'] += p.numel() parameters[child_name]['total'] = parameters[child_name]['trainable'] + parameters[child_name]['non_trainable'] parameters['overall']['trainable'] += parameters[child_name]['trainable'] parameters['overall']['non_trainable'] += parameters[child_name]['non_trainable'] parameters['overall']['total'] += parameters[child_name]['total'] # format the numbers def format_number(num): K = 2**10 M = 2**20 G = 2**30 if num > G: # K uint = 'G' num = round(float(num)/G, 2) elif num > M: uint = 'M' num = round(float(num)/M, 2) elif num > K: uint = 'K' num = round(float(num)/K, 2) else: uint = '' return '{}{}'.format(num, uint) def format_dict(d): for k, v in d.items(): if isinstance(v, dict): format_dict(v) else: d[k] = format_number(v) format_dict(parameters) return parameters def format_seconds(seconds): h = int(seconds // 3600) m = int(seconds // 60 - h * 60) s = int(seconds % 60) d = int(h // 24) h = h - d * 24 if d == 0: if h == 0: if m == 0: ft = '{:02d}s'.format(s) else: ft = '{:02d}m:{:02d}s'.format(m, s) else: ft = '{:02d}h:{:02d}m:{:02d}s'.format(h, m, s) else: ft = '{:d}d:{:02d}h:{:02d}m:{:02d}s'.format(d, h, m, s) return ft def instantiate_from_config(config): if config is None: return None if not "target" in config: raise KeyError("Expected key `target` to instantiate.") module, cls = config["target"].rsplit(".", 1) cls = getattr(importlib.import_module(module, package=None), cls) return cls(**config.get("params", dict())) def class_from_string(class_name): module, cls = class_name.rsplit(".", 1) cls = getattr(importlib.import_module(module, package=None), cls) return cls def get_all_file(dir, end_with='.h5'): if isinstance(end_with, str): end_with = [end_with] filenames = [] for root, dirs, files in os.walk(dir): for f in files: for ew in end_with: if f.endswith(ew): filenames.append(os.path.join(root, f)) break return filenames def get_sub_dirs(dir, abs=True): sub_dirs = os.listdir(dir) if abs: sub_dirs = [os.path.join(dir, s) for s in sub_dirs] return sub_dirs def get_model_buffer(model): state_dict = model.state_dict() buffers_ = {} params_ = {n: p for n, p in model.named_parameters()} for k in state_dict: if k not in params_: buffers_[k] = state_dict[k] return buffers_
5,066
29.160714
119
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/utils/io.py
import sys import yaml import torch import json def load_yaml_config(path): with open(path) as f: config = yaml.full_load(f) return config def save_config_to_yaml(config, path): assert path.endswith('.yaml') with open(path, 'w') as f: f.write(yaml.dump(config)) f.close() def save_dict_to_json(d, path, indent=None): json.dump(d, open(path, 'w'), indent=indent) def load_dict_from_json(path): return json.load(open(path, 'r')) def write_args(args, path): args_dict = dict((name, getattr(args, name)) for name in dir(args)if not name.startswith('_')) with open(path, 'a') as args_file: args_file.write('==> torch version: {}\n'.format(torch.__version__)) args_file.write('==> cudnn version: {}\n'.format(torch.backends.cudnn.version())) args_file.write('==> Cmd:\n') args_file.write(str(sys.argv)) args_file.write('\n==> args:\n') for k, v in sorted(args_dict.items()): args_file.write(' %s: %s\n' % (str(k), str(v))) args_file.close()
1,067
28.666667
98
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/cub200_dataset.py
from torch.utils.data import Dataset import numpy as np import io from PIL import Image import os import json import random from image_synthesis.utils.misc import instantiate_from_config from tqdm import tqdm import pickle def load_img(filepath): img = Image.open(filepath).convert('RGB') return img class Cub200Dataset(Dataset): def __init__(self, data_root, phase = 'train', im_preprocessor_config=None, drop_caption_rate=0.0): self.transform = instantiate_from_config(im_preprocessor_config) self.image_folder = os.path.join(data_root, 'images') self.root = os.path.join(data_root, phase) pickle_path = os.path.join(self.root, "filenames.pickle") self.name_list = pickle.load(open(pickle_path, 'rb'), encoding="bytes") self.num = len(self.name_list) # load all caption file to dict in memory self.caption_dict = {} for index in tqdm(range(self.num)): name = self.name_list[index] this_text_path = os.path.join(data_root, 'text', 'text', name+'.txt') with open(this_text_path, 'r') as f: caption = f.readlines() self.caption_dict[name] = caption print("load caption file done") self.drop_rate = drop_caption_rate self.phase = phase def __len__(self): return self.num def __getitem__(self, index): name = self.name_list[index] image_path = os.path.join(self.image_folder, name+'.jpg') image = load_img(image_path) image = np.array(image).astype(np.uint8) image = self.transform(image = image)['image'] caption_list = self.caption_dict[name] caption = random.choice(caption_list).replace('\n', '').lower() data = { 'image': np.transpose(image.astype(np.float32), (2, 0, 1)), 'text': caption if (self.phase != 'train' or self.drop_rate < 1e-6 or random.random() >= self.drop_rate) else '', } return data
2,040
33.016667
129
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/mscoco_dataset.py
from torch.utils.data import Dataset import numpy as np import io from PIL import Image import os import json import random from image_synthesis.utils.misc import instantiate_from_config def load_img(filepath): img = Image.open(filepath).convert('RGB') return img class CocoDataset(Dataset): def __init__(self, data_root, phase = 'train', im_preprocessor_config=None, drop_caption_rate=0.0): self.transform = instantiate_from_config(im_preprocessor_config) self.root = os.path.join(data_root, phase) # input_file = os.path.join(data_root, input_file) caption_file = "captions_"+phase+"2014.json" caption_file = os.path.join(data_root, "annotations", caption_file) self.json_file = json.load(open(caption_file, 'r')) print("length of the dataset is ") print(len(self.json_file['annotations'])) self.num = len(self.json_file['annotations']) self.image_prename = "COCO_" + phase + "2014_" self.folder_path = os.path.join(data_root, phase+'2014', phase+'2014') self.drop_rate = drop_caption_rate self.phase = phase def __len__(self): return self.num def __getitem__(self, index): this_item = self.json_file['annotations'][index] caption = this_item['caption'].lower() image_name = str(this_item['image_id']).zfill(12) image_path = os.path.join(self.folder_path, self.image_prename+image_name+'.jpg') image = load_img(image_path) image = np.array(image).astype(np.uint8) image = self.transform(image = image)['image'] data = { 'image': np.transpose(image.astype(np.float32), (2, 0, 1)), 'text': caption if (self.phase != 'train' or self.drop_rate < 1e-6 or random.random() >= self.drop_rate) else '', } return data
1,873
36.48
129
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/imagenet_dataset.py
from torch.utils.data import Dataset import numpy as np import io from PIL import Image import os import json import random from image_synthesis.utils.misc import instantiate_from_config def load_img(filepath): img = Image.open(filepath).convert('RGB') return img class ImageNetDataset(Dataset): def __init__(self, data_root, input_file, phase = 'train', im_preprocessor_config=None, drop_caption_rate=0.0): self.transform = instantiate_from_config(im_preprocessor_config) self.root = os.path.join(data_root, phase) input_file = os.path.join(data_root, input_file) temp_label = json.load(open('image_synthesis/data/imagenet_class_index.json', 'r')) self.labels = {} for i in range(1000): self.labels[temp_label[str(i)][0]] = i self.A_paths = [] self.A_labels = [] with open(input_file, 'r') as f: temp_path = f.readlines() for path in temp_path: label = self.labels[path.split('/')[0]] self.A_paths.append(os.path.join(self.root, path.strip())) self.A_labels.append(label) self.num = len(self.A_paths) self.A_size = len(self.A_paths) self.drop_rate = drop_caption_rate self.phase = phase def __len__(self): return self.num def __getitem__(self, index): try: return self.load_img(index) except: return self.__getitem__(random.randint(0, self.__len__()-1)) def load_img(self, index): A_path = self.A_paths[index % self.A_size] A = load_img(A_path) # if self.transform is not None: A = self.transform(A)['image'] A_label = self.A_labels[index % self.A_size] data = { 'image': np.transpose(A.astype(np.float32), (2, 0, 1)), 'label': A_label if (self.phase != 'train' or self.drop_rate < 1e-6 or random.random() >= self.drop_rate) else 1000, } return data
2,016
33.775862
132
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/ffhq_dataset.py
from torch.utils.data import Dataset import numpy as np import io from PIL import Image import os import json import random from image_synthesis.utils.misc import instantiate_from_config import torchvision.datasets as datasets class FFHQDataset(datasets.ImageFolder): def __init__(self, data_root, im_preprocessor_config): self.img_preprocessor = instantiate_from_config(im_preprocessor_config) super(FFHQDataset, self).__init__(root=data_root) def __getitem__(self, index): # image_name = self.imgs[index][0].split('/')[-1] image = super(FFHQDataset, self).__getitem__(index)[0] image = self.img_preprocessor(image=np.array(image).astype(np.uint8))['image'] data = { 'image': np.transpose(image.astype(np.float32), (2, 0, 1)), } return data
848
31.653846
86
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/build.py
import torch # from image_synthesis.data.base_dataset import ConcatDatasetWithIndex as ConcatDataset from torch.utils.data import ConcatDataset from image_synthesis.utils.misc import instantiate_from_config from image_synthesis.distributed.distributed import is_distributed def build_dataloader(config, args=None, return_dataset=False): dataset_cfg = config['dataloader'] train_dataset = [] for ds_cfg in dataset_cfg['train_datasets']: ds_cfg['params']['data_root'] = dataset_cfg.get('data_root', '') ds = instantiate_from_config(ds_cfg) train_dataset.append(ds) if len(train_dataset) > 1: train_dataset = ConcatDataset(train_dataset) else: train_dataset = train_dataset[0] val_dataset = [] for ds_cfg in dataset_cfg['validation_datasets']: ds_cfg['params']['data_root'] = dataset_cfg.get('data_root', '') ds = instantiate_from_config(ds_cfg) val_dataset.append(ds) if len(val_dataset) > 1: val_dataset = ConcatDataset(val_dataset) else: val_dataset = val_dataset[0] if args is not None and args.distributed: train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset, shuffle=True) val_sampler = torch.utils.data.distributed.DistributedSampler(val_dataset, shuffle=False) train_iters = len(train_sampler) // dataset_cfg['batch_size'] val_iters = len(val_sampler) // dataset_cfg['batch_size'] else: train_sampler = None val_sampler = None train_iters = len(train_dataset) // dataset_cfg['batch_size'] val_iters = len(val_dataset) // dataset_cfg['batch_size'] # if args is not None and not args.debug: # num_workers = max(2*dataset_cfg['batch_size'], dataset_cfg['num_workers']) # num_workers = min(64, num_workers) # else: # num_workers = dataset_cfg['num_workers'] num_workers = dataset_cfg['num_workers'] train_loader = torch.utils.data.DataLoader(train_dataset, batch_size=dataset_cfg['batch_size'], shuffle=(train_sampler is None), num_workers=num_workers, pin_memory=True, sampler=train_sampler, drop_last=True, persistent_workers=True) val_loader = torch.utils.data.DataLoader(val_dataset, batch_size=dataset_cfg['batch_size'], shuffle=False, #(val_sampler is None), num_workers=num_workers, pin_memory=True, sampler=val_sampler, drop_last=True, persistent_workers=True) dataload_info = { 'train_loader': train_loader, 'validation_loader': val_loader, 'train_iterations': train_iters, 'validation_iterations': val_iters } if return_dataset: dataload_info['train_dataset'] = train_dataset dataload_info['validation_dataset'] = val_dataset return dataload_info
3,454
44.460526
100
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/utils/image_preprocessor.py
import albumentations import random import numpy as np from PIL import Image import cv2 from io import BytesIO from torchvision import transforms as trans class DalleTransformerPreprocessor(object): def __init__(self, size=256, phase='train', additional_targets=None): self.size = size self.phase = phase # ddc: following dalle to use randomcrop self.train_preprocessor = albumentations.Compose([albumentations.RandomCrop(height=size, width=size)], additional_targets=additional_targets) self.val_preprocessor = albumentations.Compose([albumentations.CenterCrop(height=size, width=size)], additional_targets=additional_targets) def __call__(self, image, **kargs): """ image: PIL.Image """ if isinstance(image, np.ndarray): image = Image.fromarray(image.astype(np.uint8)) w, h = image.size s_min = min(h, w) if self.phase == 'train': off_h = int(random.uniform(3*(h-s_min)//8, max(3*(h-s_min)//8+1, 5*(h-s_min)//8))) off_w = int(random.uniform(3*(w-s_min)//8, max(3*(w-s_min)//8+1, 5*(w-s_min)//8))) # import pdb; pdb.set_trace() image = image.crop((off_w, off_h, off_w + s_min, off_h + s_min)) # resize image t_max = min(s_min, round(9/8*self.size)) t_max = max(t_max, self.size) t = int(random.uniform(self.size, t_max+1)) image = image.resize((t, t)) image = np.array(image).astype(np.uint8) image = self.train_preprocessor(image=image) #randomcrop (size,size) else: if w < h: w_ = self.size h_ = int(h * w_/w) else: h_ = self.size w_ = int(w * h_/h) image = image.resize((w_, h_)) image = np.array(image).astype(np.uint8) image = self.val_preprocessor(image=image) return image class ImageNetTransformerPreprocessor(object): def __init__(self, size=256, phase='train', additional_targets=None): self.size = size self.phase = phase # ddc: following dalle to use randomcrop self.train_preprocessor = albumentations.Compose([albumentations.RandomCrop(height=size, width=size)], additional_targets=additional_targets) self.val_preprocessor = albumentations.Compose([albumentations.CenterCrop(height=size, width=size)], additional_targets=additional_targets) def __call__(self, image, **kargs): """ image: PIL.Image """ if isinstance(image, np.ndarray): image = Image.fromarray(image.astype(np.uint8)) w, h = image.size s_min = min(h, w) if self.phase == 'train': if w < h: w_ = self.size h_ = int(h * w_/w) else: h_ = self.size w_ = int(w * h_/h) image = image.resize((w_, h_)) image = np.array(image).astype(np.uint8) image = self.train_preprocessor(image=image) else: if w < h: w_ = self.size h_ = int(h * w_/w) else: h_ = self.size w_ = int(w * h_/h) image = image.resize((w_, h_)) image = np.array(image).astype(np.uint8) image = self.val_preprocessor(image=image) return image
3,890
35.364486
140
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/utils/comm.py
""" This file contains primitives for multi-gpu communication. This is useful when doing distributed training. """ import pickle import torch import torch.distributed as dist # from diffdist.functional import all_gather as better_all_gather class Comm(object): def __init__(self, local_rank=0): self.local_rank = 0 @property def world_size(self): if not dist.is_available(): return 1 if not dist.is_initialized(): return 1 return dist.get_world_size() @property def rank(self): if not dist.is_available(): return 0 if not dist.is_initialized(): return 0 return dist.get_rank() @property def local_rank(self): if not dist.is_available(): print("****************** yes1") return 0 if not dist.is_initialized(): print("****************** yes2") return 0 print("****************** yes3", self._local_rank) return self._local_rank @local_rank.setter def local_rank(self, value): if not dist.is_available(): self._local_rank = 0 if not dist.is_initialized(): self._local_rank = 0 self._local_rank = value @property def head(self): return 'Rank[{}/{}]'.format(self.rank, self.world_size) def is_main_process(self): return self.rank == 0 def synchronize(self): """ Helper function to synchronize (barrier) among all processes when using distributed training """ if self.world_size == 1: return dist.barrier() comm = Comm() def all_gather(data): """ Run all_gather on arbitrary picklable data (not necessarily tensors) Args: data: any picklable object Returns: list[data]: list of data gathered from each rank """ world_size = comm.world_size if world_size == 1: return [data] # serialized to a Tensor buffer = pickle.dumps(data) storage = torch.ByteStorage.from_buffer(buffer) tensor = torch.ByteTensor(storage).to("cuda") # obtain Tensor size of each rank local_size = torch.LongTensor([tensor.numel()]).to("cuda") size_list = [torch.LongTensor([0]).to("cuda") for _ in range(world_size)] dist.all_gather(size_list, local_size) size_list = [int(size.item()) for size in size_list] max_size = max(size_list) # receiving Tensor from all ranks # we pad the tensor because torch all_gather does not support # gathering tensors of different shapes tensor_list = [] for _ in size_list: tensor_list.append(torch.ByteTensor(size=(max_size,)).to("cuda")) if local_size != max_size: padding = torch.ByteTensor(size=(max_size - local_size,)).to("cuda") tensor = torch.cat((tensor, padding), dim=0) dist.all_gather(tensor_list, tensor) data_list = [] for size, tensor in zip(size_list, tensor_list): buffer = tensor.cpu().numpy().tobytes()[:size] data_list.append(pickle.loads(buffer)) return data_list def reduce_dict(input_dict, average=True): """ Args: input_dict (dict): all the values will be reduced average (bool): whether to do average or sum Reduce the values in the dictionary from all processes so that process with rank 0 has the averaged results. Returns a dict with the same fields as input_dict, after reduction. """ world_size = comm.world_size if world_size < 2: return input_dict with torch.no_grad(): names = [] values = [] # sort the keys so that they are consistent across processes for k in sorted(input_dict.keys()): names.append(k) values.append(input_dict[k]) values = torch.stack(values, dim=0) dist.reduce(values, dst=0) if dist.get_rank() == 0 and average: # only main process gets accumulated, so only divide by # world_size in this case values /= world_size reduced_dict = {k: v for k, v in zip(names, values)} return reduced_dict def gather_tensors(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [ torch.ones_like(tensor) for _ in range(comm.world_size) ] dist.all_gather(tensors_gather, tensor, async_op=False) # need to do this to restore propagation of the gradients tensors_gather[comm.rank] = tensor output = torch.cat(tensors_gather, dim=0) return output def gather_tensors_fake(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ tensors_gather = [ torch.ones_like(tensor) for _ in range(comm.world_size) ] dist.all_gather(tensors_gather, tensor, async_op=False) # need to do this to restore propagation of the gradients tensors_gather[comm.rank] = tensor output = torch.cat(tensors_gather, dim=0) output = torch.cat([output,output.detach()],0) return output def gather_nearby_tensors(tensor): """ Performs all_gather operation on the provided tensors. *** Warning ***: torch.distributed.all_gather has no gradient. """ step=comm.rank//2 if comm.rank%2==0: nearby_rank=step*2+1 else: nearby_rank=step*2 cpu_tensor=tensor tensors_gather = [ torch.ones_like(cpu_tensor) for _ in range(comm.world_size) ] dist.all_gather(tensors_gather, cpu_tensor, async_op=False) # need to do this to restore propagation of the gradients tensors_gather=[tensors_gather[nearby_rank].to(tensor.device),tensor] output = torch.cat(tensors_gather, dim=0) return output def gather_tensors_with_gradient(x): """ collect all tensor from all GPUs args: x: shape (mini_batch, ...) returns: shape (mini_batch * num_gpu, ...) """ x = x.contiguous() out_list = [torch.zeros_like(x, device=x.device, dtype=x.dtype) for _ in range(comm.world_size)] out_list = better_all_gather(out_list, x) return torch.cat(out_list, dim=0) gather_funcs={ "ALL":gather_tensors, "NEAR":gather_nearby_tensors, "GRAD":gather_tensors_with_gradient, "FAKE":gather_tensors_fake } from contextlib import contextmanager @contextmanager def torch_distributed_zero_first(): """ Decorator to make all processes in distributed training wait for each local_master to do something. """ local_rank=comm.local_rank if local_rank not in [-1, 0]: dist.barrier(device_ids=[local_rank]) yield if local_rank == 0: dist.barrier(device_ids=[0])
6,860
28.701299
103
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/data/utils/manage.py
from sys import stdout import zipfile import os.path as osp import lmdb import logging from PIL import Image import pickle import io import glob import os from pathlib import Path import time from threading import Thread from queue import Queue,Empty import subprocess def func_wrapper(func): def sub_func(queue,kwargs): while True: try: key=queue.get(False) ret=func(key,**kwargs) except Empty: break return sub_func class ThreadPool: def __init__(self,n): self.threads=[] self.n=n def run(self,func,array,**kwargs): queue=Queue() for val in array: queue.put(val) threads=[] target=func_wrapper(func) # hold_thread=subprocess.Popen("exec "+"python /mnt/blob/datasets/holder.py",shell=True,stdout=subprocess.DEVNULL) time.sleep(1) print(f"start loading queue {queue.qsize()}") logging.info(f"start loading queue {queue.qsize()}") for i in range(self.n): print(i) thread=Thread(target=target, args=(queue,kwargs)) thread.start() threads.append(thread) for thread in threads: thread.join() # hold_thread.kill() home = str(Path.home()) abs_blob_path=os.path.realpath("/mnt/blob/") CACHE_FOLDER=os.path.join(home,"caching") USE_CACHE=True def norm(path): assert "*" not in path return os.path.realpath(os.path.abspath(path)) def in_blob(file): if abs_blob_path in file: return True else: return False def map_name(file): path=norm(file) path=path.lstrip(abs_blob_path+"/") path=path.replace("/","_") assert len(path)<250 return path def preload(db,sync=True,load=True): if not load: return print(f"loading {db.db_path}") logging.info(f"loading {db.db_path}") if sync: db.initialize() else: p = Thread(target=db.initialize) p.start() def get_keys_from_lmdb(db): with db.begin(write=False) as txn: return list(txn.cursor().iternext(values=False)) def decode_img(byteflow): img=Image.open(io.BytesIO(byteflow)).convert("RGB") img.load() return img def decode_text(byteflow): return pickle.loads(byteflow) decode_funcs={ "image": decode_img, "text": decode_text } class MultipleZipManager: def __init__(self, files: list): raise def remove_prefix(text, prefix): return text[len(prefix):] if text.startswith(prefix) else text class ZipManager: def __init__(self, db_path,data_type,prefix=None,load=True) -> None: self.decode_func=decode_funcs[data_type] self.db_path=db_path cache_file=os.path.join(CACHE_FOLDER,map_name(db_path)) if USE_CACHE and os.path.exists(cache_file): logging.info(f"using local cache {cache_file}") self.db_path=cache_file if prefix is None: self.prefix = None else: self.prefix=f"{prefix}_" self._init=False preload(self,load=load) def deinitialze(self): self.zip_fd.close() del self.zip_fd self._init = False def initialize(self,close=True): self.zip_fd = zipfile.ZipFile(self.db_path, mode="r") if not hasattr(self,"_keys"): self._keys = self.zip_fd.namelist() if self.prefix is not None: self._keys=[self.prefix+key for key in self._keys] self._init = True if close: self.deinitialze() @property def keys(self): while not hasattr(self,"_keys"): time.sleep(0.1) return self._keys def get(self, name): if not self._init: self.initialize(close=False) # https://discuss.pytorch.org/t/dataloader-stucks/14087/3 byteflow = self.zip_fd.read(name) return self.decode_func(byteflow) class DBManager: def __init__(self, db_path,data_type,prefix=None,load=True) -> None: self.decode_func=decode_funcs[data_type] self.db_path=db_path cache_file=os.path.join(CACHE_FOLDER,map_name(db_path)) if USE_CACHE and os.path.exists(cache_file): logging.info(f"using local cache {cache_file}") self.db_path=cache_file if prefix is None: self.prefix = None else: self.prefix=f"{prefix}_" self._init=False preload(self,load=load) def initialize(self): self.env = lmdb.open( self.db_path, subdir=osp.isdir(self.db_path), readonly=True, lock=False, readahead=False, meminit=False, max_readers=10000 ) self._init=True @property def keys(self): while not self._init: time.sleep(0.1) if self.prefix is not None: _keys=[self.prefix+key.decode() for key in get_keys_from_lmdb(self.env)] else: _keys=[key.decode() for key in get_keys_from_lmdb(self.env)] return _keys def get(self, name): env = self.env if self.prefix is not None: name=remove_prefix(name,self.prefix) with env.begin(write=False) as txn: byteflow = txn.get(name.encode()) if byteflow is None: print("fuck",name) raise name return self.decode_func(byteflow) def __exit__(self, exc_type, exc_value, traceback): del self.env import json class KVReader: def __init__(self,db_path,data_type,prefix=None,load=True): assert data_type=="text" if prefix is None: self.prefix = None else: self.prefix=f"{prefix}_" self.db_path=db_path preload(self,load=load) self._init=False self._opened=False def initialize(self): f=open(self.db_path,"r") start=int(f.read(1000).strip()) f.seek(start) self.mp=json.load(f) if self.prefix is not None: self.mp={self.prefix+k:v for k,v in self.mp.items()} f.close() self._init=True def open(self): self.f=open(self.db_path,"r") self._opened=True @property def keys(self): while not self._init: time.sleep(0.1) return list(self.mp.keys()) def get(self,key): if not self._opened: self.open() idx=self.mp[key] self.f.seek(idx) text=self.f.readline().strip() return {"alt_text":text} def __len__(self): return len(self.mp) @staticmethod def create(file,keys,values): assert len(keys)==len(values) f=open(file,"w") f.write("\n"*1000) idx=[] for val in values: idx.append(f.tell()) f.write(val) f.write("\n") start=f.tell() ki={k:i for i,k in zip(idx,keys)} json.dump(ki, f, ensure_ascii=False) f.seek(0) f.write(str(start)) f.close() class MultipleLMDBManager: def __init__(self, files: list, data_type,get_key=False,sync=True): self.files = files self._is_init = False self.data_type=data_type assert data_type in decode_funcs self.get_key=get_key if sync: print("sync",files) self.initialize() else: print("async",files) preload(self) def keep_subset(self,subset): mapping={key:self.mapping[key] for key in subset} del self.mapping self.mapping=mapping def initialize(self): self.mapping={} self.managers={} new_files=[] for old_file in self.files: items=old_file.split("|") file=items[0] if len(items)>1: prefix = items[1] else: prefix = None if not file.startswith("glob-"): new_files.append(old_file) else: desc=remove_prefix(file,"glob-") sub_files = glob.glob(desc) sub_files = sorted(sub_files) if prefix is not None: sub_files = [f"{f}|{prefix}" for f in sub_files] new_files.extend(sub_files) self.files=new_files for i,old_file in enumerate(self.files): items=old_file.split("|") file=items[0] if len(items)>1: prefix = items[1] else: prefix = None if file.endswith(".lmdb"): Manager = DBManager elif file.endswith(".zip"): Manager = ZipManager elif file.endswith(".kv"): Manager = KVReader else: raise self.managers[i] = Manager(file,self.data_type,prefix=prefix,load=False) print(file, " done") ThreadPool(4).run(preload,self.managers.values()) if self.get_key: self._keys=[] for index,manager in self.managers.items(): file=manager.db_path print(f"{file} loading") logging.info(f"{file} loading") keys=manager.keys self._keys.extend(keys) for key in keys: self.mapping[key]=index logging.info(f"{file} loaded, size = {len(keys)}") print(f"{file} loaded, size = {len(keys)}") self._is_init=True @property def keys(self): while not self._is_init: time.sleep(0.1) return self._keys def cleanup(self): del self._keys del self.mapping def get(self, name,source=None): if source is None: source=self.mapping[name] data = self.managers[source].get(name) return data class MetaDB: def __init__(self, path, readonly=True, size=None): self.readonly = readonly if readonly: self.db = lmdb.open( path, readonly=readonly, max_readers=10000, subdir=False, lock=False ) else: assert size is not None self.db = lmdb.open( path, readonly=readonly, max_readers=10000, subdir=False, map_size=int(1073741824 * size), ) def keys(self): with self.db.begin(write=False) as txn: keys = list(txn.cursor().iternext(values=False)) return keys def encode_int(self,num): return num.to_bytes(4,"big") def decode_int(self,num_bytes): return int.from_bytes(num_bytes,"big") def get(self, key, func=None): with self.db.begin(write=False) as txn: val = txn.get(key) if val is None: raise if func: val = func(val) return val
11,184
25.630952
122
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/build.py
from image_synthesis.utils.misc import instantiate_from_config def build_model(config, args=None): return instantiate_from_config(config['model'])
153
24.666667
62
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/modules/clip/simple_tokenizer.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, end_idx=49152, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') # merges = merges[1:49152-256-2+1] # end_idx can be 49152 for CLIP # or 16384 for DALL-E merges = merges[1:end_idx-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] # with length 256 for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) # with length = end_idx+256 self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token + '</w>' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
4,806
34.087591
144
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/modules/clip/clip.py
import hashlib import os import urllib import warnings from typing import Union, List import torch from PIL import Image from torchvision.transforms import Compose, Resize, CenterCrop, ToTensor, Normalize from tqdm import tqdm from .model import build_model from .simple_tokenizer import SimpleTokenizer as _Tokenizer __all__ = ["available_models", "load", "tokenize"] _tokenizer = _Tokenizer() _MODELS = { "RN50": "https://openaipublic.azureedge.net/clip/models/afeb0e10f9e5a86da6080e35cf09123aca3b358a0c3e3b6c78a7b63bc04b6762/RN50.pt", "ViT-B/32": "https://openaipublic.azureedge.net/clip/models/40d365715913c9da98579312b702a82c18be219cc2a73407c4526f58eba950af/ViT-B-32.pt", } def _download(url: str, root: str = os.path.expanduser("~/.cache/image-synthesis")): os.makedirs(root, exist_ok=True) filename = os.path.basename(url) expected_sha256 = url.split("/")[-2] # download_target = os.path.join(root, filename) download_target = "OUTPUT/pretrained_model/ViT-B-32.pt" if os.path.exists(download_target) and not os.path.isfile(download_target): raise RuntimeError(f"{download_target} exists and is not a regular file") if os.path.isfile(download_target): if hashlib.sha256(open(download_target, "rb").read()).hexdigest() == expected_sha256: return download_target else: warnings.warn(f"{download_target} exists, but the SHA256 checksum does not match; re-downloading the file") with urllib.request.urlopen(url) as source, open(download_target, "wb") as output: with tqdm(total=int(source.info().get("Content-Length")), ncols=80, unit='iB', unit_scale=True) as loop: while True: buffer = source.read(8192) if not buffer: break output.write(buffer) loop.update(len(buffer)) if hashlib.sha256(open(download_target, "rb").read()).hexdigest() != expected_sha256: raise RuntimeError(f"Model has been downloaded but the SHA256 checksum does not not match") return download_target def _transform(n_px): return Compose([ Resize(n_px, interpolation=Image.BICUBIC), CenterCrop(n_px), lambda image: image.convert("RGB"), ToTensor(), Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)), ]) def available_models() -> List[str]: """Returns the names of available CLIP models""" return list(_MODELS.keys()) def load(name: str, device: Union[str, torch.device] = "cuda" if torch.cuda.is_available() else "cpu", jit=True): """Load a CLIP model Parameters ---------- name : str A model name listed by `clip.available_models()`, or the path to a model checkpoint containing the state_dict device : Union[str, torch.device] The device to put the loaded model jit : bool Whether to load the optimized JIT model (default) or more hackable non-JIT model. Returns ------- model : torch.nn.Module The CLIP model preprocess : Callable[[PIL.Image], torch.Tensor] A torchvision transform that converts a PIL image into a tensor that the returned model can take as its input """ if name in _MODELS: # model_path = _download(_MODELS[name]) model_path = "OUTPUT/pretrained_model/ViT-B-32.pt" elif os.path.isfile(name): model_path = name else: raise RuntimeError(f"Model {name} not found; available models = {available_models()}") try: # loading JIT archive model = torch.jit.load(model_path, map_location=device if jit else "cpu").eval() state_dict = None except RuntimeError: # loading saved state dict if jit: warnings.warn(f"File {model_path} is not a JIT archive. Loading as a state dict instead") jit = False state_dict = torch.load(model_path, map_location="cpu") if not jit: model = build_model(state_dict or model.state_dict()).to(device) if str(device) == "cpu": model.float() return model, _transform(model.visual.input_resolution) # patch the device names device_holder = torch.jit.trace(lambda: torch.ones([]).to(torch.device(device)), example_inputs=[]) device_node = [n for n in device_holder.graph.findAllNodes("prim::Constant") if "Device" in repr(n)][-1] def patch_device(module): graphs = [module.graph] if hasattr(module, "graph") else [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("prim::Constant"): if "value" in node.attributeNames() and str(node["value"]).startswith("cuda"): node.copyAttributes(device_node) model.apply(patch_device) patch_device(model.encode_image) patch_device(model.encode_text) # patch dtype to float32 on CPU if str(device) == "cpu": float_holder = torch.jit.trace(lambda: torch.ones([]).float(), example_inputs=[]) float_input = list(float_holder.graph.findNode("aten::to").inputs())[1] float_node = float_input.node() def patch_float(module): graphs = [module.graph] if hasattr(module, "graph") else [] if hasattr(module, "forward1"): graphs.append(module.forward1.graph) for graph in graphs: for node in graph.findAllNodes("aten::to"): inputs = list(node.inputs()) for i in [1, 2]: # dtype can be the second or third argument to aten::to() if inputs[i].node()["value"] == 5: inputs[i].node().copyAttributes(float_node) model.apply(patch_float) patch_float(model.encode_image) patch_float(model.encode_text) model.float() return model, _transform(model.input_resolution.item()) def tokenize(texts: Union[str, List[str]], context_length: int = 77, add_start_and_end: bool = True, with_mask: bool = True, pad_value: int = 0, tokenizer=None, just_token: bool = False) -> torch.LongTensor: """ Returns the tokenized representation of given input string(s) Parameters ---------- texts : Union[str, List[str]] An input string or a list of input strings to tokenize context_length : int The context length to use; all CLIP models use 77 as the context length just_token: bool If True, just return the token of text Returns ------- A two-dimensional tensor containing the resulting tokens, shape = [number of input strings, context_length] """ if isinstance(texts, str): texts = [texts] if tokenizer is None: tokenizer = _tokenizer sot_token = [tokenizer.encoder["<|startoftext|>"]] if add_start_and_end else [] eot_token = [tokenizer.encoder["<|endoftext|>"]] if add_start_and_end else [] all_tokens = [sot_token + tokenizer.encode(text.lower()) + eot_token for text in texts] if just_token: return all_tokens result = torch.zeros(len(all_tokens), context_length, dtype=torch.long) + pad_value if with_mask: mask = torch.zeros(len(all_tokens), context_length, dtype=torch.bool) for i, tokens in enumerate(all_tokens): if len(tokens) > context_length: temp = tokens[-1] tokens = tokens[:context_length] tokens[-1] = temp assert len(tokens) == context_length # raise RuntimeError("Input text {} is too long for context length {}".format(texts[i], context_length)) result[i, :len(tokens)] = torch.tensor(tokens) if with_mask: mask[i, :len(tokens)] = True results = { 'token': result, } if with_mask: results['mask'] = mask return results
7,962
35.360731
142
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/modules/clip/model.py
from collections import OrderedDict from typing import Tuple, Union import torch import torch.nn.functional as F from torch import nn class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1): super().__init__() # all conv layers have stride 1. an avgpool is performed after the second convolution when stride > 1 self.conv1 = nn.Conv2d(inplanes, planes, 1, bias=False) self.bn1 = nn.BatchNorm2d(planes) self.conv2 = nn.Conv2d(planes, planes, 3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(planes) self.avgpool = nn.AvgPool2d(stride) if stride > 1 else nn.Identity() self.conv3 = nn.Conv2d(planes, planes * self.expansion, 1, bias=False) self.bn3 = nn.BatchNorm2d(planes * self.expansion) self.relu = nn.ReLU(inplace=True) self.downsample = None self.stride = stride if stride > 1 or inplanes != planes * Bottleneck.expansion: # downsampling layer is prepended with an avgpool, and the subsequent convolution has stride 1 self.downsample = nn.Sequential(OrderedDict([ ("-1", nn.AvgPool2d(stride)), ("0", nn.Conv2d(inplanes, planes * self.expansion, 1, stride=1, bias=False)), ("1", nn.BatchNorm2d(planes * self.expansion)) ])) def forward(self, x: torch.Tensor): identity = x out = self.relu(self.bn1(self.conv1(x))) out = self.relu(self.bn2(self.conv2(out))) out = self.avgpool(out) out = self.bn3(self.conv3(out)) if self.downsample is not None: identity = self.downsample(x) out += identity out = self.relu(out) return out class AttentionPool2d(nn.Module): def __init__(self, spacial_dim: int, embed_dim: int, num_heads: int, output_dim: int = None): super().__init__() self.positional_embedding = nn.Parameter(torch.randn(spacial_dim ** 2 + 1, embed_dim) / embed_dim ** 0.5) self.k_proj = nn.Linear(embed_dim, embed_dim) self.q_proj = nn.Linear(embed_dim, embed_dim) self.v_proj = nn.Linear(embed_dim, embed_dim) self.c_proj = nn.Linear(embed_dim, output_dim or embed_dim) self.num_heads = num_heads def forward(self, x): x = x.reshape(x.shape[0], x.shape[1], x.shape[2] * x.shape[3]).permute(2, 0, 1) # NCHW -> (HW)NC x = torch.cat([x.mean(dim=0, keepdim=True), x], dim=0) # (HW+1)NC x = x + self.positional_embedding[:, None, :].to(x.dtype) # (HW+1)NC x, _ = F.multi_head_attention_forward( query=x, key=x, value=x, embed_dim_to_check=x.shape[-1], num_heads=self.num_heads, q_proj_weight=self.q_proj.weight, k_proj_weight=self.k_proj.weight, v_proj_weight=self.v_proj.weight, in_proj_weight=None, in_proj_bias=torch.cat([self.q_proj.bias, self.k_proj.bias, self.v_proj.bias]), bias_k=None, bias_v=None, add_zero_attn=False, dropout_p=0, out_proj_weight=self.c_proj.weight, out_proj_bias=self.c_proj.bias, use_separate_proj_weight=True, training=self.training, need_weights=False ) return x[0] class ModifiedResNet(nn.Module): """ A ResNet class that is similar to torchvision's but contains the following changes: - There are now 3 "stem" convolutions as opposed to 1, with an average pool instead of a max pool. - Performs anti-aliasing strided convolutions, where an avgpool is prepended to convolutions with stride > 1 - The final pooling layer is a QKV attention instead of an average pool """ def __init__(self, layers, output_dim, heads, input_resolution=224, width=64): super().__init__() self.output_dim = output_dim self.input_resolution = input_resolution # the 3-layer stem self.conv1 = nn.Conv2d(3, width // 2, kernel_size=3, stride=2, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(width // 2) self.conv2 = nn.Conv2d(width // 2, width // 2, kernel_size=3, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(width // 2) self.conv3 = nn.Conv2d(width // 2, width, kernel_size=3, padding=1, bias=False) self.bn3 = nn.BatchNorm2d(width) self.avgpool = nn.AvgPool2d(2) self.relu = nn.ReLU(inplace=True) # residual layers self._inplanes = width # this is a *mutable* variable used during construction self.layer1 = self._make_layer(width, layers[0]) self.layer2 = self._make_layer(width * 2, layers[1], stride=2) self.layer3 = self._make_layer(width * 4, layers[2], stride=2) self.layer4 = self._make_layer(width * 8, layers[3], stride=2) embed_dim = width * 32 # the ResNet feature dimension self.attnpool = AttentionPool2d(input_resolution // 32, embed_dim, heads, output_dim) def _make_layer(self, planes, blocks, stride=1): layers = [Bottleneck(self._inplanes, planes, stride)] self._inplanes = planes * Bottleneck.expansion for _ in range(1, blocks): layers.append(Bottleneck(self._inplanes, planes)) return nn.Sequential(*layers) def forward(self, x): def stem(x): for conv, bn in [(self.conv1, self.bn1), (self.conv2, self.bn2), (self.conv3, self.bn3)]: x = self.relu(bn(conv(x))) x = self.avgpool(x) return x x = x.type(self.conv1.weight.dtype) x = stem(x) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) x = self.attnpool(x) return x class LayerNorm(nn.LayerNorm): """Subclass torch's LayerNorm to handle fp16.""" def forward(self, x: torch.Tensor): orig_type = x.dtype ret = super().forward(x.type(torch.float32)) return ret.type(orig_type) class QuickGELU(nn.Module): def forward(self, x: torch.Tensor): return x * torch.sigmoid(1.702 * x) class ResidualAttentionBlock(nn.Module): def __init__(self, d_model: int, n_head: int, attn_mask: torch.Tensor = None): super().__init__() self.attn = nn.MultiheadAttention(d_model, n_head) self.ln_1 = LayerNorm(d_model) self.mlp = nn.Sequential(OrderedDict([ ("c_fc", nn.Linear(d_model, d_model * 4)), ("gelu", QuickGELU()), ("c_proj", nn.Linear(d_model * 4, d_model)) ])) self.ln_2 = LayerNorm(d_model) self.attn_mask = attn_mask def attention(self, x: torch.Tensor): self.attn_mask = self.attn_mask.to(dtype=x.dtype, device=x.device) if self.attn_mask is not None else None return self.attn(x, x, x, need_weights=False, attn_mask=self.attn_mask)[0] def forward(self, x: torch.Tensor): x = x + self.attention(self.ln_1(x)) x = x + self.mlp(self.ln_2(x)) return x class Transformer(nn.Module): def __init__(self, width: int, layers: int, heads: int, attn_mask: torch.Tensor = None): super().__init__() self.width = width self.layers = layers self.resblocks = nn.Sequential(*[ResidualAttentionBlock(width, heads, attn_mask) for _ in range(layers)]) def forward(self, x: torch.Tensor): return self.resblocks(x) class VisualTransformer(nn.Module): def __init__(self, input_resolution: int, patch_size: int, width: int, layers: int, heads: int, output_dim: int): super().__init__() self.input_resolution = input_resolution self.output_dim = output_dim self.conv1 = nn.Conv2d(in_channels=3, out_channels=width, kernel_size=patch_size, stride=patch_size, bias=False) scale = width ** -0.5 self.class_embedding = nn.Parameter(scale * torch.randn(width)) self.positional_embedding = nn.Parameter(scale * torch.randn((input_resolution // patch_size) ** 2 + 1, width)) self.ln_pre = LayerNorm(width) self.transformer = Transformer(width, layers, heads) self.ln_post = LayerNorm(width) self.proj = nn.Parameter(scale * torch.randn(width, output_dim)) def forward(self, x: torch.Tensor): x = self.conv1(x) # shape = [*, width, grid, grid] x = x.reshape(x.shape[0], x.shape[1], -1) # shape = [*, width, grid ** 2] x = x.permute(0, 2, 1) # shape = [*, grid ** 2, width] x = torch.cat([self.class_embedding.to(x.dtype) + torch.zeros(x.shape[0], 1, x.shape[-1], dtype=x.dtype, device=x.device), x], dim=1) # shape = [*, grid ** 2 + 1, width] x = x + self.positional_embedding.to(x.dtype) x = self.ln_pre(x) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_post(x[:, 0, :]) if self.proj is not None: x = x @ self.proj return x class CLIP(nn.Module): def __init__(self, embed_dim: int, # vision image_resolution: int, vision_layers: Union[Tuple[int, int, int, int], int], vision_width: int, vision_patch_size: int, # text context_length: int, vocab_size: int, transformer_width: int, transformer_heads: int, transformer_layers: int ): super().__init__() self.context_length = context_length if isinstance(vision_layers, (tuple, list)): vision_heads = vision_width * 32 // 64 self.visual = ModifiedResNet( layers=vision_layers, output_dim=embed_dim, heads=vision_heads, input_resolution=image_resolution, width=vision_width ) else: vision_heads = vision_width // 64 self.visual = VisualTransformer( input_resolution=image_resolution, patch_size=vision_patch_size, width=vision_width, layers=vision_layers, heads=vision_heads, output_dim=embed_dim ) self.transformer = Transformer( width=transformer_width, layers=transformer_layers, heads=transformer_heads, attn_mask=self.build_attention_mask() ) self.vocab_size = vocab_size self.token_embedding = nn.Embedding(vocab_size, transformer_width) self.positional_embedding = nn.Parameter(torch.empty(self.context_length, transformer_width)) self.ln_final = LayerNorm(transformer_width) self.text_projection = nn.Parameter(torch.empty(transformer_width, embed_dim)) self.logit_scale = nn.Parameter(torch.ones([])) self.initialize_parameters() def initialize_parameters(self): nn.init.normal_(self.token_embedding.weight, std=0.02) nn.init.normal_(self.positional_embedding, std=0.01) if isinstance(self.visual, ModifiedResNet): if self.visual.attnpool is not None: std = self.visual.attnpool.c_proj.in_features ** -0.5 nn.init.normal_(self.visual.attnpool.q_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.k_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.v_proj.weight, std=std) nn.init.normal_(self.visual.attnpool.c_proj.weight, std=std) for resnet_block in [self.visual.layer1, self.visual.layer2, self.visual.layer3, self.visual.layer4]: for name, param in resnet_block.named_parameters(): if name.endswith("bn3.weight"): nn.init.zeros_(param) proj_std = (self.transformer.width ** -0.5) * ((2 * self.transformer.layers) ** -0.5) attn_std = self.transformer.width ** -0.5 fc_std = (2 * self.transformer.width) ** -0.5 for block in self.transformer.resblocks: nn.init.normal_(block.attn.in_proj_weight, std=attn_std) nn.init.normal_(block.attn.out_proj.weight, std=proj_std) nn.init.normal_(block.mlp.c_fc.weight, std=fc_std) nn.init.normal_(block.mlp.c_proj.weight, std=proj_std) if self.text_projection is not None: nn.init.normal_(self.text_projection, std=self.transformer.width ** -0.5) def build_attention_mask(self): # lazily create causal attention mask, with full attention between the vision tokens # pytorch uses additive attention mask; fill with -inf mask = torch.empty(self.context_length, self.context_length) mask.fill_(float("-inf")) mask.triu_(1) # zero out the lower diagonal return mask @property def dtype(self): if hasattr(self, 'visual'): return self.visual.conv1.weight.dtype else: return self.transformer.resblocks[0].attn.in_proj_weight.dtype def encode_image(self, image): return self.visual(image.type(self.dtype)) def encode_text(self, text): x = self.token_embedding(text).type(self.dtype) # [batch_size, n_ctx, d_model] x = x + self.positional_embedding.type(self.dtype) x = x.permute(1, 0, 2) # NLD -> LND x = self.transformer(x) x = x.permute(1, 0, 2) # LND -> NLD x = self.ln_final(x).type(self.dtype) # x.shape = [batch_size, n_ctx, transformer.width] # take features from the eot embedding (eot_token is the highest number in each sequence) x = x[torch.arange(x.shape[0]), text.argmax(dim=-1)] @ self.text_projection return x def forward(self, image, text): image_features = self.encode_image(image) text_features = self.encode_text(text) # normalized features image_features = image_features / image_features.norm(dim=-1, keepdim=True) text_features = text_features / text_features.norm(dim=-1, keepdim=True) # cosine similarity as logits logit_scale = self.logit_scale.exp() logits_per_image = logit_scale * image_features @ text_features.t() logits_per_text = logit_scale * text_features @ image_features.t() # shape = [global_batch_size, global_batch_size] return logits_per_image, logits_per_text def convert_weights(model: nn.Module): """Convert applicable model parameters to fp16""" def _convert_weights_to_fp16(l): if isinstance(l, (nn.Conv1d, nn.Conv2d, nn.Linear)): l.weight.data = l.weight.data.half() if l.bias is not None: l.bias.data = l.bias.data.half() if isinstance(l, nn.MultiheadAttention): for attr in [*[f"{s}_proj_weight" for s in ["in", "q", "k", "v"]], "in_proj_bias", "bias_k", "bias_v"]: tensor = getattr(l, attr) if tensor is not None: tensor.data = tensor.data.half() for name in ["text_projection", "proj"]: if hasattr(l, name): attr = getattr(l, name) if attr is not None: attr.data = attr.data.half() model.apply(_convert_weights_to_fp16) def build_model(state_dict: dict): vit = "visual.proj" in state_dict if vit: vision_width = state_dict["visual.conv1.weight"].shape[0] vision_layers = len([k for k in state_dict.keys() if k.startswith("visual.") and k.endswith(".attn.in_proj_weight")]) vision_patch_size = state_dict["visual.conv1.weight"].shape[-1] grid_size = round((state_dict["visual.positional_embedding"].shape[0] - 1) ** 0.5) image_resolution = vision_patch_size * grid_size else: counts: list = [len(set(k.split(".")[2] for k in state_dict if k.startswith(f"visual.layer{b}"))) for b in [1, 2, 3, 4]] vision_layers = tuple(counts) vision_width = state_dict["visual.layer1.0.conv1.weight"].shape[0] output_width = round((state_dict["visual.attnpool.positional_embedding"].shape[0] - 1) ** 0.5) vision_patch_size = None assert output_width ** 2 + 1 == state_dict["visual.attnpool.positional_embedding"].shape[0] image_resolution = output_width * 32 embed_dim = state_dict["text_projection"].shape[1] context_length = state_dict["positional_embedding"].shape[0] vocab_size = state_dict["token_embedding.weight"].shape[0] transformer_width = state_dict["ln_final.weight"].shape[0] transformer_heads = transformer_width // 64 transformer_layers = len(set(k.split(".")[2] for k in state_dict if k.startswith(f"transformer.resblocks"))) model = CLIP( embed_dim, image_resolution, vision_layers, vision_width, vision_patch_size, context_length, vocab_size, transformer_width, transformer_heads, transformer_layers ) for key in ["input_resolution", "context_length", "vocab_size"]: if key in state_dict: del state_dict[key] convert_weights(model) model.load_state_dict(state_dict) return model.eval()
17,333
38.848276
178
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/modules/clip/clip_tokenizer.py
import gzip import html import os from functools import lru_cache import ftfy import regex as re @lru_cache() def default_bpe(): return os.path.join(os.path.dirname(os.path.abspath(__file__)), "bpe_simple_vocab_16e6.txt.gz") @lru_cache() def bytes_to_unicode(): """ Returns list of utf-8 byte and a corresponding list of unicode strings. The reversible bpe codes work on unicode strings. This means you need a large # of unicode characters in your vocab if you want to avoid UNKs. When you're at something like a 10B token dataset you end up needing around 5K for decent coverage. This is a signficant percentage of your normal, say, 32K bpe vocab. To avoid that, we want lookup tables between utf-8 bytes and unicode strings. And avoids mapping to whitespace/control characters the bpe code barfs on. """ bs = list(range(ord("!"), ord("~")+1))+list(range(ord("¡"), ord("¬")+1))+list(range(ord("®"), ord("ÿ")+1)) cs = bs[:] n = 0 for b in range(2**8): if b not in bs: bs.append(b) cs.append(2**8+n) n += 1 cs = [chr(n) for n in cs] return dict(zip(bs, cs)) def get_pairs(word): """Return set of symbol pairs in a word. Word is represented as tuple of symbols (symbols being variable-length strings). """ pairs = set() prev_char = word[0] for char in word[1:]: pairs.add((prev_char, char)) prev_char = char return pairs def basic_clean(text): text = ftfy.fix_text(text) text = html.unescape(html.unescape(text)) return text.strip() def whitespace_clean(text): text = re.sub(r'\s+', ' ', text) text = text.strip() return text class SimpleTokenizer(object): def __init__(self, end_idx=49152, bpe_path: str = default_bpe()): self.byte_encoder = bytes_to_unicode() self.byte_decoder = {v: k for k, v in self.byte_encoder.items()} merges = gzip.open(bpe_path).read().decode("utf-8").split('\n') # merges = merges[1:49152-256-2+1] # end_idx can be 49152 for CLIP # or 16384 for DALL-E merges = merges[1:end_idx-256-2+1] merges = [tuple(merge.split()) for merge in merges] vocab = list(bytes_to_unicode().values()) vocab = vocab + [v+'</w>' for v in vocab] # with length 256 for merge in merges: vocab.append(''.join(merge)) vocab.extend(['<|startoftext|>', '<|endoftext|>']) # with length = end_idx+256 self.encoder = dict(zip(vocab, range(len(vocab)))) self.decoder = {v: k for k, v in self.encoder.items()} self.bpe_ranks = dict(zip(merges, range(len(merges)))) self.cache = {'<|startoftext|>': '<|startoftext|>', '<|endoftext|>': '<|endoftext|>'} self.pat = re.compile(r"""<\|startoftext\|>|<\|endoftext\|>|'s|'t|'re|'ve|'m|'ll|'d|[\p{L}]+|[\p{N}]|[^\s\p{L}\p{N}]+""", re.IGNORECASE) def bpe(self, token): if token in self.cache: return self.cache[token] word = tuple(token[:-1]) + (token[-1] + '</w>',) pairs = get_pairs(word) if not pairs: return token + '</w>' while True: bigram = min(pairs, key=lambda pair: self.bpe_ranks.get(pair, float('inf'))) if bigram not in self.bpe_ranks: break first, second = bigram new_word = [] i = 0 while i < len(word): try: j = word.index(first, i) new_word.extend(word[i:j]) i = j except: new_word.extend(word[i:]) break if word[i] == first and i < len(word) - 1 and word[i+1] == second: new_word.append(first+second) i += 2 else: new_word.append(word[i]) i += 1 new_word = tuple(new_word) word = new_word if len(word) == 1: break else: pairs = get_pairs(word) word = ' '.join(word) self.cache[token] = word return word def encode(self, text): bpe_tokens = [] text = whitespace_clean(basic_clean(text)).lower() for token in re.findall(self.pat, text): token = ''.join(self.byte_encoder[b] for b in token.encode('utf-8')) bpe_tokens.extend(self.encoder[bpe_token] for bpe_token in self.bpe(token).split(' ')) return bpe_tokens def decode(self, tokens): text = ''.join([self.decoder[token] for token in tokens]) text = bytearray([self.byte_decoder[c] for c in text]).decode('utf-8', errors="replace").replace('</w>', ' ') return text
4,806
34.087591
144
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/codecs/base_codec.py
import torch from torch import nn class BaseCodec(nn.Module): def get_tokens(self, x, **kwargs): """ Input: x: input data Return: indices: B x L, the codebook indices, where L is the length of flattened feature map size """ raise NotImplementedError def get_number_of_tokens(self): """ Return: int, the number of tokens """ raise NotImplementedError def encode(self, img): raise NotImplementedError def decode(self, img_seq): raise NotImplementedError def forward(self, **kwargs): raise NotImplementedError def train(self, mode=True): self.training = mode if self.trainable and mode: return super().train(True) else: return super().train(False) def _set_trainable(self): if not self.trainable: for pn, p in self.named_parameters(): p.requires_grad = False self.eval()
1,046
23.348837
72
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/codecs/image_codec/taming_gumbel_vqvae.py
import torch import torch.nn as nn from omegaconf import OmegaConf import sys sys.path.append("..") # sys.path.append("../image_synthesis") from image_synthesis.utils.misc import instantiate_from_config from image_synthesis.taming.models.vqgan import GumbelVQ, VQModel from image_synthesis.taming.models.cond_transformer import Net2NetTransformer import os import torchvision.transforms.functional as TF import PIL from image_synthesis.modeling.codecs.base_codec import BaseCodec from einops import rearrange import math class Encoder(nn.Module): def __init__(self, encoder, quant_conv, quantize): super().__init__() self.encoder = encoder self.quant_conv = quant_conv self.quantize = quantize @torch.no_grad() def forward(self, x): x = 2*x - 1 h = self.encoder(x) h = self.quant_conv(h) quant, _, [_, _, indices] = self.quantize(h) return indices.view(x.shape[0], -1) class Decoder(nn.Module): def __init__(self, decoder, post_quant_conv, quantize, w=16, h=16): super().__init__() self.decoder = decoder self.post_quant_conv = post_quant_conv self.quantize = quantize self.w = w self.h = h @torch.no_grad() def forward(self, indices): z = self.quantize.get_codebook_entry(indices.view(-1), shape=(indices.shape[0], self.h, self.w, -1)) quant = self.post_quant_conv(z) dec = self.decoder(quant) x = torch.clamp(dec, -1., 1.) x = (x + 1.)/2. return x class TamingFFHQVQVAE(BaseCodec): def __init__( self, trainable=False, token_shape=[16,16], config_path='OUTPUT/pretrained_model/taming_dvae/vqgan_ffhq_f16_1024.yaml', ckpt_path='OUTPUT/pretrained_model/taming_dvae/vqgan_ffhq_f16_1024.pth', num_tokens=1024, quantize_number=0, mapping_path=None, ): super().__init__() model = self.LoadModel(config_path, ckpt_path) self.enc = Encoder(model.encoder, model.quant_conv, model.quantize) self.dec = Decoder(model.decoder, model.post_quant_conv, model.quantize, token_shape[0], token_shape[1]) self.num_tokens = num_tokens self.quantize_number = quantize_number if self.quantize_number != 0 and mapping_path!=None: self.full_to_quantize = torch.load(mapping_path) self.quantize_to_full = torch.zeros(self.quantize_number)-1 for idx, i in enumerate(self.full_to_quantize): if self.quantize_to_full[i] == -1: self.quantize_to_full[i] = idx self.quantize_to_full = self.quantize_to_full.long() self.trainable = trainable self.token_shape = token_shape self._set_trainable() def LoadModel(self, config_path, ckpt_path): config = OmegaConf.load(config_path) # model = instantiate_from_config(config.model) model = Net2NetTransformer(**config.model.params) sd = torch.load(ckpt_path, map_location="cpu")["state_dict"] model.load_state_dict(sd, strict=False) if (isinstance(model, Net2NetTransformer)): model = model.first_stage_model return model @property def device(self): # import pdb; pdb.set_trace() return self.enc.quant_conv.weight.device def preprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-255 """ imgs = imgs.div(255) # map to 0 - 1 return imgs # return map_pixels(imgs) def postprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-1 """ imgs = imgs * 255 return imgs def get_tokens(self, imgs, **kwargs): imgs = self.preprocess(imgs) code = self.enc(imgs) if self.quantize_number != 0: code = self.full_to_quantize[code] output = {'token': code} # output = {'token': rearrange(code, 'b h w -> b (h w)')} return output def decode(self, img_seq): if self.quantize_number != 0: img_seq=self.quantize_to_full[img_seq].type_as(img_seq) b, n = img_seq.shape img_seq = rearrange(img_seq, 'b (h w) -> b h w', h = int(math.sqrt(n))) x_rec = self.dec(img_seq) x_rec = self.postprocess(x_rec) return x_rec class TamingVQVAE(BaseCodec): def __init__( self, trainable=False, token_shape=[16,16], config_path='OUTPUT/pretrained_model/taming_dvae/vqgan_imagenet_f16_16384.yaml', ckpt_path='OUTPUT/pretrained_model/taming_dvae/vqgan_imagenet_f16_16384.pth', num_tokens=16384, quantize_number=974, mapping_path='./help_folder/statistics/taming_vqvae_974.pt', ): super().__init__() model = self.LoadModel(config_path, ckpt_path) self.enc = Encoder(model.encoder, model.quant_conv, model.quantize) self.dec = Decoder(model.decoder, model.post_quant_conv, model.quantize, token_shape[0], token_shape[1]) self.num_tokens = num_tokens self.quantize_number = quantize_number if self.quantize_number != 0 and mapping_path!=None: self.full_to_quantize = torch.load(mapping_path) self.quantize_to_full = torch.zeros(self.quantize_number)-1 for idx, i in enumerate(self.full_to_quantize): if self.quantize_to_full[i] == -1: self.quantize_to_full[i] = idx self.quantize_to_full = self.quantize_to_full.long() self.trainable = trainable self.token_shape = token_shape self._set_trainable() def LoadModel(self, config_path, ckpt_path): config = OmegaConf.load(config_path) model = VQModel(**config.model.params) sd = torch.load(ckpt_path, map_location="cpu")["state_dict"] model.load_state_dict(sd, strict=False) return model @property def device(self): # import pdb; pdb.set_trace() return self.enc.quant_conv.weight.device def preprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-255 """ imgs = imgs.div(255) # map to 0 - 1 return imgs # return map_pixels(imgs) def postprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-1 """ imgs = imgs * 255 return imgs def get_tokens(self, imgs, **kwargs): imgs = self.preprocess(imgs) code = self.enc(imgs) if self.quantize_number != 0: code = self.full_to_quantize[code] output = {'token': code} # output = {'token': rearrange(code, 'b h w -> b (h w)')} return output def decode(self, img_seq): if self.quantize_number != 0: img_seq=self.quantize_to_full[img_seq].type_as(img_seq) b, n = img_seq.shape img_seq = rearrange(img_seq, 'b (h w) -> b h w', h = int(math.sqrt(n))) x_rec = self.dec(img_seq) x_rec = self.postprocess(x_rec) return x_rec class TamingGumbelVQVAE(BaseCodec): def __init__( self, trainable=False, token_shape=[32,32], config_path='OUTPUT/pretrained_model/taming_dvae/taming_f8_8192_openimages.yaml', ckpt_path='OUTPUT/pretrained_model/taming_dvae/taming_f8_8192_openimages_last.pth', num_tokens=8192, quantize_number=2887, mapping_path='./help_folder/statistics/taming_vqvae_2887.pt', ): super().__init__() model = self.LoadModel(config_path, ckpt_path) self.enc = Encoder(model.encoder, model.quant_conv, model.quantize) self.dec = Decoder(model.decoder, model.post_quant_conv, model.quantize, token_shape[0], token_shape[1]) self.num_tokens = num_tokens self.quantize_number = quantize_number if self.quantize_number != 0 and mapping_path!=None: self.full_to_quantize = torch.load(mapping_path) self.quantize_to_full = torch.zeros(self.quantize_number)-1 for idx, i in enumerate(self.full_to_quantize): if self.quantize_to_full[i] == -1: self.quantize_to_full[i] = idx self.quantize_to_full = self.quantize_to_full.long() self.trainable = trainable self.token_shape = token_shape self._set_trainable() def LoadModel(self, config_path, ckpt_path): config = OmegaConf.load(config_path) model = GumbelVQ(**config.model.params) sd = torch.load(ckpt_path, map_location="cpu")["state_dict"] model.load_state_dict(sd, strict=False) return model @property def device(self): # import pdb; pdb.set_trace() return self.enc.quant_conv.weight.device def preprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-255 """ imgs = imgs.div(255) # map to 0 - 1 return imgs # return map_pixels(imgs) def postprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-1 """ imgs = imgs * 255 return imgs def get_tokens(self, imgs, **kwargs): imgs = self.preprocess(imgs) code = self.enc(imgs) if self.quantize_number != 0: code = self.full_to_quantize[code] output = {'token': code} # output = {'token': rearrange(code, 'b h w -> b (h w)')} return output def decode(self, img_seq): if self.quantize_number != 0: img_seq=self.quantize_to_full[img_seq].type_as(img_seq) b, n = img_seq.shape img_seq = rearrange(img_seq, 'b (h w) -> b h w', h = int(math.sqrt(n))) x_rec = self.dec(img_seq) x_rec = self.postprocess(x_rec) return x_rec
10,011
33.885017
112
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/codecs/image_codec/patch_vqgan.py
from numpy.core.shape_base import block from numpy.lib import stride_tricks import torch import numpy as np import torch.nn as nn import torch.nn.functional as F import random from torch.nn.modules.linear import Linear from image_synthesis.utils.misc import instantiate_from_config from image_synthesis.modeling.codecs.base_codec import BaseCodec # from image_synthesis.modeling.modules.vqgan_loss.vqperceptual import VQLPIPSWithDiscriminator from image_synthesis.modeling.utils.misc import mask_with_top_k, logits_top_k, get_token_type from image_synthesis.distributed.distributed import all_reduce # class for quantization # class for quantization class EMAVectorQuantizer(nn.Module): """ see https://github.com/MishaLaskin/vqvae/blob/d761a999e2267766400dc646d82d3ac3657771d4/models/quantizer.py ____________________________________________ Discretization bottleneck part of the VQ-VAE. Inputs: - n_e : number of embeddings - e_dim : dimension of embedding - beta : commitment cost used in loss term, beta * ||z_e(x)-sg[e]||^2 _____________________________________________ """ def __init__(self, n_e, e_dim, beta, masked_n_e_ratio=0,#1.0/4, embed_init_scale=1.0, decay = 0.99, embed_ema=True, get_embed_type='retrive', distance_type='euclidean', ): super(EMAVectorQuantizer, self).__init__() self.n_e = n_e self.masked_n_e_ratio = masked_n_e_ratio self.e_dim = e_dim self.beta = beta self.decay = decay self.embed_ema = embed_ema self.get_embed_type = get_embed_type self.distance_type = distance_type if self.embed_ema: self.eps = 1.0e-5 embed = torch.randn(n_e, e_dim) # embed = torch.zeros(n_e, e_dim) # embed.data.uniform_(-embed_init_scale / self.n_e, embed_init_scale / self.n_e) self.register_buffer("embedding", embed) self.register_buffer("cluster_size", torch.zeros(n_e)) self.register_buffer("embedding_avg", embed.clone()) else: self.embedding = nn.Embedding(self.n_e, self.e_dim) self.embedding.weight.data.uniform_(-embed_init_scale / self.n_e, embed_init_scale / self.n_e) self.masked_embed_start = self.n_e - int(self.masked_n_e_ratio * self.n_e) if self.distance_type == 'learned': self.distance_fc = nn.Linear(self.e_dim, self.n_e) @property def norm_feat(self): return self.distance_type in ['cosine', 'sinkhorn'] @property def embed_weight(self): if isinstance(self.embedding, nn.Embedding): return self.embedding.weight else: return self.embedding def norm_embedding(self): if self.training: with torch.no_grad(): w = self.embed_weight.data.clone() w = F.normalize(w, dim=1, p=2) if isinstance(self.embedding, nn.Embedding): self.embedding.weight.copy_(w) else: self.embedding.copy_(w) def _quantize(self, z, token_type=None): """ z: L x D token_type: L, 1 denote unmasked token, other masked token """ if self.distance_type == 'euclidean': d = torch.sum(z ** 2, dim=1, keepdim=True) + \ torch.sum(self.embed_weight**2, dim=1) - 2 * \ torch.matmul(z, self.embed_weight.t()) elif self.distance_type == 'cosine': d = 0 - torch.einsum('ld,nd->ln', z, self.embed_weight) # BHW x N else: raise NotImplementedError('distance not implemented for {}'.format(self.distance_type)) # find closest encodings # import pdb; pdb.set_trace() if token_type is None or self.masked_embed_start == self.n_e: min_encoding_indices = torch.argmin(d, dim=1) # L else: min_encoding_indices = torch.zeros(z.shape[0]).long().to(z.device) idx = token_type == 1 if idx.sum() > 0: d_ = d[idx][:, :self.masked_embed_start] # l x n indices_ = torch.argmin(d_, dim=1) min_encoding_indices[idx] = indices_ idx = token_type != 1 if idx.sum() > 0: d_ = d[idx][:, self.masked_embed_start:] # l x n indices_ = torch.argmin(d_, dim=1) + self.masked_embed_start min_encoding_indices[idx] = indices_ if self.get_embed_type == 'matmul': min_encodings = torch.zeros(min_encoding_indices.shape[0], self.n_e).to(z) min_encodings.scatter_(1, min_encoding_indices.unsqueeze(1), 1) # import pdb; pdb.set_trace() z_q = torch.matmul(min_encodings, self.embed_weight)#.view(z.shape) elif self.get_embed_type == 'retrive': z_q = F.embedding(min_encoding_indices, self.embed_weight)#.view(z.shape) else: raise NotImplementedError return z_q, min_encoding_indices def forward(self, z, token_type=None): """ z: B x C x H x W token_type: B x 1 x H x W """ if self.distance_type in ['sinkhorn', 'cosine']: # need to norm feat and weight embedding self.norm_embedding() z = F.normalize(z, dim=1, p=2) # reshape z -> (batch, height, width, channel) and flatten batch_size, _, height, width = z.shape # import pdb; pdb.set_trace() z = z.permute(0, 2, 3, 1).contiguous() # B x H x W x C z_flattened = z.view(-1, self.e_dim) # BHW x C if token_type is not None: token_type_flattened = token_type.view(-1) else: token_type_flattened = None z_q, min_encoding_indices = self._quantize(z_flattened, token_type_flattened) z_q = z_q.view(batch_size, height, width, -1) #.permute(0, 2, 3, 1).contiguous() if self.training and self.embed_ema: # import pdb; pdb.set_trace() assert self.distance_type in ['euclidean', 'cosine'] indices_onehot = F.one_hot(min_encoding_indices, self.n_e).to(z_flattened.dtype) # L x n_e indices_onehot_sum = indices_onehot.sum(0) # n_e z_sum = (z_flattened.transpose(0, 1) @ indices_onehot).transpose(0, 1) # n_e x D all_reduce(indices_onehot_sum) all_reduce(z_sum) self.cluster_size.data.mul_(self.decay).add_(indices_onehot_sum, alpha=1 - self.decay) self.embedding_avg.data.mul_(self.decay).add_(z_sum, alpha=1 - self.decay) n = self.cluster_size.sum() cluster_size = (self.cluster_size + self.eps) / (n + self.n_e * self.eps) * n embed_normalized = self.embedding_avg / cluster_size.unsqueeze(1) self.embedding.data.copy_(embed_normalized) # print((self.embed > 1.0e-20).abs().sum()) if self.embed_ema: loss = (z_q.detach() - z).pow(2).mean() else: # compute loss for embedding loss = torch.mean((z_q.detach()-z).pow(2)) + self.beta * torch.mean((z_q - z.detach()).pow(2)) # preserve gradients z_q = z + (z_q - z).detach() # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() # used_quantize_embed = torch.zeros_like(loss) + min_encoding_indices.unique().shape[0] # used_quantize_embed = all_reduce(used_quantize_embed) / get_world_size() output = { 'quantize': z_q, 'used_quantize_embed': torch.zeros_like(loss) + min_encoding_indices.unique().shape[0], 'quantize_loss': loss, 'index': min_encoding_indices.view(batch_size, height, width) } if token_type_flattened is not None: unmasked_num_token = all_reduce((token_type_flattened == 1).sum()) masked_num_token = all_reduce((token_type_flattened != 1).sum()) output['unmasked_num_token'] = unmasked_num_token output['masked_num_token'] = masked_num_token return output def only_get_indices(self, z, token_type=None): """ z: B x C x H x W token_type: B x 1 x H x W """ if self.distance_type in ['sinkhorn', 'cosine']: # need to norm feat and weight embedding self.norm_embedding() z = F.normalize(z, dim=1, p=2) # reshape z -> (batch, height, width, channel) and flatten batch_size, _, height, width = z.shape # import pdb; pdb.set_trace() z = z.permute(0, 2, 3, 1).contiguous() # B x H x W x C z_flattened = z.view(-1, self.e_dim) # BHW x C if token_type is not None: token_type_flattened = token_type.view(-1) else: token_type_flattened = None _, min_encoding_indices = self._quantize(z_flattened, token_type_flattened) min_encoding_indices = min_encoding_indices.view(batch_size, height, width) return min_encoding_indices def get_codebook_entry(self, indices, shape): # import pdb; pdb.set_trace() # shape specifying (batch, height, width) if self.get_embed_type == 'matmul': min_encodings = torch.zeros(indices.shape[0], self.n_e).to(indices) min_encodings.scatter_(1, indices[:,None], 1) # get quantized latent vectors z_q = torch.matmul(min_encodings.float(), self.embed_weight) elif self.get_embed_type == 'retrive': z_q = F.embedding(indices, self.embed_weight) else: raise NotImplementedError if shape is not None: z_q = z_q.view(*shape, -1) # B x H x W x C if len(z_q.shape) == 4: # reshape back to match original input shape z_q = z_q.permute(0, 3, 1, 2).contiguous() return z_q # blocks for encoder and decoder def Normalize(in_channels): return torch.nn.GroupNorm(num_groups=32, num_channels=in_channels, eps=1e-6, affine=True) def nonlinearity(x): # swish return x*torch.sigmoid(x) class Upsample(nn.Module): def __init__(self, in_channels, with_conv, upsample_type='interpolate'): super().__init__() self.upsample_type = upsample_type self.with_conv = with_conv if self.upsample_type == 'conv': self.sample = nn.ConvTranspose2d(in_channels, in_channels, kernel_size=4, stride=2, padding=1), if self.with_conv: self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): if self.upsample_type == 'conv': x = self.sample(x) else: x = torch.nn.functional.interpolate(x, scale_factor=2.0, mode="nearest") if self.with_conv: x = self.conv(x) return x class ResnetBlock(nn.Module): def __init__(self, *, in_channels, out_channels=None, conv_shortcut=False, dropout=0.0, temb_channels=512): super().__init__() self.in_channels = in_channels out_channels = in_channels if out_channels is None else out_channels self.out_channels = out_channels self.use_conv_shortcut = conv_shortcut self.norm1 = Normalize(in_channels) self.conv1 = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) if temb_channels > 0: self.temb_proj = torch.nn.Linear(temb_channels, out_channels) self.norm2 = Normalize(out_channels) self.dropout = torch.nn.Dropout(dropout) self.conv2 = torch.nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1) if self.in_channels != self.out_channels: if self.use_conv_shortcut: self.conv_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=1, padding=1) else: self.nin_shortcut = torch.nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0) def forward(self, x, temb): h = x h = self.norm1(h) h = nonlinearity(h) h = self.conv1(h) if temb is not None: h = h + self.temb_proj(nonlinearity(temb))[:,:,None,None] h = self.norm2(h) h = nonlinearity(h) h = self.dropout(h) h = self.conv2(h) if self.in_channels != self.out_channels: if self.use_conv_shortcut: x = self.conv_shortcut(x) else: x = self.nin_shortcut(x) return x+h class AttnBlock(nn.Module): def __init__(self, in_channels): super().__init__() self.in_channels = in_channels self.norm = Normalize(in_channels) self.q = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.k = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.v = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) self.proj_out = torch.nn.Conv2d(in_channels, in_channels, kernel_size=1, stride=1, padding=0) def forward(self, x): h_ = x h_ = self.norm(h_) q = self.q(h_) k = self.k(h_) v = self.v(h_) # compute attention b,c,h,w = q.shape q = q.reshape(b,c,h*w) q = q.permute(0,2,1) # b,hw,c k = k.reshape(b,c,h*w) # b,c,hw w_ = torch.bmm(q,k) # b,hw,hw w[b,i,j]=sum_c q[b,i,c]k[b,c,j] w_ = w_ * (int(c)**(-0.5)) w_ = torch.nn.functional.softmax(w_, dim=2) # attend to values v = v.reshape(b,c,h*w) w_ = w_.permute(0,2,1) # b,hw,hw (first hw of k, second of q) h_ = torch.bmm(v,w_) # b, c,hw (hw of q) h_[b,c,j] = sum_i v[b,c,i] w_[b,i,j] h_ = h_.reshape(b,c,h,w) h_ = self.proj_out(h_) return x+h_ class Downsample(nn.Module): def __init__(self, in_channels, with_conv): super().__init__() self.with_conv = with_conv if self.with_conv: # no asymmetric padding in torch conv, must do it ourselves self.conv = torch.nn.Conv2d(in_channels, in_channels, kernel_size=3, stride=2, padding=0) def forward(self, x): if self.with_conv: pad = (0,1,0,1) x = torch.nn.functional.pad(x, pad, mode="constant", value=0) x = self.conv(x) else: x = torch.nn.functional.avg_pool2d(x, kernel_size=2, stride=2) return x class Encoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), scale_by_2=None, num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, in_channels, resolution, z_channels, double_z=False, **ignore_kwargs): super().__init__() if isinstance(resolution, int): resolution = [resolution, resolution] # H, W elif isinstance(resolution, (tuple, list)): resolution = list(resolution) else: raise ValueError('Unknown type of resolution:', resolution) attn_resolutions_ = [] for ar in attn_resolutions: if isinstance(ar, (list, tuple)): attn_resolutions_.append(list(ar)) else: attn_resolutions_.append([ar, ar]) attn_resolutions = attn_resolutions_ self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.in_channels = in_channels # downsampling self.conv_in = torch.nn.Conv2d(in_channels, self.ch, kernel_size=3, stride=1, padding=1) curr_res = resolution in_ch_mult = (1,)+tuple(ch_mult) self.down = nn.ModuleList() for i_level in range(self.num_resolutions): block = nn.ModuleList() attn = nn.ModuleList() block_in = ch*in_ch_mult[i_level] block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) down = nn.Module() down.block = block down.attn = attn if scale_by_2 is None: if i_level != self.num_resolutions-1: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = [r // 2 for r in curr_res] else: if scale_by_2[i_level]: down.downsample = Downsample(block_in, resamp_with_conv) curr_res = [r // 2 for r in curr_res] self.down.append(down) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, 2*z_channels if double_z else z_channels, kernel_size=3, stride=1, padding=1) def forward(self, x): #assert x.shape[2] == self.resolution[0] and x.shape[3] == self.resolution[1], "{}, {}, {}".format(x.shape[2], x.shape[3], self.resolution) # timestep embedding temb = None # downsampling hs = [self.conv_in(x)] for i_level in range(self.num_resolutions): for i_block in range(self.num_res_blocks): h = self.down[i_level].block[i_block](hs[-1], temb) if len(self.down[i_level].attn) > 0: h = self.down[i_level].attn[i_block](h) hs.append(h) if getattr(self.down[i_level], 'downsample', None) is not None: h = self.down[i_level].downsample(hs[-1]) if i_level != self.num_resolutions-1: # hs.append(self.down[i_level].downsample(hs[-1])) hs.append(h) # middle h = hs[-1] h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # end h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class Decoder(nn.Module): def __init__(self, *, ch, out_ch, ch_mult=(1,2,4,8), scale_by_2=None, num_res_blocks, attn_resolutions, dropout=0.0, resamp_with_conv=True, resolution, z_channels, **ignorekwargs): super().__init__() if isinstance(resolution, int): resolution = [resolution, resolution] # H, W elif isinstance(resolution, (tuple, list)): resolution = list(resolution) else: raise ValueError('Unknown type of resolution:', resolution) attn_resolutions_ = [] for ar in attn_resolutions: if isinstance(ar, (list, tuple)): attn_resolutions_.append(list(ar)) else: attn_resolutions_.append([ar, ar]) attn_resolutions = attn_resolutions_ self.ch = ch self.temb_ch = 0 self.num_resolutions = len(ch_mult) self.num_res_blocks = num_res_blocks self.resolution = resolution self.requires_image = False # compute in_ch_mult, block_in and curr_res at lowest res in_ch_mult = (1,)+tuple(ch_mult) block_in = ch*ch_mult[self.num_resolutions-1] if scale_by_2 is None: curr_res = [r // 2**(self.num_resolutions-1) for r in self.resolution] else: scale_factor = sum([int(s) for s in scale_by_2]) curr_res = [r // 2**scale_factor for r in self.resolution] self.z_shape = (1, z_channels, curr_res[0], curr_res[1]) print("Working with z of shape {} = {} dimensions.".format(self.z_shape, np.prod(self.z_shape))) # z to block_in self.conv_in = torch.nn.Conv2d(z_channels, block_in, kernel_size=3, stride=1, padding=1) # middle self.mid = nn.Module() self.mid.block_1 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) self.mid.attn_1 = AttnBlock(block_in) self.mid.block_2 = ResnetBlock(in_channels=block_in, out_channels=block_in, temb_channels=self.temb_ch, dropout=dropout) # upsampling self.up = nn.ModuleList() for i_level in reversed(range(self.num_resolutions)): block = nn.ModuleList() attn = nn.ModuleList() block_out = ch*ch_mult[i_level] for i_block in range(self.num_res_blocks+1): block.append(ResnetBlock(in_channels=block_in, out_channels=block_out, temb_channels=self.temb_ch, dropout=dropout)) block_in = block_out if curr_res in attn_resolutions: attn.append(AttnBlock(block_in)) up = nn.Module() up.block = block up.attn = attn if scale_by_2 is None: if i_level != 0: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = [r * 2 for r in curr_res] else: if scale_by_2[i_level]: up.upsample = Upsample(block_in, resamp_with_conv) curr_res = [r * 2 for r in curr_res] self.up.insert(0, up) # prepend to get consistent order # end self.norm_out = Normalize(block_in) self.conv_out = torch.nn.Conv2d(block_in, out_ch, kernel_size=3, stride=1, padding=1) def forward(self, z, **kwargs): #assert z.shape[1:] == self.z_shape[1:] self.last_z_shape = z.shape # timestep embedding temb = None # z to block_in h = self.conv_in(z) # middle h = self.mid.block_1(h, temb) h = self.mid.attn_1(h) h = self.mid.block_2(h, temb) # upsampling for i_level in reversed(range(self.num_resolutions)): for i_block in range(self.num_res_blocks+1): h = self.up[i_level].block[i_block](h, temb) if len(self.up[i_level].attn) > 0: h = self.up[i_level].attn[i_block](h) # if i_level != 0: if getattr(self.up[i_level], 'upsample', None) is not None: h = self.up[i_level].upsample(h) h = self.norm_out(h) h = nonlinearity(h) h = self.conv_out(h) return h class PatchVQGAN(BaseCodec): def __init__(self, *, encoder_config, decoder_config, lossconfig=None, n_embed, embed_dim, ignore_keys=[], data_info={'key': 'image'}, quantizer_type='VQ', quantizer_dis_type='euclidean', decay = 0.99, trainable=False, ckpt_path=None, token_shape=None ): super().__init__() self.encoder = instantiate_from_config(encoder_config) # Encoder(**encoder_config) self.decoder = instantiate_from_config(decoder_config) # Decoder(**decoder_config) if quantizer_type == 'EMAVQ': self.quantize = EMAVectorQuantizer(n_embed, embed_dim, beta=0.25, decay = decay, distance_type=quantizer_dis_type) print('using EMA vector Quantizer') elif quantizer_type == 'PQEMAVQ': self.quantize = PQEMAVectorQuantizer(n_embed, embed_dim, beta=0.25,decay = decay, distance_type=quantizer_dis_type) print('using PQ EMA vector Quantizer') elif quantizer_type == 'VQ': self.quantize = VectorQuantizer(n_embed, embed_dim, beta=0.25) else: raise NotImplementedError # import pdb; pdb.set_trace() self.quant_conv = torch.nn.Conv2d(encoder_config['params']["z_channels"], embed_dim, 1) self.post_quant_conv = torch.nn.Conv2d(embed_dim, decoder_config['params']["z_channels"], 1) self.data_info = data_info if lossconfig is not None and trainable: self.loss = instantiate_from_config(lossconfig) else: self.loss = None if ckpt_path is not None: self.init_from_ckpt(ckpt_path, ignore_keys=ignore_keys) self.trainable = trainable self._set_trainable() self.token_shape = token_shape def init_from_ckpt(self, path, ignore_keys=list()): sd = torch.load(path, map_location="cpu") if 'model' in sd: sd = sd['model'] else: sd = sd["state_dict"] keys = list(sd.keys()) for k in keys: for ik in ignore_keys: if k.startswith(ik): print("VQGAN: Deleting key {} from state_dict.".format(k)) del sd[k] self.load_state_dict(sd, strict=False) print(f"VQGAN: Restored from {path}") @property def device(self): return self.quant_conv.weight.device def pre_process(self, data): data = data.to(self.device) data = data / 127.5 - 1.0 return data def multi_pixels_with_mask(self, data, mask): if data.max() > 1: raise ValueError('The data need to be preprocessed!') mask = mask.to(self.device) data = data * mask data[~mask.repeat(1,3,1,1)] = -1.0 return data def post_process(self, data): data = (data + 1.0) * 127.5 data = torch.clamp(data, min=0.0, max=255.0) return data def get_number_of_tokens(self): return self.quantize.n_e def get_tokens(self, data, mask=None, return_token_index=False, **kwargs): data = self.pre_process(data) x = self.encoder(data) x = self.quant_conv(x) idx = self.quantize(x)['index'] if self.token_shape is None: self.token_shape = idx.shape[1:3] if self.decoder.requires_image: self.mask_im_tmp = self.multi_pixels_with_mask(data, mask) output = {} output['token'] = idx.view(idx.shape[0], -1) # import pdb; pdb.set_trace() if mask is not None: # mask should be B x 1 x H x W # downsampling # mask = F.interpolate(mask.float(), size=idx_mask.shape[-2:]).to(torch.bool) token_type = get_token_type(mask, self.token_shape) # B x 1 x H x W mask = token_type == 1 output = { 'target': idx.view(idx.shape[0], -1).clone(), 'mask': mask.view(mask.shape[0], -1), 'token': idx.view(idx.shape[0], -1), 'token_type': token_type.view(token_type.shape[0], -1), } else: output = { 'token': idx.view(idx.shape[0], -1) } # get token index # used for computing token frequency if return_token_index: token_index = output['token'] #.view(-1) output['token_index'] = token_index return output def decode(self, token): assert self.token_shape is not None # import pdb; pdb.set_trace() bhw = (token.shape[0], self.token_shape[0], self.token_shape[1]) quant = self.quantize.get_codebook_entry(token.view(-1), shape=bhw) quant = self.post_quant_conv(quant) if self.decoder.requires_image: rec = self.decoder(quant, self.mask_im_tmp) self.mask_im_tmp = None else: rec = self.decoder(quant) rec = self.post_process(rec) return rec def get_rec_loss(self, input, rec): if input.max() > 1: input = self.pre_process(input) if rec.max() > 1: rec = self.pre_process(rec) rec_loss = F.mse_loss(rec, input) return rec_loss @torch.no_grad() def sample(self, batch): data = self.pre_process(batch[self.data_info['key']]) x = self.encoder(data) x = self.quant_conv(x) quant = self.quantize(x)['quantize'] quant = self.post_quant_conv(quant) if self.decoder.requires_image: mask_im = self.multi_pixels_with_mask(data, batch['mask']) rec = self.decoder(quant, mask_im) else: rec = self.decoder(quant) rec = self.post_process(rec) out = {'input': batch[self.data_info['key']], 'reconstruction': rec} if self.decoder.requires_image: out['mask_input'] = self.post_process(mask_im) out['mask'] = batch['mask'] * 255 # import pdb; pdb.set_trace() return out def get_last_layer(self): if isinstance(self.decoder, Decoder): return self.decoder.conv_out.weight elif isinstance(self.decoder, PatchDecoder): return self.decoder.post_layer.weight elif isinstance(self.decoder, Patch8x8Decoder): return self.decoder.post_layer.weight else: return self.decoder.patch_de_embed.proj.weight def parameters(self, recurse=True, name=None): if name is None or name == 'none': return super().parameters(recurse=recurse) else: if name == 'generator': params = list(self.encoder.parameters())+ \ list(self.decoder.parameters())+\ list(self.quantize.parameters())+\ list(self.quant_conv.parameters())+\ list(self.post_quant_conv.parameters()) elif name == 'discriminator': params = self.loss.discriminator.parameters() else: raise ValueError("Unknown type of name {}".format(name)) return params def forward(self, batch, name='none', return_loss=True, step=0, **kwargs): if name == 'generator': input = self.pre_process(batch[self.data_info['key']]) x = self.encoder(input) x = self.quant_conv(x) quant_out = self.quantize(x) quant = quant_out['quantize'] emb_loss = quant_out['quantize_loss'] # recconstruction quant = self.post_quant_conv(quant) if self.decoder.requires_image: rec = self.decoder(quant, self.multi_pixels_with_mask(input, batch['mask'])) else: rec = self.decoder(quant) # save some tensors for self.input_tmp = input self.rec_tmp = rec if isinstance(self.loss, VQLPIPSWithDiscriminator): output = self.loss(codebook_loss=emb_loss, inputs=input, reconstructions=rec, optimizer_name=name, global_step=step, last_layer=self.get_last_layer()) else: raise NotImplementedError('{}'.format(type(self.loss))) elif name == 'discriminator': if isinstance(self.loss, VQLPIPSWithDiscriminator): output = self.loss(codebook_loss=None, inputs=self.input_tmp, reconstructions=self.rec_tmp, optimizer_name=name, global_step=step, last_layer=self.get_last_layer()) else: raise NotImplementedError('{}'.format(type(self.loss))) else: raise NotImplementedError('{}'.format(name)) return output
35,439
38.116998
147
py
VQ-Diffusion
VQ-Diffusion-main/image_synthesis/modeling/codecs/image_codec/ema_vqvae.py
import torch import torch.nn as nn from omegaconf import OmegaConf import sys sys.path.append("..") # sys.path.append("../image_synthesis") import os import torchvision.transforms.functional as TF import PIL from image_synthesis.modeling.codecs.base_codec import BaseCodec from einops import rearrange import math import yaml from image_synthesis.utils.misc import instantiate_from_config class Encoder(nn.Module): def __init__(self, encoder, quant_conv, quantize): super().__init__() self.encoder = encoder self.quant_conv = quant_conv self.quantize = quantize @torch.no_grad() def forward(self, x): x = 2*x - 1 h = self.encoder(x) h = self.quant_conv(h) # quant, _, [_, _, indices] = self.quantize(h) # return indices.view(x.shape[0], -1) indices = self.quantize.only_get_indices(h) return indices.view(x.shape[0], -1) class Decoder(nn.Module): def __init__(self, decoder, post_quant_conv, quantize, w=16, h=16): super().__init__() self.decoder = decoder self.post_quant_conv = post_quant_conv self.quantize = quantize self.w = w self.h = h @torch.no_grad() def forward(self, indices): z = self.quantize.get_codebook_entry(indices.view(-1), shape=(indices.shape[0], self.h, self.w)) quant = self.post_quant_conv(z) dec = self.decoder(quant) x = torch.clamp(dec, -1., 1.) x = (x + 1.)/2. return x class PatchVQVAE(BaseCodec): def __init__( self, trainable=False, token_shape=[16,16], ): super().__init__() config_path = "OUTPUT/pretrained_model/taming_dvae/config.yaml" ckpt_path="OUTPUT/pretrained_model/taming_dvae/ithq_vqvae.pth" model = self.LoadModel(config_path, ckpt_path) self.enc = Encoder(model.encoder, model.quant_conv, model.quantize) self.dec = Decoder(model.decoder, model.post_quant_conv, model.quantize, token_shape[0], token_shape[1]) self.num_tokens = 4096 self.trainable = trainable self.token_shape = token_shape self._set_trainable() def LoadModel(self, config_path, ckpt_path): with open(config_path) as f: config = yaml.full_load(f) model = instantiate_from_config(config['model']) sd = torch.load(ckpt_path, map_location="cpu")["model"] model.load_state_dict(sd, strict=False) return model def half(self): # not sure if it's right """ overwrite this function """ from dall_e.utils import Conv2d for n, m in self.named_modules(): if isinstance(m, Conv2d) and m.use_float16: print(n) m._apply(lambda t: t.half() if t.is_floating_point() else t) return self @property def device(self): # import pdb; pdb.set_trace() return self.enc.quant_conv.weight.device def preprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-255 """ imgs = imgs.div(255) # map to 0 - 1 return imgs # return map_pixels(imgs) def postprocess(self, imgs): """ imgs: B x C x H x W, in the range 0-1 """ imgs = imgs * 255 return imgs def get_tokens(self, imgs, **kwargs): imgs = self.preprocess(imgs) code = self.enc(imgs) output = {'token': code} # output = {'token': rearrange(code, 'b h w -> b (h w)')} return output def decode(self, img_seq): b, n = img_seq.shape # if self.token_shape is not None: # img_seq = img_seq.view(b, self.token_shape[0], self.token_shape[1]) # else: # img_seq = rearrange(img_seq, 'b (h w) -> b h w', h = int(sqrt(n))) img_seq = rearrange(img_seq, 'b (h w) -> b h w', h = int(math.sqrt(n))) x_rec = self.dec(img_seq) x_rec = self.postprocess(x_rec) return x_rec
4,083
29.706767
112
py