Datasets:

License:
multi_para_crawl / multi_para_crawl.py
system's picture
system HF staff
Update files from the datasets library (from 1.2.0)
b97c6db
raw
history blame
4.8 kB
# coding=utf-8
# Copyright 2020 HuggingFace Datasets Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Lint as: python3
import os
import datasets
_DESCRIPTION = """\
Parallel corpora from Web Crawls collected in the ParaCrawl project and further processed for making it a multi-parallel corpus by pivoting via English. Here we only provide the additional language pairs that came out of pivoting. The bitexts for English are available from the ParaCrawl release.
40 languages, 669 bitexts
total number of files: 40
total number of tokens: 10.14G
total number of sentence fragments: 505.48M
Please, acknowledge the ParaCrawl project at http://paracrawl.eu. This version is derived from the original release at their website adjusted for redistribution via the OPUS corpus collection. Please, acknowledge OPUS as well for this service.
"""
_HOMEPAGE_URL = "http://opus.nlpl.eu/MultiParaCrawl.php"
_CITATION = """\
@InProceedings{TIEDEMANN12.463,
author = {J�rg Tiedemann},
title = {Parallel Data, Tools and Interfaces in OPUS},
booktitle = {Proceedings of the Eight International Conference on Language Resources and Evaluation (LREC'12)},
year = {2012},
month = {may},
date = {23-25},
address = {Istanbul, Turkey},
editor = {Nicoletta Calzolari (Conference Chair) and Khalid Choukri and Thierry Declerck and Mehmet Ugur Dogan and Bente Maegaard and Joseph Mariani and Jan Odijk and Stelios Piperidis},
publisher = {European Language Resources Association (ELRA)},
isbn = {978-2-9517408-7-7},
language = {english}
}
"""
_VERSION = "7.1.0"
_BASE_NAME = "MultiParaCrawl.{}.{}"
_BASE_URL = "https://object.pouta.csc.fi/OPUS-MultiParaCrawl/v7.1/moses/{}-{}.txt.zip"
# Please note that only few pairs are shown here. You can use config to generate data for all language pairs
_LANGUAGE_PAIRS = [
("cs", "is"),
("ga", "sk"),
("lv", "mt"),
("nb", "ru"),
("de", "tl"),
]
class MultiParaCrawlConfig(datasets.BuilderConfig):
def __init__(self, *args, lang1=None, lang2=None, **kwargs):
super().__init__(
*args,
name=f"{lang1}-{lang2}",
**kwargs,
)
self.lang1 = lang1
self.lang2 = lang2
class MultiParaCrawl(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
MultiParaCrawlConfig(
lang1=lang1,
lang2=lang2,
description=f"Translating {lang1} to {lang2} or vice versa",
version=datasets.Version(_VERSION),
)
for lang1, lang2 in _LANGUAGE_PAIRS
]
BUILDER_CONFIG_CLASS = MultiParaCrawlConfig
def _info(self):
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=datasets.Features(
{
"id": datasets.Value("string"),
"translation": datasets.Translation(languages=(self.config.lang1, self.config.lang2)),
},
),
supervised_keys=None,
homepage=_HOMEPAGE_URL,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
def _base_url(lang1, lang2):
return _BASE_URL.format(lang1, lang2)
download_url = _base_url(self.config.lang1, self.config.lang2)
path = dl_manager.download_and_extract(download_url)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"datapath": path},
)
]
def _generate_examples(self, datapath):
l1, l2 = self.config.lang1, self.config.lang2
folder = l1 + "-" + l2
l1_file = _BASE_NAME.format(folder, l1)
l2_file = _BASE_NAME.format(folder, l2)
l1_path = os.path.join(datapath, l1_file)
l2_path = os.path.join(datapath, l2_file)
with open(l1_path, encoding="utf-8") as f1, open(l2_path, encoding="utf-8") as f2:
for sentence_counter, (x, y) in enumerate(zip(f1, f2)):
x = x.strip()
y = y.strip()
result = (
sentence_counter,
{
"id": str(sentence_counter),
"translation": {l1: x, l2: y},
},
)
yield result