Shaltiel commited on
Commit
f8c081a
1 Parent(s): 03bfda1

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +67 -6
README.md CHANGED
@@ -1,10 +1,71 @@
1
  ---
2
  license: cc-by-4.0
3
  configs:
4
- - config_name: default
5
- data_files:
6
- - split: train
7
- path: train/data.jsonl
8
- - split: test
9
- path: test/data.jsonl
 
 
 
 
 
 
10
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  ---
2
  license: cc-by-4.0
3
  configs:
4
+ - config_name: default
5
+ data_files:
6
+ - split: train
7
+ path: train/data.jsonl
8
+ - split: test
9
+ path: test/data.jsonl
10
+ task_categories:
11
+ - text-classification
12
+ language:
13
+ - he
14
+ size_categories:
15
+ - 10K<n<100K
16
  ---
17
+
18
+ # HebrewSentiment - A Sentiment-Analysis Dataset in Hebrew
19
+
20
+ ## Summary
21
+ HebrewSentiment is a Hebrew dataset for the sentiment analysis task.
22
+
23
+ ## Introduction
24
+
25
+ This dataset was constructed via [To Fill In].
26
+
27
+ ## Dataset Statistics
28
+
29
+ The table below shows the number of examples from each category in each of the splits:
30
+
31
+ | split | total | positive | negative | neutral |
32
+ |-------|----------|----------|----------|---------|
33
+ | train | 39,135 | 8,968 | 7,669 | 22,498 |
34
+ | test | 2,170 | 503 | 433 | 1,234 |
35
+
36
+ ## Dataset Description
37
+
38
+ Each row in the dataset contains the following fields:
39
+
40
+ - **id**: A unique identifier for that training examples
41
+ - **text**: The textual content of the input sentence
42
+ - **tag_ids**: The label of the example (`Neutral`/`Positive`/`Negative`)
43
+ - **task_name**: [To fill in]
44
+ - **campaign_id**: [To fill in]
45
+ - **annotator_agreement_strength**: [To fill in]
46
+ - **survey_name**: [To fill in]
47
+ - **industry**: [To fill in]
48
+ - **type**: [To fill in]
49
+
50
+ ## Models and Comparisons
51
+
52
+ In collaboration with [DICTA](https://dicta.org.il/) we trained a model on this dataset and are happy to release it to the public: [DictaBERT-Sentiment](https://huggingface.co/dicta-il/dictabert-sentiment).
53
+
54
+ In addition, we compared the performance of the model to the previous existing sentiment dataset - [Hebrew-Sentiment-Data from OnlpLab](https://github.com/OnlpLab/Hebrew-Sentiment-Data).
55
+ We fine-tuned [dictabert](https://huggingface.co/dicta-il/dictabert) 3 times - once on the OnlpLab dataset, once on this dataset, and once on both datasets together and the results can be seen in the table below:
56
+
57
+ | Training Corpus: | OnlpLab | | | | | HebrewSentiment| | | | |
58
+ |------------------|------|----------------|------|------|--------|--------------|------|------|---|---|
59
+ | | Accuracy | Macro F1 | F1 Positive | F1 Negative | F1 Neutral | Accuracy | Macro F1 | F1 Positive | F1 Negative | F1 Neutral |
60
+ | OnlpLab+HebrewSentiment | 87 | 61.7 | 93.2 | 74.6 | 17.4 | 83.9 | 82.7 | 79.8 | 81.8 | 86.4 |
61
+ | OnlpLab | 88.2 | 63.3 | 93.8 | 72.1 | 24 | 41.3 | 42.2 | 48.1 | 56.3 | 22.2 |
62
+ | HebrewSentiment | 69.9 | 51.7 | 82.2 | 62.9 | 10.2 | 84.4 | 83.2 | 81 | 82.1 | 86.6 |
63
+
64
+ ## Contributors
65
+
66
+ [To fill in]
67
+
68
+ Contributors: [To fill in]
69
+
70
+ ## Acknowledgments
71
+ We would like to express our gratitude to [To fill in]