|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""NaijaSenti: A Nigerian Twitter Sentiment Corpus for Multilingual Sentiment Analysis""" |
|
|
|
|
|
|
|
_HOMEPAGE = "https://github.com/hausanlp/NaijaSenti" |
|
|
|
_DESCRIPTION = """\ |
|
Naija-Stopwords is a part of the Naija-Senti project. It is a list of collected stopwords from the four most widely spoken languages in Nigeria — Hausa, Igbo, Nigerian-Pidgin, and Yorùbá. |
|
""" |
|
|
|
|
|
_CITATION = """\ |
|
@inproceedings{muhammad-etal-2022-naijasenti, |
|
title = "{N}aija{S}enti: A {N}igerian {T}witter Sentiment Corpus for Multilingual Sentiment Analysis", |
|
author = "Muhammad, Shamsuddeen Hassan and |
|
Adelani, David Ifeoluwa and |
|
Ruder, Sebastian and |
|
Ahmad, Ibrahim Sa{'}id and |
|
Abdulmumin, Idris and |
|
Bello, Bello Shehu and |
|
Choudhury, Monojit and |
|
Emezue, Chris Chinenye and |
|
Abdullahi, Saheed Salahudeen and |
|
Aremu, Anuoluwapo and |
|
Jorge, Al{\"\i}pio and |
|
Brazdil, Pavel", |
|
booktitle = "Proceedings of the Thirteenth Language Resources and Evaluation Conference", |
|
month = jun, |
|
year = "2022", |
|
address = "Marseille, France", |
|
publisher = "European Language Resources Association", |
|
url = "https://aclanthology.org/2022.lrec-1.63", |
|
pages = "590--602", |
|
} |
|
""" |
|
|
|
|
|
import textwrap |
|
import pandas as pd |
|
|
|
import datasets |
|
|
|
|
|
TYPES = ['manual-sentiment', 'translated-sentiment', 'translated-emotion'] |
|
|
|
class NaijaLexiconsConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for NaijaLexicons""" |
|
|
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
label_classes, |
|
hau_url, |
|
ibo_url, |
|
yor_url, |
|
citation, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for NaijaLexicons. |
|
|
|
Args: |
|
text_features: `dict[string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the txt/csv/tsv file |
|
label_column: `string`, name of the column in the txt/csv/tsv file corresponding |
|
to the label |
|
label_classes: `list[string]`, the list of classes if the label is categorical |
|
train_url: `string`, url to train file from |
|
valid_url: `string`, url to valid file from |
|
test_url: `string`, url to test file from |
|
citation: `string`, citation for the data set |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(NaijaLexiconsConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
self.hau_url = hau_url |
|
self.ibo_url = ibo_url |
|
self.yor_url = yor_url |
|
self.citation = citation |
|
|
|
|
|
class NaijaLexicons(datasets.GeneratorBasedBuilder): |
|
"""NaijaLexicons benchmark""" |
|
|
|
BUILDER_CONFIGS = [] |
|
|
|
for t in TYPES: |
|
if t == 'translated-emotion': |
|
BUILDER_CONFIGS.append( |
|
NaijaLexiconsConfig( |
|
name=t, |
|
description=textwrap.dedent( |
|
f"""{_DESCRIPTION}""" |
|
), |
|
text_features={"word": "word", "machine translation": "machine translation", "human translation": "human translation", "emotion_intensity_score": "emotion_intensity_score"}, |
|
label_classes=["surprise", "fear", "anticipation", "anger", "joy", "trust", "disgust", "sadness"], |
|
label_column="label", |
|
hau_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/hausa.csv", |
|
ibo_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/igbo.csv", |
|
yor_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/yoruba.csv", |
|
citation=textwrap.dedent( |
|
f"""{_CITATION}""" |
|
), |
|
), |
|
) |
|
elif t == 'translated-sentiment': |
|
BUILDER_CONFIGS.append( |
|
NaijaLexiconsConfig( |
|
name=t, |
|
description=textwrap.dedent( |
|
f"""{_DESCRIPTION}""" |
|
), |
|
text_features={"word": "word", "machine translation": "machine translation", "human translation": "human translation"}, |
|
label_classes=["positive", "negative"], |
|
label_column="label", |
|
hau_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/hausa.csv", |
|
ibo_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/igbo.csv", |
|
yor_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/yoruba.csv", |
|
citation=textwrap.dedent( |
|
f"""{_CITATION}""" |
|
), |
|
), |
|
) |
|
else: |
|
BUILDER_CONFIGS.append( |
|
NaijaLexiconsConfig( |
|
name=t, |
|
description=textwrap.dedent( |
|
f"""{_DESCRIPTION}""" |
|
), |
|
text_features={"word": "word"}, |
|
label_classes=["positive", "negative"], |
|
label_column="label", |
|
hau_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/hausa.csv", |
|
ibo_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/igbo.csv", |
|
yor_url=f"https://raw.githubusercontent.com/hausanlp/NaijaSenti/main/data/lexicons/{t}/huggingface/yoruba.csv", |
|
citation=textwrap.dedent( |
|
f"""{_CITATION}""" |
|
), |
|
), |
|
) |
|
|
|
def _info(self): |
|
features = {text_feature: datasets.Value("string") for text_feature in self.config.text_features} |
|
features["label"] = datasets.features.ClassLabel(names=self.config.label_classes) |
|
|
|
return datasets.DatasetInfo( |
|
description=self.config.description, |
|
features=datasets.Features(features), |
|
citation=self.config.citation, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
hau_path = dl_manager.download_and_extract(self.config.hau_url) |
|
ibo_path = dl_manager.download_and_extract(self.config.ibo_url) |
|
yor_path = dl_manager.download_and_extract(self.config.yor_url) |
|
|
|
return [ |
|
datasets.SplitGenerator(name="hausa", gen_kwargs={"filepath": hau_path}), |
|
datasets.SplitGenerator(name="igbo", gen_kwargs={"filepath": ibo_path}), |
|
datasets.SplitGenerator(name="yoruba", gen_kwargs={"filepath": yor_path}) |
|
] |
|
|
|
def _generate_examples(self, filepath): |
|
|
|
df = pd.read_csv(filepath) |
|
|
|
print("-"*100) |
|
print(df.head()) |
|
print("-"*100) |
|
|
|
if self.config.name == "translated-sentiment": |
|
for id_, row in df.iterrows(): |
|
word = row["word"] |
|
machine = row["machine"] |
|
human = row["human"] |
|
label = row["label"] |
|
|
|
yield id_, {"word": word, "machine translation": machine, "human translation": human, "label": label} |
|
|
|
elif self.config.name == "manual-sentiment": |
|
for id_, row in df.iterrows(): |
|
word = row["word"] |
|
label = row["label"] |
|
|
|
yield id_, {"word": word, "label": label} |
|
|
|
else: |
|
for id_, row in df.iterrows(): |
|
word = row["word"] |
|
machine = row["machine"] |
|
human = row["human"] |
|
label = row["label"] |
|
emotion_intensity_score = row["emotion_intensity_score"] |
|
|
|
yield id_, {"word": word, "machine translation": machine, "human translation": human, "label": label, "emotion_intensity_score": emotion_intensity_score} |