Datasets:
Tasks:
Text Classification
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
hate-speech-detection
License:
Commit
·
30631f3
0
Parent(s):
Update files from the datasets library (from 1.3.0)
Browse filesRelease notes: https://github.com/huggingface/datasets/releases/tag/1.3.0
- .gitattributes +27 -0
- README.md +189 -0
- dataset_infos.json +1 -0
- dummy/plain_text/1.0.0/dummy_data.zip +3 -0
- hatexplain.py +127 -0
.gitattributes
ADDED
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
*.7z filter=lfs diff=lfs merge=lfs -text
|
2 |
+
*.arrow filter=lfs diff=lfs merge=lfs -text
|
3 |
+
*.bin filter=lfs diff=lfs merge=lfs -text
|
4 |
+
*.bin.* filter=lfs diff=lfs merge=lfs -text
|
5 |
+
*.bz2 filter=lfs diff=lfs merge=lfs -text
|
6 |
+
*.ftz filter=lfs diff=lfs merge=lfs -text
|
7 |
+
*.gz filter=lfs diff=lfs merge=lfs -text
|
8 |
+
*.h5 filter=lfs diff=lfs merge=lfs -text
|
9 |
+
*.joblib filter=lfs diff=lfs merge=lfs -text
|
10 |
+
*.lfs.* filter=lfs diff=lfs merge=lfs -text
|
11 |
+
*.model filter=lfs diff=lfs merge=lfs -text
|
12 |
+
*.msgpack filter=lfs diff=lfs merge=lfs -text
|
13 |
+
*.onnx filter=lfs diff=lfs merge=lfs -text
|
14 |
+
*.ot filter=lfs diff=lfs merge=lfs -text
|
15 |
+
*.parquet filter=lfs diff=lfs merge=lfs -text
|
16 |
+
*.pb filter=lfs diff=lfs merge=lfs -text
|
17 |
+
*.pt filter=lfs diff=lfs merge=lfs -text
|
18 |
+
*.pth filter=lfs diff=lfs merge=lfs -text
|
19 |
+
*.rar filter=lfs diff=lfs merge=lfs -text
|
20 |
+
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
21 |
+
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
22 |
+
*.tflite filter=lfs diff=lfs merge=lfs -text
|
23 |
+
*.tgz filter=lfs diff=lfs merge=lfs -text
|
24 |
+
*.xz filter=lfs diff=lfs merge=lfs -text
|
25 |
+
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
+
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
+
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,189 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
annotations_creators:
|
3 |
+
- crowdsourced
|
4 |
+
language_creators:
|
5 |
+
- crowdsourced
|
6 |
+
languages:
|
7 |
+
- en
|
8 |
+
licenses:
|
9 |
+
- cc-by-4-0
|
10 |
+
multilinguality:
|
11 |
+
- monolingual
|
12 |
+
size_categories:
|
13 |
+
- 10K<n<100K
|
14 |
+
source_datasets:
|
15 |
+
- original
|
16 |
+
task_categories:
|
17 |
+
- text-classification
|
18 |
+
task_ids:
|
19 |
+
- text-classification-other-hate-speech-detection
|
20 |
+
---
|
21 |
+
|
22 |
+
# Dataset Card for hatexplain
|
23 |
+
|
24 |
+
## Table of Contents
|
25 |
+
- [Dataset Description](#dataset-description)
|
26 |
+
- [Dataset Summary](#dataset-summary)
|
27 |
+
- [Supported Tasks](#supported-tasks-and-leaderboards)
|
28 |
+
- [Languages](#languages)
|
29 |
+
- [Dataset Structure](#dataset-structure)
|
30 |
+
- [Data Instances](#data-instances)
|
31 |
+
- [Data Fields](#data-instances)
|
32 |
+
- [Data Splits](#data-instances)
|
33 |
+
- [Dataset Creation](#dataset-creation)
|
34 |
+
- [Curation Rationale](#curation-rationale)
|
35 |
+
- [Source Data](#source-data)
|
36 |
+
- [Annotations](#annotations)
|
37 |
+
- [Personal and Sensitive Information](#personal-and-sensitive-information)
|
38 |
+
- [Considerations for Using the Data](#considerations-for-using-the-data)
|
39 |
+
- [Social Impact of Dataset](#social-impact-of-dataset)
|
40 |
+
- [Discussion of Biases](#discussion-of-biases)
|
41 |
+
- [Other Known Limitations](#other-known-limitations)
|
42 |
+
- [Additional Information](#additional-information)
|
43 |
+
- [Dataset Curators](#dataset-curators)
|
44 |
+
- [Licensing Information](#licensing-information)
|
45 |
+
- [Citation Information](#citation-information)
|
46 |
+
- [Contributions](#contributions)
|
47 |
+
|
48 |
+
## Dataset Description
|
49 |
+
|
50 |
+
- **Homepage:** [Needs More Information]
|
51 |
+
- **Repository:** https://github.com/punyajoy/HateXplain/
|
52 |
+
- **Paper:** https://arxiv.org/abs/2012.10289
|
53 |
+
- **Leaderboard:** [Needs More Information]
|
54 |
+
- **Point of Contact:** [Needs More Information]
|
55 |
+
|
56 |
+
### Dataset Summary
|
57 |
+
|
58 |
+
Hatexplain is the first benchmark hate speech dataset covering multiple aspects of the issue. Each post in the dataset is annotated from three different perspectives: the basic, commonly used 3-class classification (i.e., hate, offensive or normal), the target community (i.e., the community that has been the victim of hate speech/offensive speech in the post), and the rationales, i.e., the portions of the post on which their labeling decision (as hate, offensive or normal) is based.
|
59 |
+
|
60 |
+
WARNING: This dataset contains content that are offensive and/or hateful in nature.
|
61 |
+
|
62 |
+
### Supported Tasks and Leaderboards
|
63 |
+
|
64 |
+
[Needs More Information]
|
65 |
+
|
66 |
+
### Languages
|
67 |
+
|
68 |
+
The language supported is English.
|
69 |
+
|
70 |
+
## Dataset Structure
|
71 |
+
|
72 |
+
### Data Instances
|
73 |
+
|
74 |
+
Sample Entry:
|
75 |
+
```
|
76 |
+
{
|
77 |
+
"id": "24198545_gab",
|
78 |
+
"annotators": [
|
79 |
+
{
|
80 |
+
"label": 0, # hatespeech
|
81 |
+
"annotator_id": 4,
|
82 |
+
"target": ["African"]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"label": 0, # hatespeech
|
86 |
+
"annotator_id": 3,
|
87 |
+
"target": ["African"]
|
88 |
+
},
|
89 |
+
{
|
90 |
+
"label": 2, # offensive
|
91 |
+
"annotator_id": 5,
|
92 |
+
"target": ["African"]
|
93 |
+
}
|
94 |
+
],
|
95 |
+
"rationales":[
|
96 |
+
[0,0,0,0,0,0,0,0,1,0,0,1,1,1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0],
|
97 |
+
[0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0],
|
98 |
+
[0,0,0,0,0,0,0,0,1,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
|
99 |
+
],
|
100 |
+
"post_tokens": ["and","this","is","why","i","end","up","with","nigger","trainee","doctors","who","can","not","speak","properly","lack","basic","knowledge","of","biology","it","truly","scary","if","the","public","only","knew"]
|
101 |
+
}
|
102 |
+
}
|
103 |
+
```
|
104 |
+
|
105 |
+
### Data Fields
|
106 |
+
|
107 |
+
:small_blue_diamond:post_id : Unique id for each post<br/>
|
108 |
+
:small_blue_diamond:annotators : The list of annotations from each annotator<br/>
|
109 |
+
:small_blue_diamond:annotators[label] : The label assigned by the annotator to this post. Possible values: `hatespeech` (0), `normal` (1) or `offensive` (2)<br/>
|
110 |
+
:small_blue_diamond:annotators[annotator_id] : The unique Id assigned to each annotator<br/>
|
111 |
+
:small_blue_diamond:annotators[target] : A list of target community present in the post<br/>
|
112 |
+
:small_blue_diamond:rationales : A list of rationales selected by annotators. Each rationales represents a list with values 0 or 1. A value of 1 means that the token is part of the rationale selected by the annotator. To get the particular token, we can use the same index position in "post_tokens"<br/>
|
113 |
+
:small_blue_diamond:post_tokens : The list of tokens representing the post which was annotated<br/>
|
114 |
+
|
115 |
+
### Data Splits
|
116 |
+
|
117 |
+
[Post_id_divisions](https://github.com/punyajoy/HateXplain/blob/master/Data/post_id_divisions.json) has a dictionary having train, valid and test post ids that are used to divide the dataset into train, val and test set in the ratio of 8:1:1.
|
118 |
+
|
119 |
+
|
120 |
+
|
121 |
+
## Dataset Creation
|
122 |
+
|
123 |
+
### Curation Rationale
|
124 |
+
|
125 |
+
[Needs More Information]
|
126 |
+
|
127 |
+
### Source Data
|
128 |
+
|
129 |
+
#### Initial Data Collection and Normalization
|
130 |
+
|
131 |
+
[Needs More Information]
|
132 |
+
|
133 |
+
#### Who are the source language producers?
|
134 |
+
|
135 |
+
[Needs More Information]
|
136 |
+
|
137 |
+
### Annotations
|
138 |
+
|
139 |
+
#### Annotation process
|
140 |
+
|
141 |
+
[Needs More Information]
|
142 |
+
|
143 |
+
#### Who are the annotators?
|
144 |
+
|
145 |
+
[Needs More Information]
|
146 |
+
|
147 |
+
### Personal and Sensitive Information
|
148 |
+
|
149 |
+
[Needs More Information]
|
150 |
+
|
151 |
+
## Considerations for Using the Data
|
152 |
+
|
153 |
+
### Social Impact of Dataset
|
154 |
+
|
155 |
+
[Needs More Information]
|
156 |
+
|
157 |
+
### Discussion of Biases
|
158 |
+
|
159 |
+
[Needs More Information]
|
160 |
+
|
161 |
+
### Other Known Limitations
|
162 |
+
|
163 |
+
[Needs More Information]
|
164 |
+
|
165 |
+
## Additional Information
|
166 |
+
|
167 |
+
### Dataset Curators
|
168 |
+
|
169 |
+
[Needs More Information]
|
170 |
+
|
171 |
+
### Licensing Information
|
172 |
+
|
173 |
+
[Needs More Information]
|
174 |
+
|
175 |
+
### Citation Information
|
176 |
+
|
177 |
+
```bibtex
|
178 |
+
@misc{mathew2020hatexplain,
|
179 |
+
title={HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection},
|
180 |
+
author={Binny Mathew and Punyajoy Saha and Seid Muhie Yimam and Chris Biemann and Pawan Goyal and Animesh Mukherjee},
|
181 |
+
year={2020},
|
182 |
+
eprint={2012.10289},
|
183 |
+
archivePrefix={arXiv},
|
184 |
+
primaryClass={cs.CL}
|
185 |
+
}
|
186 |
+
|
187 |
+
### Contributions
|
188 |
+
|
189 |
+
Thanks to [@kushal2000](https://github.com/kushal2000) for adding this dataset.
|
dataset_infos.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"plain_text": {"description": "Hatexplain is the first benchmark hate speech dataset covering multiple aspects of the issue. Each post in the dataset is annotated from three different perspectives: the basic, commonly used 3-class classification (i.e., hate, offensive or normal), the target community (i.e., the community that has been the victim of hate speech/offensive speech in the post), and the rationales, i.e., the portions of the post on which their labelling decision (as hate, offensive or normal) is based.\n", "citation": "@misc{mathew2020hatexplain,\n title={HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection}, \n author={Binny Mathew and Punyajoy Saha and Seid Muhie Yimam and Chris Biemann and Pawan Goyal and Animesh Mukherjee},\n year={2020},\n eprint={2012.10289},\n archivePrefix={arXiv},\n primaryClass={cs.CL}\n}\n", "homepage": "", "license": "cc-by-4.0", "features": {"id": {"dtype": "string", "id": null, "_type": "Value"}, "annotators": {"feature": {"label": {"num_classes": 3, "names": ["hatespeech", "normal", "offensive"], "names_file": null, "id": null, "_type": "ClassLabel"}, "annotator_id": {"dtype": "int32", "id": null, "_type": "Value"}, "target": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "length": -1, "id": null, "_type": "Sequence"}, "rationales": {"feature": {"feature": {"dtype": "int32", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}, "length": -1, "id": null, "_type": "Sequence"}, "post_tokens": {"feature": {"dtype": "string", "id": null, "_type": "Value"}, "length": -1, "id": null, "_type": "Sequence"}}, "post_processed": null, "supervised_keys": null, "builder_name": "hatexplain", "config_name": "plain_text", "version": {"version_str": "1.0.0", "description": "", "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 7114730, "num_examples": 15383, "dataset_name": "hatexplain"}, "validation": {"name": "validation", "num_bytes": 884940, "num_examples": 1922, "dataset_name": "hatexplain"}, "test": {"name": "test", "num_bytes": 884784, "num_examples": 1924, "dataset_name": "hatexplain"}}, "download_checksums": {"https://raw.githubusercontent.com/punyajoy/HateXplain/master/Data/dataset.json": {"num_bytes": 12256170, "checksum": "63bb3340fee0ec469b09690d04cb68f7c187787dd8b83807f071892c084967fb"}, "https://raw.githubusercontent.com/punyajoy/HateXplain/master/Data/post_id_divisions.json": {"num_bytes": 591921, "checksum": "c2fb0d89862e7897b11ea3e9380753f15a793482b4b70ad0532dfb1212212835"}}, "download_size": 12848091, "post_processing_size": null, "dataset_size": 8884454, "size_in_bytes": 21732545}}
|
dummy/plain_text/1.0.0/dummy_data.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:471d89f681b671b8cd2cee80067d448e5521293e941851e2db9b4a178066abf8
|
3 |
+
size 1202
|
hatexplain.py
ADDED
@@ -0,0 +1,127 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
3 |
+
#
|
4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
+
# you may not use this file except in compliance with the License.
|
6 |
+
# You may obtain a copy of the License at
|
7 |
+
#
|
8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
+
#
|
10 |
+
# Unless required by applicable law or agreed to in writing, software
|
11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
+
# See the License for the specific language governing permissions and
|
14 |
+
# limitations under the License.
|
15 |
+
"""Hatexplain: A Benchmark Dataset for Explainable Hate Speech Detection"""
|
16 |
+
|
17 |
+
from __future__ import absolute_import, division, print_function
|
18 |
+
|
19 |
+
import json
|
20 |
+
|
21 |
+
import datasets
|
22 |
+
|
23 |
+
|
24 |
+
_CITATION = """\
|
25 |
+
@misc{mathew2020hatexplain,
|
26 |
+
title={HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection},
|
27 |
+
author={Binny Mathew and Punyajoy Saha and Seid Muhie Yimam and Chris Biemann and Pawan Goyal and Animesh Mukherjee},
|
28 |
+
year={2020},
|
29 |
+
eprint={2012.10289},
|
30 |
+
archivePrefix={arXiv},
|
31 |
+
primaryClass={cs.CL}
|
32 |
+
}
|
33 |
+
"""
|
34 |
+
|
35 |
+
# You can copy an official description
|
36 |
+
_DESCRIPTION = """\
|
37 |
+
Hatexplain is the first benchmark hate speech dataset covering multiple aspects of the issue. \
|
38 |
+
Each post in the dataset is annotated from three different perspectives: the basic, commonly used 3-class classification \
|
39 |
+
(i.e., hate, offensive or normal), the target community (i.e., the community that has been the victim of \
|
40 |
+
hate speech/offensive speech in the post), and the rationales, i.e., the portions of the post on which their labelling \
|
41 |
+
decision (as hate, offensive or normal) is based.
|
42 |
+
"""
|
43 |
+
|
44 |
+
_HOMEPAGE = ""
|
45 |
+
|
46 |
+
_LICENSE = "cc-by-4.0"
|
47 |
+
|
48 |
+
_URL = "https://raw.githubusercontent.com/punyajoy/HateXplain/master/Data/"
|
49 |
+
_URLS = {
|
50 |
+
"dataset": _URL + "dataset.json",
|
51 |
+
"post_id_divisions": _URL + "post_id_divisions.json",
|
52 |
+
}
|
53 |
+
|
54 |
+
|
55 |
+
class HatexplainConfig(datasets.BuilderConfig):
|
56 |
+
"""BuilderConfig for Hatexplain."""
|
57 |
+
|
58 |
+
def __init__(self, **kwargs):
|
59 |
+
"""BuilderConfig for Hatexplain.
|
60 |
+
Args:
|
61 |
+
**kwargs: keyword arguments forwarded to super.
|
62 |
+
"""
|
63 |
+
super(HatexplainConfig, self).__init__(**kwargs)
|
64 |
+
|
65 |
+
|
66 |
+
class Hatexplain(datasets.GeneratorBasedBuilder):
|
67 |
+
"""Hatexplain: A Benchmark Dataset for Explainable Hate Speech Detection"""
|
68 |
+
|
69 |
+
BUILDER_CONFIGS = [
|
70 |
+
HatexplainConfig(
|
71 |
+
name="plain_text",
|
72 |
+
version=datasets.Version("1.0.0", ""),
|
73 |
+
description="Plain text",
|
74 |
+
),
|
75 |
+
]
|
76 |
+
|
77 |
+
def _info(self):
|
78 |
+
return datasets.DatasetInfo(
|
79 |
+
description=_DESCRIPTION,
|
80 |
+
features=datasets.Features(
|
81 |
+
{
|
82 |
+
"id": datasets.Value("string"),
|
83 |
+
"annotators": datasets.features.Sequence(
|
84 |
+
{
|
85 |
+
"label": datasets.ClassLabel(names=["hatespeech", "normal", "offensive"]),
|
86 |
+
"annotator_id": datasets.Value("int32"),
|
87 |
+
"target": datasets.Sequence(datasets.Value("string")),
|
88 |
+
}
|
89 |
+
),
|
90 |
+
"rationales": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("int32"))),
|
91 |
+
"post_tokens": datasets.features.Sequence(datasets.Value("string")),
|
92 |
+
}
|
93 |
+
),
|
94 |
+
supervised_keys=None,
|
95 |
+
homepage="",
|
96 |
+
citation=_CITATION,
|
97 |
+
license=_LICENSE,
|
98 |
+
)
|
99 |
+
|
100 |
+
def _split_generators(self, dl_manager):
|
101 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
102 |
+
|
103 |
+
return [
|
104 |
+
datasets.SplitGenerator(
|
105 |
+
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files, "split": "train"}
|
106 |
+
),
|
107 |
+
datasets.SplitGenerator(
|
108 |
+
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files, "split": "val"}
|
109 |
+
),
|
110 |
+
datasets.SplitGenerator(
|
111 |
+
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files, "split": "test"}
|
112 |
+
),
|
113 |
+
]
|
114 |
+
|
115 |
+
def _generate_examples(self, filepath, split):
|
116 |
+
"""This function returns the examples depending on split"""
|
117 |
+
|
118 |
+
with open(filepath["post_id_divisions"], encoding="utf-8") as f:
|
119 |
+
post_id_divisions = json.load(f)
|
120 |
+
with open(filepath["dataset"], encoding="utf-8") as f:
|
121 |
+
dataset = json.load(f)
|
122 |
+
|
123 |
+
for id_, tweet_id in enumerate(post_id_divisions[split]):
|
124 |
+
info = dataset[tweet_id]
|
125 |
+
annotators, rationales, post_tokens = info["annotators"], info["rationales"], info["post_tokens"]
|
126 |
+
|
127 |
+
yield id_, {"id": tweet_id, "annotators": annotators, "rationales": rationales, "post_tokens": post_tokens}
|