Datasets:
Tasks:
Text Classification
Languages:
English
Size:
10K<n<100K
ArXiv:
Tags:
hate-speech-detection
License:
# coding=utf-8 | |
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
"""Hatexplain: A Benchmark Dataset for Explainable Hate Speech Detection""" | |
import json | |
import datasets | |
_CITATION = """\ | |
@misc{mathew2020hatexplain, | |
title={HateXplain: A Benchmark Dataset for Explainable Hate Speech Detection}, | |
author={Binny Mathew and Punyajoy Saha and Seid Muhie Yimam and Chris Biemann and Pawan Goyal and Animesh Mukherjee}, | |
year={2020}, | |
eprint={2012.10289}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
} | |
""" | |
# You can copy an official description | |
_DESCRIPTION = """\ | |
Hatexplain is the first benchmark hate speech dataset covering multiple aspects of the issue. \ | |
Each post in the dataset is annotated from three different perspectives: the basic, commonly used 3-class classification \ | |
(i.e., hate, offensive or normal), the target community (i.e., the community that has been the victim of \ | |
hate speech/offensive speech in the post), and the rationales, i.e., the portions of the post on which their labelling \ | |
decision (as hate, offensive or normal) is based. | |
""" | |
_HOMEPAGE = "" | |
_LICENSE = "cc-by-4.0" | |
_URL = "https://raw.githubusercontent.com/punyajoy/HateXplain/master/Data/" | |
_URLS = { | |
"dataset": _URL + "dataset.json", | |
"post_id_divisions": _URL + "post_id_divisions.json", | |
} | |
class HatexplainConfig(datasets.BuilderConfig): | |
"""BuilderConfig for Hatexplain.""" | |
def __init__(self, **kwargs): | |
"""BuilderConfig for Hatexplain. | |
Args: | |
**kwargs: keyword arguments forwarded to super. | |
""" | |
super(HatexplainConfig, self).__init__(**kwargs) | |
class Hatexplain(datasets.GeneratorBasedBuilder): | |
"""Hatexplain: A Benchmark Dataset for Explainable Hate Speech Detection""" | |
BUILDER_CONFIGS = [ | |
HatexplainConfig( | |
name="plain_text", | |
version=datasets.Version("1.0.0", ""), | |
description="Plain text", | |
), | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"id": datasets.Value("string"), | |
"annotators": datasets.features.Sequence( | |
{ | |
"label": datasets.ClassLabel(names=["hatespeech", "normal", "offensive"]), | |
"annotator_id": datasets.Value("int32"), | |
"target": datasets.Sequence(datasets.Value("string")), | |
} | |
), | |
"rationales": datasets.features.Sequence(datasets.features.Sequence(datasets.Value("int32"))), | |
"post_tokens": datasets.features.Sequence(datasets.Value("string")), | |
} | |
), | |
supervised_keys=None, | |
homepage="", | |
citation=_CITATION, | |
license=_LICENSE, | |
) | |
def _split_generators(self, dl_manager): | |
downloaded_files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, gen_kwargs={"filepath": downloaded_files, "split": "train"} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, gen_kwargs={"filepath": downloaded_files, "split": "val"} | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, gen_kwargs={"filepath": downloaded_files, "split": "test"} | |
), | |
] | |
def _generate_examples(self, filepath, split): | |
"""This function returns the examples depending on split""" | |
with open(filepath["post_id_divisions"], encoding="utf-8") as f: | |
post_id_divisions = json.load(f) | |
with open(filepath["dataset"], encoding="utf-8") as f: | |
dataset = json.load(f) | |
for id_, tweet_id in enumerate(post_id_divisions[split]): | |
info = dataset[tweet_id] | |
annotators, rationales, post_tokens = info["annotators"], info["rationales"], info["post_tokens"] | |
yield id_, {"id": tweet_id, "annotators": annotators, "rationales": rationales, "post_tokens": post_tokens} | |