|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Gigaword summarization dataset.""" |
|
|
|
|
|
import os |
|
|
|
import datasets |
|
|
|
|
|
_CITATION = """ |
|
@article{graff2003english, |
|
title={English gigaword}, |
|
author={Graff, David and Kong, Junbo and Chen, Ke and Maeda, Kazuaki}, |
|
journal={Linguistic Data Consortium, Philadelphia}, |
|
volume={4}, |
|
number={1}, |
|
pages={34}, |
|
year={2003} |
|
} |
|
|
|
@article{Rush_2015, |
|
title={A Neural Attention Model for Abstractive Sentence Summarization}, |
|
url={http://dx.doi.org/10.18653/v1/D15-1044}, |
|
DOI={10.18653/v1/d15-1044}, |
|
journal={Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing}, |
|
publisher={Association for Computational Linguistics}, |
|
author={Rush, Alexander M. and Chopra, Sumit and Weston, Jason}, |
|
year={2015} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """ |
|
Headline-generation on a corpus of article pairs from Gigaword consisting of |
|
around 4 million articles. Use the 'org_data' provided by |
|
https://github.com/microsoft/unilm/ which is identical to |
|
https://github.com/harvardnlp/sent-summary but with better format. |
|
|
|
There are two features: |
|
- document: article. |
|
- summary: headline. |
|
|
|
""" |
|
|
|
_URL = "https://drive.google.com/uc?export=download&id=1USoQ8lJgN8kAWnUnRrupMGrPMLlDVqlV" |
|
|
|
_DOCUMENT = "document" |
|
_SUMMARY = "summary" |
|
|
|
|
|
class Gigaword(datasets.GeneratorBasedBuilder): |
|
"""Gigaword summarization dataset.""" |
|
|
|
|
|
|
|
|
|
VERSION = datasets.Version("1.2.0") |
|
|
|
def _info(self): |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features({_DOCUMENT: datasets.Value("string"), _SUMMARY: datasets.Value("string")}), |
|
supervised_keys=(_DOCUMENT, _SUMMARY), |
|
homepage="https://github.com/harvardnlp/sent-summary", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_path = dl_manager.download_and_extract(_URL) |
|
pattern = os.path.join(dl_path, "org_data", "%s.%s.txt") |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"src_path": pattern % ("train", "src"), |
|
"tgt_path": pattern % ("train", "tgt"), |
|
"replace_unk": True, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"src_path": pattern % ("dev", "src"), |
|
"tgt_path": pattern % ("dev", "tgt"), |
|
"replace_unk": True, |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"src_path": pattern % ("test", "src"), |
|
"tgt_path": pattern % ("test", "tgt"), |
|
"replace_unk": False, |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, src_path=None, tgt_path=None, replace_unk=None): |
|
"""Yields examples.""" |
|
with open(src_path, encoding="utf-8") as f_d, open(tgt_path, encoding="utf-8") as f_s: |
|
for i, (doc_text, sum_text) in enumerate(zip(f_d, f_s)): |
|
if replace_unk: |
|
yield i, { |
|
_DOCUMENT: doc_text.strip().replace("<unk>", "UNK"), |
|
_SUMMARY: sum_text.strip().replace("<unk>", "UNK"), |
|
} |
|
else: |
|
yield i, {_DOCUMENT: doc_text.strip(), _SUMMARY: sum_text.strip()} |
|
|