amphora commited on
Commit
5ff4faf
1 Parent(s): eacd0e4

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +48 -0
README.md CHANGED
@@ -36,4 +36,52 @@ dataset_info:
36
  ---
37
  # Dataset Card for "CSAT-QA"
38
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
39
  [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)
 
36
  ---
37
  # Dataset Card for "CSAT-QA"
38
 
39
+ ## Dataset Summary
40
+ The field of Korean Language Processing is experiencing a surge in interest,
41
+ illustrated by the introduction of open-source models such as Polyglot-Ko and proprietary models like HyperClova.
42
+ Yet, as the development of larger and superior language models accelerates, evaluation methods aren't keeping pace.
43
+ Recognizing this gap, we at HAE-RAE are dedicated to creating tailored benchmarks for the rigorous evaluation of these models.
44
+
45
+ CSAT-QA incorporates 936 multiple choice question answering (MCQA) questions, manually curated from
46
+ the Korean University entrance exam, the College Scholastic Ability Test (CSAT). For a detailed explanation of how the CSAT-QA was created
47
+ please check out the [accompanying blog post](https://github.com/guijinSON/hae-rae/blob/main/blog/CSAT-QA.md),
48
+ and for evaluation check out [LM-Eval-Harness](https://github.com/EleutherAI/lm-evaluation-harness) on github.
49
+
50
+ ## Evaluation Results
51
+
52
+ | Category | Polyglot-Ko-12.8B | GPT-3.5-16k | GPT-4 | Human_Performance |
53
+ |----------|----------------|-------------|-----------|-------------------|
54
+ | WR | 0.09 | 9.09 | 45.45 | **54.0** |
55
+ | GR | 0.00 | 20.00 | 32.00 | **45.41** |
56
+ | LI | 21.62 | 35.14 | **59.46** | 54.38 |
57
+ | RCH | 17.14 | 37.14 | **62.86** | 48.7 |
58
+ | RCS | 10.81 | 27.03 | **64.86** | 39.93 |
59
+ | RCSS | 11.9 | 30.95 | **71.43** | 44.54 |
60
+ | Average | 10.26 | 26.56 | **56.01** | 47.8 |
61
+
62
+ ![Untitled](https://github.com/guijinSON/hae-rae/blob/main/blog/assets/csat_spyder.png)
63
+
64
+ ## How to Use
65
+
66
+ The CSAT-QA includes two subsets. The full version with 936 questions can be downloaded using the following code:
67
+
68
+ ```
69
+ from datasets import load_dataset
70
+ dataset = load_dataset("EleutherAI/CSAT-QA")
71
+ ```
72
+
73
+ A more condensed version, which includes human accuracy data, can be downloaded using the following code:
74
+ ```
75
+ from datasets import load_dataset
76
+ import pandas as pd
77
+
78
+ dataset = load_dataset("EleutherAI/CSAT-QA")
79
+ dataset = pd.DataFrame(dataset["train"]).dropna(subset=["Category"])
80
+ ```
81
+
82
+ ## License
83
+
84
+ The copyright of this material belongs to the Korea Institute for Curriculum and Evaluation(한국교육과정평가원) and may be used for research purposes only.
85
+
86
+
87
  [More Information needed](https://github.com/huggingface/datasets/blob/main/CONTRIBUTING.md#how-to-contribute-to-the-dataset-cards)