Datasets:

Modalities:
Text
Formats:
parquet
Languages:
Korean
ArXiv:
Libraries:
Datasets
pandas
License:
HAE_RAE_BENCH_1.1 / HAE_RAE_BENCH.py
amphora's picture
Update HAE_RAE_BENCH.py
d12b498
raw
history blame
2.23 kB
import os
import datasets
import json
import pandas as pd
_CITATION = """\
"""
_DESCRIPTION = """\
CSAT-QA
"""
_HOMEPAGE = "https://huggingface.co/HAERAE-HUB"
_LICENSE = "Proprietary"
split_names = ['andard_nomenclature',
'correct_definition_matching',
'date_understanding',
'general_knowledge',
'history',
'loan_word',
'lyrics_denoising',
'proverbs_denoising',
'rare_word',
'reading_comprehension']
class HRBConfig(datasets.BuilderConfig):
def __init__(self, **kwargs):
super().__init__(version=datasets.Version("1.0.1"), **kwargs)
class HRB(datasets.GeneratorBasedBuilder):
BUILDER_CONFIGS = [
HRBConfig(
name=name,
)
for name in split_names
]
def _info(self):
features = datasets.Features(
{
"query": datasets.Value("string"),
"options" : datasets.Value("string"),
"answer": datasets.Value("string"),
"category": datasets.Value("string"),
}
)
return datasets.DatasetInfo(
description=_DESCRIPTION,
features=features,
homepage=_HOMEPAGE,
license=_LICENSE,
citation=_CITATION,
)
def _split_generators(self, dl_manager):
train_path = dl_manager.download_and_extract("./data/hrb.v1.1.jsonl")
return [
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={
"filepath": train_path,
},
),
]
def _generate_examples(self, filepath):
with open(filepath, encoding="utf-8") as f:
buffer = []
for key, row in enumerate(f):
data = json.loads(row)
if data["category"] == self.config.name:
buffer.append({
"query": data["query"],
"options" : data["options"],
"answer": data["answer"],
"category": data["category"]
})
for idx, dat in enumerate(buffer):
yield idx,dat