Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
natural-language-inference
Size:
100K - 1M
Tags:
quality-estimation
License:
# coding=utf-8 | |
# Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# http://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# Lint as: python3 | |
"""Dutch translation of the e-SNLI corpus with added quality estimation scores""" | |
import csv | |
csv.register_dialect("tsv", delimiter="\t") | |
import datasets | |
_CITATION = """ | |
@incollection{NIPS2018_8163, | |
title = {e-SNLI: Natural Language Inference with Natural Language Explanations}, | |
author = {Camburu, Oana-Maria and Rockt\"{a}schel, Tim and Lukasiewicz, Thomas and Blunsom, Phil}, | |
booktitle = {Advances in Neural Information Processing Systems 31}, | |
editor = {S. Bengio and H. Wallach and H. Larochelle and K. Grauman and N. Cesa-Bianchi and R. Garnett}, | |
pages = {9539--9549}, | |
year = {2018}, | |
publisher = {Curran Associates, Inc.}, | |
url = {http://papers.nips.cc/paper/8163-e-snli-natural-language-inference-with-natural-language-explanations.pdf} | |
} | |
""" | |
_DESCRIPTION = """ | |
The e-SNLI dataset extends the Stanford Natural Language Inference Dataset to | |
include human-annotated natural language explanations of the entailment | |
relations. This version includes an automatic translation to Dutch and two quality estimation annotations | |
for each translated field. | |
""" | |
_HOMEPAGE = "https://www.rug.nl/masters/information-science/?lang=en" | |
_URLS = { | |
"train": "https://huggingface.co/datasets/GroNLP/ik-nlp-22_transqe/resolve/main/data/train.tsv.gz", | |
"validation": "https://huggingface.co/datasets/GroNLP/ik-nlp-22_transqe/resolve/main/data/validation.tsv.gz", | |
"test": "https://huggingface.co/datasets/GroNLP/ik-nlp-22_transqe/resolve/main/data/test.tsv.gz", | |
} | |
class IkNlp22ExpNLIConfig(datasets.GeneratorBasedBuilder): | |
"""e-SNLI corpus with added translation and quality estimation scores""" | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="plain_text", | |
version=datasets.Version("0.0.2"), | |
description="Plain text import of e-SNLI", | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"premise_en": datasets.Value("string"), | |
"premise_nl": datasets.Value("string"), | |
"hypothesis_en": datasets.Value("string"), | |
"hypothesis_nl": datasets.Value("string"), | |
"label": datasets.Value("int32"), | |
"explanation_1_en": datasets.Value("string"), | |
"explanation_1_nl": datasets.Value("string"), | |
"explanation_2_en": datasets.Value("string"), | |
"explanation_2_nl": datasets.Value("string"), | |
"explanation_3_en": datasets.Value("string"), | |
"explanation_3_nl": datasets.Value("string"), | |
"da_premise": datasets.Value("string"), | |
"mqm_premise": datasets.Value("string"), | |
"da_hypothesis": datasets.Value("string"), | |
"mqm_hypothesis": datasets.Value("string"), | |
"da_explanation_1": datasets.Value("string"), | |
"mqm_explanation_1": datasets.Value("string"), | |
"da_explanation_2": datasets.Value("string"), | |
"mqm_explanation_2": datasets.Value("string"), | |
"da_explanation_3": datasets.Value("string"), | |
"mqm_explanation_3": datasets.Value("string"), | |
} | |
), | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
files = dl_manager.download_and_extract(_URLS) | |
return [ | |
datasets.SplitGenerator( | |
name=name, | |
gen_kwargs={"filepath": filepath}, | |
) | |
for name, filepath in files.items() | |
] | |
def _generate_examples(self, filepath): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
reader = csv.DictReader(f, dialect="tsv") | |
for i, row in enumerate(reader): | |
yield i, { | |
"premise_en": row["premise_en"], | |
"premise_nl": row["premise_nl"], | |
"hypothesis_en": row["hypothesis_en"], | |
"hypothesis_nl": row["hypothesis_nl"], | |
"label": row["label"], | |
"explanation_1_en": row["explanation_1_en"], | |
"explanation_1_nl": row["explanation_1_nl"], | |
"explanation_2_en": row.get("explanation_2_en", ""), | |
"explanation_2_nl": row.get("explanation_2_nl", ""), | |
"explanation_3_en": row.get("explanation_3_en", ""), | |
"explanation_3_nl": row.get("explanation_3_nl", ""), | |
"da_premise": row["da_premise"], | |
"mqm_premise": row["mqm_premise"], | |
"da_hypothesis": row["da_hypothesis"], | |
"mqm_hypothesis": row["mqm_hypothesis"], | |
"da_explanation_1": row["da_explanation_1"], | |
"mqm_explanation_1": row["mqm_explanation_1"], | |
"da_explanation_2": row.get("da_explanation_2", ""), | |
"mqm_explanation_2": row.get("mqm_explanation_2", ""), | |
"da_explanation_3": row.get("da_explanation_3", ""), | |
"mqm_explanation_3": row.get("mqm_explanation_3", ""), | |
} | |