|
import os |
|
|
|
import datasets |
|
import pandas as pd |
|
|
|
_CITATION = """No citation information available.""" |
|
|
|
_DESCRIPTION = """\ |
|
This dataset contains a sample of sentences taken from the FLORES-101 dataset that were either translated |
|
from scratch or post-edited from an existing automatic translation by three human translators. |
|
Translation were performed for the English-Italian language pair, and translators' behavioral data |
|
(keystrokes, pauses, editing times) were collected using the PET platform. |
|
""" |
|
|
|
_HOMEPAGE = "https://www.rug.nl/masters/information-science/?lang=en" |
|
|
|
_LICENSE = "Sharing and publishing of the data is not allowed at the moment." |
|
|
|
_PATHS = { |
|
"full": os.path.join("IK_NLP_22_PESTYLE", "train.tsv"), |
|
"mask_subject": os.path.join("IK_NLP_22_PESTYLE", "test.tsv"), |
|
"mask_modality": os.path.join("IK_NLP_22_PESTYLE", "test.tsv"), |
|
"mask_time": os.path.join("IK_NLP_22_PESTYLE", "test.tsv") |
|
} |
|
|
|
_ALL_FIELDS = [ |
|
"item_id", "subject_id", "modality", |
|
"src_text", "mt_text", "tgt_text", |
|
"edit_time", "k_total", "k_letter", "k_digit", "k_white", "k_symbol", "k_nav", "k_erase", |
|
"k_copy", "k_cut", "k_paste", "n_pause_geq_300", "len_pause_geq_300", |
|
"n_pause_geq_1000", "len_pause_geq_1000", "num_annotations", |
|
"n_insert", "n_delete", "n_substitute", "n_shift", "bleu", "chrf", "ter", "aligned_edit" |
|
] |
|
|
|
_FIELDS_MASK_SUBJECT = [f for f in _ALL_FIELDS if f not in ["subject_id"]] |
|
_FIELDS_MASK_MODALITY = [f for f in _ALL_FIELDS if f not in [ |
|
"modality", "mt_text", "n_insert", "n_delete", "n_substitute", |
|
"n_shift", "ter", "bleu", "chrf", "aligned_edit" |
|
]] |
|
_FIELDS_MASK_TIME = [f for f in _ALL_FIELDS if f not in [ |
|
"edit_time", "n_pause_geq_300", "len_pause_geq_300", |
|
"n_pause_geq_1000", "len_pause_geq_1000" |
|
]] |
|
|
|
_DICT_FIELDS = { |
|
"full": _ALL_FIELDS, |
|
"mask_subject": _FIELDS_MASK_SUBJECT, |
|
"mask_modality": _FIELDS_MASK_MODALITY, |
|
"mask_time": _FIELDS_MASK_TIME |
|
} |
|
|
|
class IkNlp22PEStyleConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for the IK NLP '22 Post-editing Stylometry Dataset.""" |
|
|
|
def __init__( |
|
self, |
|
features, |
|
**kwargs, |
|
): |
|
""" |
|
Args: |
|
features: `list[string]`, list of the features that will appear in the |
|
feature dict. Should not include "label". |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super().__init__(version=datasets.Version("1.0.0"), **kwargs) |
|
self.features = features |
|
|
|
|
|
class IkNlp22PEStyle(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
|
|
BUILDER_CONFIGS = [ |
|
IkNlp22PEStyleConfig( |
|
name=name, |
|
features=fields, |
|
) |
|
for name, fields in _DICT_FIELDS.items() |
|
] |
|
|
|
DEFAULT_CONFIG_NAME = "full" |
|
|
|
@property |
|
|
|
def manual_download_instructions(self): |
|
return ( |
|
"The access to the data is restricted to students of the IK MSc NLP 2022 course working on a related project." |
|
"To load the data using this dataset, download and extract the IK_NLP_22_PESTYLE folder you were provided upon selecting the final project." |
|
"After extracting it, the folder (referred to as root) must contain a IK_NLP_22_PESTYLE subfolder, containing train.tsv and test.tsv files." |
|
f"Then, load the dataset with: `datasets.load_dataset('GroNLP/ik-nlp-22_pestyle', '{self.config.name}', data_dir='path/to/root/folder')`" |
|
) |
|
|
|
def _info(self): |
|
features = {feature: datasets.Value("int32") for feature in self.config.features} |
|
for field in ["subject_id", "modality", "src_text", "mt_text", "tgt_text", "aligned_edit"]: |
|
if field in self.config.features: |
|
features[field] = datasets.Value("string") |
|
for field in ["edit_time", "bleu", "chrf", "ter", "n_insert", "n_delete", "n_substitute", "n_shift"]: |
|
if field in self.config.features: |
|
features[field] = datasets.Value("float32") |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=datasets.Features(features), |
|
homepage=_HOMEPAGE, |
|
license=_LICENSE, |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
data_dir = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) |
|
if not os.path.exists(data_dir): |
|
raise FileNotFoundError( |
|
"{} does not exist. Make sure you insert the unzipped IK_NLP_22_PESTYLE dir via " |
|
"`datasets.load_dataset('GroNLP/ik-nlp-22_pestyle', data_dir=...)`" |
|
"Manual download instructions: {}".format( |
|
data_dir, self.manual_download_instructions |
|
) |
|
) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN if self.config.name == "full" else datasets.Split.TEST, |
|
gen_kwargs={ |
|
"filepath": os.path.join(data_dir, _PATHS[self.config.name]), |
|
"features": self.config.features, |
|
}, |
|
) |
|
] |
|
|
|
def _generate_examples(self, filepath: str, features): |
|
"""Yields examples as (key, example) tuples.""" |
|
data = pd.read_csv(filepath, sep="\t") |
|
data = data[features] |
|
for id_, row in data.iterrows(): |
|
yield id_, row.to_dict() |