Datasets:

Modalities:
Text
License:
haoyuwang6 commited on
Commit
1552270
·
verified ·
1 Parent(s): 8218e50

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +57 -3
README.md CHANGED
@@ -1,3 +1,57 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+
5
+ ## Overview
6
+ This dataset covers the encoder embeddings and prediction results of LLMs of paper 'Model Generalization on Text Attribute Graphs: Principles with Lagre Language Models', Haoyu Wang, Shikun Liu, Rongzhe Wei, Pan Li.
7
+
8
+ ## Dataset Description
9
+
10
+ The dataset structure should be organized as follows:
11
+
12
+ ```plaintext
13
+ /dataset/
14
+ │── [dataset_name]/
15
+ │ │── processed_data.pt # Contains labels and graph information
16
+ │ │── [encoder]_x.pt # Features extracted by different encoders
17
+ │ │── categories.csv # label name raw texts
18
+ │ │── raw_texts.pt # raw text of each node
19
+ ```
20
+
21
+ ### File Descriptions
22
+ - **`processed_data.pt`**: A PyTorch file storing the processed dataset, including graph structure and node labels. Note that in heterophilic datasets, thie is named as [Dataset].pt, where Dataset could be Cornell, etc, and should be opened with DGL.
23
+ - **`[encoder]_x.pt`**: Feature matrices extracted using different encoders, where `[encoder]` represents the encoder name.
24
+ - **`categories.csv`**: raw label names.
25
+ - **`raw_texts.pt`**: raw node texts. Note that in heterophilic datasets, this is named as [Dataset].csv, where Dataset can be Cornell, etc.
26
+
27
+ ### Dataset Naming Convention
28
+ `[dataset_name]` should be one of the following:
29
+ - `cora`
30
+ - `citeseer`
31
+ - `pubmed`
32
+ - `bookhis`
33
+ - `bookchild`
34
+ - `sportsfit`
35
+ - `wikics`
36
+ - `cornell`
37
+ - `texas`
38
+ - `wisconsin`
39
+ - `washington`
40
+
41
+ ### Encoder Naming Convention
42
+ `[encoder]` can be one of the following:
43
+ - `sbert` (the sentence-bert encoder)
44
+ - `roberta` (the Roberta encoder)
45
+ - `llmicl_primary` (the vanilla LLM2Vec)
46
+ - `llmicl_class_aware` (the task-adaptive encoder)
47
+ - `llmgpt_text-embedding-3-large` (the embedding api text-embedding-3-large by openai)
48
+
49
+
50
+ ## Results Description
51
+
52
+ The ./results/ folder consists of prediction results of GPT-4o in node text classification and GPT-4o-mini in homophily ratio prediction.
53
+
54
+ ```plaintext
55
+ ./results/nc_[DATASET]/4o/llm_baseline # node text prediction
56
+ ./results/nc_[DATASET]/4o_mini/agenth # homophily ratio prediction
57
+ ```