GoodBaiBai88 commited on
Commit
c3189f5
·
verified ·
1 Parent(s): 83a006f

Upload train_data_prepare.py

Browse files
Files changed (1) hide show
  1. train_data_prepare.py +186 -0
train_data_prepare.py ADDED
@@ -0,0 +1,186 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import numpy as np
3
+ import multiprocessing
4
+ import argparse
5
+ from scipy import sparse
6
+ from sklearn.model_selection import train_test_split
7
+ import json
8
+ join = os.path.join
9
+
10
+ from monai.transforms import (
11
+ AddChanneld,
12
+ Compose,
13
+ LoadImaged,
14
+ Orientationd,
15
+ )
16
+
17
+ def set_parse():
18
+ # %% set up parser
19
+ parser = argparse.ArgumentParser()
20
+ parser.add_argument("-category", default=['liver', 'right kidney', 'spleen', 'pancreas', 'aorta', 'inferior vena cava', 'right adrenal gland', 'left adrenal gland', 'gallbladder', 'esophagus', 'stomach', 'duodenum', 'left kidney'], type=list)
21
+ parser.add_argument("-image_dir", type=str, required=True)
22
+ parser.add_argument("-label_dir", type=str, required=True)
23
+ parser.add_argument("-dataset_code", type=str, required=True)
24
+ parser.add_argument("-save_root", type=str, required=True)
25
+ parser.add_argument("-test_ratio", type=float, required=True)
26
+
27
+ args = parser.parse_args()
28
+ return args
29
+
30
+ args = set_parse()
31
+
32
+ # get ct&gt dir
33
+ image_list_all = [item for item in sorted(os.listdir(args.image_dir))]
34
+ label_list_all = [item for item in sorted(os.listdir(args.label_dir))]
35
+ assert len(image_list_all) == len(label_list_all)
36
+ print('dataset size ', len(image_list_all))
37
+
38
+ # build dataset
39
+ data_path_list_all = []
40
+ for idx in range(len(image_list_all)):
41
+ img_path = join(args.image_dir, image_list_all[idx])
42
+ label_path = join(args.label_dir, label_list_all[idx])
43
+ name = image_list_all[idx].split('.')[0]
44
+ info = (idx, name, img_path, label_path)
45
+ data_path_list_all.append(info)
46
+
47
+ img_loader = Compose(
48
+ [
49
+ LoadImaged(keys=['image', 'label']),
50
+ AddChanneld(keys=['image', 'label']),
51
+ # Orientationd(keys=['image', 'label'], axcodes="RAS"),
52
+ ]
53
+ )
54
+
55
+ # save
56
+ save_path = join(args.save_root, args.dataset_code)
57
+ os.makedirs(save_path, exist_ok=True)
58
+
59
+ # ct_save_path = join(save_path, 'ct')
60
+ # gt_save_path = join(save_path, 'gt')
61
+ # if not os.path.exists(ct_save_path):
62
+ # os.makedirs(ct_save_path)
63
+ # if not os.path.exists(gt_save_path):
64
+ # os.makedirs(gt_save_path)
65
+
66
+ # exist file:
67
+ exist_file_list = os.listdir(save_path)
68
+ print('exist_file_list ', exist_file_list)
69
+
70
+ def normalize(ct_narray):
71
+ ct_voxel_ndarray = ct_narray.copy()
72
+ ct_voxel_ndarray = ct_voxel_ndarray.flatten()
73
+ # for all data
74
+ thred = np.mean(ct_voxel_ndarray)
75
+ voxel_filtered = ct_voxel_ndarray[(ct_voxel_ndarray > thred)]
76
+ # for foreground data
77
+ upper_bound = np.percentile(voxel_filtered, 99.95)
78
+ lower_bound = np.percentile(voxel_filtered, 00.05)
79
+ mean = np.mean(voxel_filtered)
80
+ std = np.std(voxel_filtered)
81
+ ### transform ###
82
+ ct_narray = np.clip(ct_narray, lower_bound, upper_bound)
83
+ ct_narray = (ct_narray - mean) / max(std, 1e-8)
84
+ return ct_narray
85
+
86
+ def run(info):
87
+ idx, file_name, case_path, label_path = info
88
+
89
+ item = {}
90
+ if file_name in exist_file_list:
91
+ print(file_name + ' exist, skip')
92
+ return
93
+ print('process ', idx, '---' ,file_name)
94
+ # generate ct_voxel_ndarray
95
+ item_load = {
96
+ 'image' : case_path,
97
+ 'label' : label_path,
98
+ }
99
+ item_load = img_loader(item_load)
100
+ ct_voxel_ndarray = item_load['image']
101
+ gt_voxel_ndarray = item_load['label']
102
+
103
+ ct_shape = ct_voxel_ndarray.shape
104
+ item['image'] = ct_voxel_ndarray
105
+
106
+ # generate gt_voxel_ndarray
107
+ gt_voxel_ndarray = np.array(gt_voxel_ndarray).squeeze()
108
+ present_categories = np.unique(gt_voxel_ndarray)
109
+ gt_masks = []
110
+ for cls_idx in range(len(args.category)):
111
+ cls = cls_idx + 1
112
+ if cls not in present_categories:
113
+ gt_voxel_ndarray_category = np.zeros(ct_shape)
114
+ gt_masks.append(gt_voxel_ndarray_category)
115
+ print('case {} ==> zero category '.format(idx) + args.category[cls_idx])
116
+ print(gt_voxel_ndarray_category.shape)
117
+ else:
118
+ gt_voxel_ndarray_category = gt_voxel_ndarray.copy()
119
+ gt_voxel_ndarray_category[gt_voxel_ndarray != cls] = 0
120
+ gt_voxel_ndarray_category[gt_voxel_ndarray == cls] = 1
121
+ gt_masks.append(gt_voxel_ndarray_category)
122
+ gt_voxel_ndarray = np.stack(gt_masks, axis=0)
123
+
124
+ assert gt_voxel_ndarray.shape[0] == len(args.category), str(gt_voxel_ndarray.shape[0])
125
+ assert gt_voxel_ndarray.shape[1:] == ct_voxel_ndarray.shape[1:]
126
+ item['label'] = gt_voxel_ndarray.astype(np.int32)
127
+ print(idx, ' load done!')
128
+
129
+ #############################
130
+ item['image'] = normalize(item['image'])
131
+ print(idx, ' transform done')
132
+
133
+ ############################
134
+ print(file_name + ' ct gt <--> ', item['image'].shape, item['label'].shape)
135
+ case_path = join(save_path, file_name)
136
+ os.makedirs(case_path, exist_ok=True)
137
+
138
+ np.save(join(case_path, 'image.npy'), item['image'])
139
+ allmatrix_sp=sparse.csr_matrix(item['label'].reshape(item['label'].shape[0], -1))
140
+ sparse.save_npz(join(case_path, 'mask_' + str(item['label'].shape)), allmatrix_sp)
141
+ print(file_name + ' save done!')
142
+
143
+ def generate_dataset_json(root_dir, output_file, test_ratio=0.2):
144
+ cases = os.listdir(root_dir)
145
+ ct_paths, gt_paths = [], []
146
+ for case_name in cases:
147
+ case_files = sorted(os.listdir(join(root_dir, case_name)))
148
+ ct_path = join(root_dir, case_name, case_files[0])
149
+ gt_path = join(root_dir, case_name, case_files[1])
150
+ ct_paths.append(ct_path)
151
+ gt_paths.append(gt_path)
152
+
153
+ data = list(zip(ct_paths, gt_paths))
154
+ train_data, val_data = train_test_split(data, test_size=test_ratio)
155
+ labels = {}
156
+ labels['0'] = 'background'
157
+ for idx in range(len(args.category)):
158
+ label_name = args.category[idx]
159
+ label_id = idx + 1
160
+ labels[str(label_id)] = label_name
161
+ dataset = {
162
+ 'name': f'{args.dataset_code} Dataset',
163
+ 'description': f'{args.dataset_code} Dataset',
164
+ 'tensorImageSize': '4D',
165
+ 'modality': {
166
+ '0': 'CT',
167
+ },
168
+ 'labels': labels,
169
+ 'numTrain': len(train_data),
170
+ 'numTest': len(val_data),
171
+ 'train': [{'image': ct_path, 'label': gt_path} for ct_path, gt_path in train_data],
172
+ 'test': [{'image': ct_path, 'label': gt_path} for ct_path, gt_path in val_data]
173
+ }
174
+ with open(output_file, 'w') as f:
175
+ print(f'{output_file} dump')
176
+ json.dump(dataset, f, indent=2)
177
+
178
+ if __name__ == "__main__":
179
+ with multiprocessing.Pool(processes=64) as pool:
180
+ pool.map(run, data_path_list_all)
181
+ print('Process Finished!')
182
+
183
+ generate_dataset_json(root_dir=save_path,
184
+ output_file=join(save_path, f'{args.dataset_code}.json'),
185
+ test_ratio=args.test_ratio)
186
+ print('Json Split Done!')