GindaChen commited on
Commit
4903ebc
·
verified ·
1 Parent(s): bdc3d82

Upload folder using huggingface_hub

Browse files
Files changed (34) hide show
  1. .gitattributes +1 -0
  2. attnserver.run_attnserver.slurm.sh.343207.out.log +249 -0
  3. attnserver.run_attnserver.slurm.sh.343213.err.log +0 -0
  4. attnserver.run_attnserver.slurm.sh.343213.out.log +0 -0
  5. attnserver.run_attnserver.slurm.sh.343214.err.log +0 -0
  6. attnserver.run_attnserver.slurm.sh.343214.out.log +0 -0
  7. attnserver.run_attnserver.slurm.sh.343215.err.log +0 -0
  8. attnserver.run_attnserver.slurm.sh.343215.out.log +37 -0
  9. attnserver.run_attnserver.slurm.sh.343225.err.log +143 -0
  10. attnserver.run_attnserver.slurm.sh.343225.out.log +1185 -0
  11. attnserver.run_attnserver.slurm.sh.343226.err.log +71 -0
  12. attnserver.run_attnserver.slurm.sh.343226.out.log +0 -0
  13. attnserver.run_attnserver.slurm.sh.343237.err.log +352 -0
  14. attnserver.run_attnserver.slurm.sh.343237.out.log +0 -0
  15. attnserver.run_attnserver.slurm.sh.343238.err.log +613 -0
  16. attnserver.run_attnserver.slurm.sh.343238.out.log +0 -0
  17. attnserver.run_attnserver.slurm.sh.343239.err.log +93 -0
  18. attnserver.run_attnserver.slurm.sh.343239.out.log +19 -0
  19. attnserver.run_attnserver.slurm.sh.343240.err.log +0 -0
  20. attnserver.run_attnserver.slurm.sh.343240.out.log +0 -0
  21. attnserver.run_attnserver.slurm.sh.343243.err.log +199 -0
  22. attnserver.run_attnserver.slurm.sh.343243.out.log +0 -0
  23. attnserver.run_attnserver.slurm.sh.343244.err.log +430 -0
  24. attnserver.run_attnserver.slurm.sh.343244.out.log +0 -0
  25. attnserver.run_attnserver.slurm.sh.343245.err.log +0 -0
  26. attnserver.run_attnserver.slurm.sh.343245.out.log +0 -0
  27. attnserver.run_attnserver.slurm.sh.343246.err.log +0 -0
  28. attnserver.run_attnserver.slurm.sh.343246.out.log +0 -0
  29. attnserver.run_attnserver.slurm.sh.343247.err.log +0 -0
  30. attnserver.run_attnserver.slurm.sh.343247.out.log +0 -0
  31. attnserver.run_attnserver.slurm.sh.343248.err.log +0 -0
  32. attnserver.run_attnserver.slurm.sh.343248.out.log +0 -0
  33. attnserver.run_attnserver.slurm.sh.343261.err.log +202 -0
  34. attnserver.run_attnserver.slurm.sh.343261.out.log +1507 -0
.gitattributes CHANGED
@@ -63,3 +63,4 @@ attnserver.run_attnserver.slurm.sh.343192.err.log filter=lfs diff=lfs merge=lfs
63
  attnserver.run_attnserver.slurm.sh.343194.err.log filter=lfs diff=lfs merge=lfs -text
64
  attnserver.run_attnserver.slurm.sh.343196.err.log filter=lfs diff=lfs merge=lfs -text
65
  attnserver.run_attnserver.slurm.sh.343205.err.log filter=lfs diff=lfs merge=lfs -text
 
 
63
  attnserver.run_attnserver.slurm.sh.343194.err.log filter=lfs diff=lfs merge=lfs -text
64
  attnserver.run_attnserver.slurm.sh.343196.err.log filter=lfs diff=lfs merge=lfs -text
65
  attnserver.run_attnserver.slurm.sh.343205.err.log filter=lfs diff=lfs merge=lfs -text
66
+ attnserver.run_attnserver.slurm.sh.343215.err.log filter=lfs diff=lfs merge=lfs -text
attnserver.run_attnserver.slurm.sh.343207.out.log CHANGED
@@ -19372,3 +19372,252 @@ batch tensor after cp: position_ids torch.Size([1, 131072])
19372
  Start exporting trace 1
19373
  Done exporting trace 1
19374
  [2025-06-21 21:59:22] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 41689.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19372
  Start exporting trace 1
19373
  Done exporting trace 1
19374
  [2025-06-21 21:59:22] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 41689.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19375
+ batch tensor: tokens torch.Size([1, 131072])
19376
+ batch tensor: labels torch.Size([1, 131072])
19377
+ batch tensor: loss_mask torch.Size([1, 131072])
19378
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19379
+ batch tensor: position_ids torch.Size([1, 131072])
19380
+ batch tensor after cp: tokens torch.Size([1, 131072])
19381
+ batch tensor after cp: labels torch.Size([1, 131072])
19382
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19383
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19384
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19385
+ batch tensor: tokens torch.Size([1, 131072])
19386
+ batch tensor: labels torch.Size([1, 131072])
19387
+ batch tensor: loss_mask torch.Size([1, 131072])
19388
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19389
+ batch tensor: position_ids torch.Size([1, 131072])
19390
+ batch tensor after cp: tokens torch.Size([1, 131072])
19391
+ batch tensor after cp: labels torch.Size([1, 131072])
19392
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19393
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19394
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19395
+ batch tensor: tokens torch.Size([1, 131072])
19396
+ batch tensor: labels torch.Size([1, 131072])
19397
+ batch tensor: loss_mask torch.Size([1, 131072])
19398
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19399
+ batch tensor: position_ids torch.Size([1, 131072])
19400
+ batch tensor after cp: tokens torch.Size([1, 131072])
19401
+ batch tensor after cp: labels torch.Size([1, 131072])
19402
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19403
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19404
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19405
+ batch tensor: tokens torch.Size([1, 131072])
19406
+ batch tensor: labels torch.Size([1, 131072])
19407
+ batch tensor: loss_mask torch.Size([1, 131072])
19408
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19409
+ batch tensor: position_ids torch.Size([1, 131072])
19410
+ batch tensor after cp: tokens torch.Size([1, 131072])
19411
+ batch tensor after cp: labels torch.Size([1, 131072])
19412
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19413
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19414
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19415
+ batch tensor: tokens torch.Size([1, 131072])
19416
+ batch tensor: labels torch.Size([1, 131072])
19417
+ batch tensor: loss_mask torch.Size([1, 131072])
19418
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19419
+ batch tensor: position_ids torch.Size([1, 131072])
19420
+ batch tensor after cp: tokens torch.Size([1, 131072])
19421
+ batch tensor after cp: labels torch.Size([1, 131072])
19422
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19423
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19424
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19425
+ batch tensor: tokens torch.Size([1, 131072])
19426
+ batch tensor: labels torch.Size([1, 131072])
19427
+ batch tensor: loss_mask torch.Size([1, 131072])
19428
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19429
+ batch tensor: position_ids torch.Size([1, 131072])
19430
+ batch tensor after cp: tokens torch.Size([1, 131072])
19431
+ batch tensor after cp: labels torch.Size([1, 131072])
19432
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19433
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19434
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19435
+ batch tensor: tokens torch.Size([1, 131072])
19436
+ batch tensor: labels torch.Size([1, 131072])
19437
+ batch tensor: loss_mask torch.Size([1, 131072])
19438
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19439
+ batch tensor: position_ids torch.Size([1, 131072])
19440
+ batch tensor after cp: tokens torch.Size([1, 131072])
19441
+ batch tensor after cp: labels torch.Size([1, 131072])
19442
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19443
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19444
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19445
+ batch tensor: tokens torch.Size([1, 131072])
19446
+ batch tensor: labels torch.Size([1, 131072])
19447
+ batch tensor: loss_mask torch.Size([1, 131072])
19448
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19449
+ batch tensor: position_ids torch.Size([1, 131072])
19450
+ batch tensor after cp: tokens torch.Size([1, 131072])
19451
+ batch tensor after cp: labels torch.Size([1, 131072])
19452
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19453
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19454
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19455
+ Start exporting trace 2
19456
+ Done exporting trace 2
19457
+ [2025-06-21 22:02:29] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 187533.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19458
+ batch tensor: tokens torch.Size([1, 131072])
19459
+ batch tensor: labels torch.Size([1, 131072])
19460
+ batch tensor: loss_mask torch.Size([1, 131072])
19461
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19462
+ batch tensor: position_ids torch.Size([1, 131072])
19463
+ batch tensor after cp: tokens torch.Size([1, 131072])
19464
+ batch tensor after cp: labels torch.Size([1, 131072])
19465
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19466
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19467
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19468
+ batch tensor: tokens torch.Size([1, 131072])
19469
+ batch tensor: labels torch.Size([1, 131072])
19470
+ batch tensor: loss_mask torch.Size([1, 131072])
19471
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19472
+ batch tensor: position_ids torch.Size([1, 131072])
19473
+ batch tensor after cp: tokens torch.Size([1, 131072])
19474
+ batch tensor after cp: labels torch.Size([1, 131072])
19475
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19476
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19477
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19478
+ batch tensor: tokens torch.Size([1, 131072])
19479
+ batch tensor: labels torch.Size([1, 131072])
19480
+ batch tensor: loss_mask torch.Size([1, 131072])
19481
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19482
+ batch tensor: position_ids torch.Size([1, 131072])
19483
+ batch tensor after cp: tokens torch.Size([1, 131072])
19484
+ batch tensor after cp: labels torch.Size([1, 131072])
19485
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19486
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19487
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19488
+ batch tensor: tokens torch.Size([1, 131072])
19489
+ batch tensor: labels torch.Size([1, 131072])
19490
+ batch tensor: loss_mask torch.Size([1, 131072])
19491
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19492
+ batch tensor: position_ids torch.Size([1, 131072])
19493
+ batch tensor after cp: tokens torch.Size([1, 131072])
19494
+ batch tensor after cp: labels torch.Size([1, 131072])
19495
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19496
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19497
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19498
+ batch tensor: tokens torch.Size([1, 131072])
19499
+ batch tensor: labels torch.Size([1, 131072])
19500
+ batch tensor: loss_mask torch.Size([1, 131072])
19501
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19502
+ batch tensor: position_ids torch.Size([1, 131072])
19503
+ batch tensor after cp: tokens torch.Size([1, 131072])
19504
+ batch tensor after cp: labels torch.Size([1, 131072])
19505
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19506
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19507
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19508
+ batch tensor: tokens torch.Size([1, 131072])
19509
+ batch tensor: labels torch.Size([1, 131072])
19510
+ batch tensor: loss_mask torch.Size([1, 131072])
19511
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19512
+ batch tensor: position_ids torch.Size([1, 131072])
19513
+ batch tensor after cp: tokens torch.Size([1, 131072])
19514
+ batch tensor after cp: labels torch.Size([1, 131072])
19515
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19516
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19517
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19518
+ batch tensor: tokens torch.Size([1, 131072])
19519
+ batch tensor: labels torch.Size([1, 131072])
19520
+ batch tensor: loss_mask torch.Size([1, 131072])
19521
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19522
+ batch tensor: position_ids torch.Size([1, 131072])
19523
+ batch tensor after cp: tokens torch.Size([1, 131072])
19524
+ batch tensor after cp: labels torch.Size([1, 131072])
19525
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19526
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19527
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19528
+ batch tensor: tokens torch.Size([1, 131072])
19529
+ batch tensor: labels torch.Size([1, 131072])
19530
+ batch tensor: loss_mask torch.Size([1, 131072])
19531
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19532
+ batch tensor: position_ids torch.Size([1, 131072])
19533
+ batch tensor after cp: tokens torch.Size([1, 131072])
19534
+ batch tensor after cp: labels torch.Size([1, 131072])
19535
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19536
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19537
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19538
+ Start exporting trace 3
19539
+ Done exporting trace 3
19540
+ [2025-06-21 22:04:53] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 144038.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
19541
+ batch tensor: tokens torch.Size([1, 131072])
19542
+ batch tensor: labels torch.Size([1, 131072])
19543
+ batch tensor: loss_mask torch.Size([1, 131072])
19544
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19545
+ batch tensor: position_ids torch.Size([1, 131072])
19546
+ batch tensor after cp: tokens torch.Size([1, 131072])
19547
+ batch tensor after cp: labels torch.Size([1, 131072])
19548
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19549
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19550
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19551
+ batch tensor: tokens torch.Size([1, 131072])
19552
+ batch tensor: labels torch.Size([1, 131072])
19553
+ batch tensor: loss_mask torch.Size([1, 131072])
19554
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19555
+ batch tensor: position_ids torch.Size([1, 131072])
19556
+ batch tensor after cp: tokens torch.Size([1, 131072])
19557
+ batch tensor after cp: labels torch.Size([1, 131072])
19558
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19559
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19560
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19561
+ batch tensor: tokens torch.Size([1, 131072])
19562
+ batch tensor: labels torch.Size([1, 131072])
19563
+ batch tensor: loss_mask torch.Size([1, 131072])
19564
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19565
+ batch tensor: position_ids torch.Size([1, 131072])
19566
+ batch tensor after cp: tokens torch.Size([1, 131072])
19567
+ batch tensor after cp: labels torch.Size([1, 131072])
19568
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19569
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19570
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19571
+ batch tensor: tokens torch.Size([1, 131072])
19572
+ batch tensor: labels torch.Size([1, 131072])
19573
+ batch tensor: loss_mask torch.Size([1, 131072])
19574
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19575
+ batch tensor: position_ids torch.Size([1, 131072])
19576
+ batch tensor after cp: tokens torch.Size([1, 131072])
19577
+ batch tensor after cp: labels torch.Size([1, 131072])
19578
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19579
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19580
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19581
+ batch tensor: tokens torch.Size([1, 131072])
19582
+ batch tensor: labels torch.Size([1, 131072])
19583
+ batch tensor: loss_mask torch.Size([1, 131072])
19584
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19585
+ batch tensor: position_ids torch.Size([1, 131072])
19586
+ batch tensor after cp: tokens torch.Size([1, 131072])
19587
+ batch tensor after cp: labels torch.Size([1, 131072])
19588
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19589
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19590
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19591
+ batch tensor: tokens torch.Size([1, 131072])
19592
+ batch tensor: labels torch.Size([1, 131072])
19593
+ batch tensor: loss_mask torch.Size([1, 131072])
19594
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19595
+ batch tensor: position_ids torch.Size([1, 131072])
19596
+ batch tensor after cp: tokens torch.Size([1, 131072])
19597
+ batch tensor after cp: labels torch.Size([1, 131072])
19598
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19599
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19600
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19601
+ batch tensor: tokens torch.Size([1, 131072])
19602
+ batch tensor: labels torch.Size([1, 131072])
19603
+ batch tensor: loss_mask torch.Size([1, 131072])
19604
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19605
+ batch tensor: position_ids torch.Size([1, 131072])
19606
+ batch tensor after cp: tokens torch.Size([1, 131072])
19607
+ batch tensor after cp: labels torch.Size([1, 131072])
19608
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19609
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19610
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19611
+ batch tensor: tokens torch.Size([1, 131072])
19612
+ batch tensor: labels torch.Size([1, 131072])
19613
+ batch tensor: loss_mask torch.Size([1, 131072])
19614
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
19615
+ batch tensor: position_ids torch.Size([1, 131072])
19616
+ batch tensor after cp: tokens torch.Size([1, 131072])
19617
+ batch tensor after cp: labels torch.Size([1, 131072])
19618
+ batch tensor after cp: loss_mask torch.Size([1, 131072])
19619
+ batch tensor after cp: attention_mask torch.Size([1, 1, 131072, 131072])
19620
+ batch tensor after cp: position_ids torch.Size([1, 131072])
19621
+ Start exporting trace 4
19622
+ Done exporting trace 4
19623
+ [2025-06-21 22:06:58] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 124682.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
attnserver.run_attnserver.slurm.sh.343213.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343213.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343214.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343214.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343215.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343215.out.log CHANGED
@@ -4148,3 +4148,40 @@ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks
4148
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(103809024), 1), (np.int64(92274688), 2), (np.int64(92274688), 3), (np.int64(83919872), 4), (np.int64(83919872), 5), (np.int64(88080384), 6), (np.int64(88080384), 7)]
4149
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(103809024), 1), (np.int64(92274688), 2), (np.int64(92274688), 3), (np.int64(83919872), 4), (np.int64(83919872), 5), (np.int64(88080384), 6), (np.int64(88080384), 7)]
4150
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(103809024), 1), (np.int64(92274688), 2), (np.int64(92274688), 3), (np.int64(83919872), 4), (np.int64(83919872), 5), (np.int64(88080384), 6), (np.int64(88080384), 7)]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4148
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(103809024), 1), (np.int64(92274688), 2), (np.int64(92274688), 3), (np.int64(83919872), 4), (np.int64(83919872), 5), (np.int64(88080384), 6), (np.int64(88080384), 7)]
4149
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(103809024), 1), (np.int64(92274688), 2), (np.int64(92274688), 3), (np.int64(83919872), 4), (np.int64(83919872), 5), (np.int64(88080384), 6), (np.int64(88080384), 7)]
4150
  DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(207618048), 0), (np.int64(103809024), 1), (np.int64(92274688), 2), (np.int64(92274688), 3), (np.int64(83919872), 4), (np.int64(83919872), 5), (np.int64(88080384), 6), (np.int64(88080384), 7)]
4151
+ Running ctx_length=2048, TP_SIZE=4, CP_SIZE=8, BATCH_SIZE=4
4152
+ Cleaning up checkpoint directory: gpt-checkpoint
4153
+ --------------------------------
4154
+ CTX_LENGTH: 2048
4155
+ TP_SIZE: 4
4156
+ CP_SIZE: 8
4157
+ CHECKPOINT_PATH: gpt-checkpoint
4158
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
4159
+ --------------------------------
4160
+ Cleaning up checkpoint directory: gpt-checkpoint
4161
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
4162
+ Cleaning up checkpoint directory: gpt-checkpoint
4163
+ --------------------------------
4164
+ CTX_LENGTH: 2048
4165
+ TP_SIZE: 4
4166
+ CP_SIZE: 8
4167
+ CHECKPOINT_PATH: gpt-checkpoint
4168
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
4169
+ --------------------------------
4170
+ CTX_LENGTH: 2048
4171
+ TP_SIZE: 4
4172
+ CP_SIZE: 8
4173
+ CHECKPOINT_PATH: gpt-checkpoint
4174
+ --------------------------------
4175
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
4176
+ --------------------------------
4177
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
4178
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
4179
+ Cleaning up checkpoint directory: gpt-checkpoint
4180
+ --------------------------------
4181
+ CTX_LENGTH: 2048
4182
+ TP_SIZE: 4
4183
+ CP_SIZE: 8
4184
+ CHECKPOINT_PATH: gpt-checkpoint
4185
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
4186
+ --------------------------------
4187
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343225.err.log CHANGED
@@ -2613,3 +2613,146 @@ W0621 21:51:26.238000 2242503 site-packages/torch/distributed/run.py:766] ******
2613
  warnings.warn(
2614
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2615
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2613
  warnings.warn(
2614
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2615
  warnings.warn(
2616
+ [rank0]: Traceback (most recent call last):
2617
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2618
+ [rank0]: pretrain(
2619
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
2620
+ [rank0]: save_checkpoint(
2621
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
2622
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
2623
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2624
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
2625
+ [rank0]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
2626
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
2627
+ [rank0]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
2628
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2629
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
2630
+ [rank0]: async_calls.maybe_finalize_async_calls(blocking=True)
2631
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
2632
+ [rank0]: finalize_fn()
2633
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
2634
+ [rank0]: save_state_dict_async_finalize(*save_state_dict_ret)
2635
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 243, in save_state_dict_async_finalize
2636
+ [rank0]: storage_writer.finish(global_metadata, all_results)
2637
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 483, in finish
2638
+ [rank0]: super().finish(metadata, results)
2639
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 697, in finish
2640
+ [rank0]: with self.fs.create_stream(tmp_path, "wb") as metadata_file:
2641
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2642
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/contextlib.py", line 137, in __enter__
2643
+ [rank0]: return next(self.gen)
2644
+ [rank0]: ^^^^^^^^^^^^^^
2645
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/checkpoint/filesystem.py", line 476, in create_stream
2646
+ [rank0]: with path.open(mode) as stream:
2647
+ [rank0]: ^^^^^^^^^^^^^^^
2648
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/pathlib.py", line 1013, in open
2649
+ [rank0]: return io.open(self, mode, buffering, encoding, errors, newline)
2650
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2651
+ [rank0]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/.metadata.tmp'
2652
+ [rank0]:[W621 22:04:56.500419579 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2653
+ W0621 22:05:35.880000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2242575 closing signal SIGTERM
2654
+ W0621 22:05:35.885000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2242576 closing signal SIGTERM
2655
+ W0621 22:05:35.888000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2242577 closing signal SIGTERM
2656
+ W0621 22:05:35.891000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2242578 closing signal SIGTERM
2657
+ W0621 22:05:35.892000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2242579 closing signal SIGTERM
2658
+ W0621 22:05:35.904000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2242580 closing signal SIGTERM
2659
+ W0621 22:05:35.929000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2242581 closing signal SIGTERM
2660
+ E0621 22:06:00.973000 2242503 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 2242574) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
2661
+ Traceback (most recent call last):
2662
+ File "<frozen runpy>", line 198, in _run_module_as_main
2663
+ File "<frozen runpy>", line 88, in _run_code
2664
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2665
+ main()
2666
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2667
+ return arg(*args, **kwargs)
2668
+ ^^^^^^^^^^^^^^^^^^^^
2669
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2670
+ launch(args)
2671
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2672
+ run(args)
2673
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2674
+ elastic_launch(
2675
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2676
+ return launch_agent(self._config, self._entrypoint, list(args))
2677
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2678
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
2679
+ raise ChildFailedError(
2680
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
2681
+ ============================================================
2682
+ ./pretrain_gpt_profile.py FAILED
2683
+ ------------------------------------------------------------
2684
+ Failures:
2685
+ <NO_OTHER_FAILURES>
2686
+ ------------------------------------------------------------
2687
+ Root Cause (first observed failure):
2688
+ [0]:
2689
+ time : 2025-06-21_22:05:35
2690
+ host : fs-mbz-gpu-768
2691
+ rank : 0 (local_rank: 0)
2692
+ exitcode : 1 (pid: 2242574)
2693
+ error_file: <N/A>
2694
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
2695
+ ============================================================
2696
+ + set +x
2697
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
2698
+ + export PROF_CTX_LENGTH=131072
2699
+ + PROF_CTX_LENGTH=131072
2700
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L131072*tp4.cp2.bs1.json'
2701
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L131072*tp4.cp2.bs1.json' ']'
2702
+ + echo 'Running ctx_length=131072, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=1'
2703
+ + srun bash ./attnserver.sh
2704
+ + which python3
2705
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343225 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-768:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 2 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 131072 --max-position-embeddings 131072 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2706
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2707
+ and will be removed in future. Use torchrun.
2708
+ Note that --use-env is set by default in torchrun.
2709
+ If your script expects `--local-rank` argument to be set, please
2710
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2711
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2712
+ further instructions
2713
+
2714
+ main()
2715
+ W0621 22:06:05.199000 2247188 site-packages/torch/distributed/run.py:766]
2716
+ W0621 22:06:05.199000 2247188 site-packages/torch/distributed/run.py:766] *****************************************
2717
+ W0621 22:06:05.199000 2247188 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2718
+ W0621 22:06:05.199000 2247188 site-packages/torch/distributed/run.py:766] *****************************************
2719
+ [rank6]:[W621 22:06:27.689693214 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2720
+ [rank2]:[W621 22:06:27.689715067 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2721
+ [rank4]:[W621 22:06:27.695981890 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2722
+ [rank7]:[W621 22:06:27.696144469 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2723
+ [rank3]:[W621 22:06:27.696472936 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2724
+ [rank5]:[W621 22:06:27.697356152 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2725
+ [rank1]:[W621 22:06:27.697670162 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2726
+ [rank0]:[W621 22:06:27.853656033 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2727
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2728
+ warnings.warn(
2729
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2730
+ warnings.warn(
2731
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2732
+ warnings.warn(
2733
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2734
+ warnings.warn(
2735
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2736
+ warnings.warn(
2737
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2738
+ warnings.warn(
2739
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2740
+ warnings.warn(
2741
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2742
+ warnings.warn(
2743
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2744
+ warnings.warn(
2745
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2746
+ warnings.warn(
2747
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2748
+ warnings.warn(
2749
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2750
+ warnings.warn(
2751
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2752
+ warnings.warn(
2753
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2754
+ warnings.warn(
2755
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2756
+ warnings.warn(
2757
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2758
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343225.out.log CHANGED
@@ -21443,3 +21443,1188 @@ batch tensor after cp: labels torch.Size([1, 49152])
21443
  batch tensor after cp: loss_mask torch.Size([1, 49152])
21444
  batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21445
  batch tensor after cp: position_ids torch.Size([1, 49152])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21443
  batch tensor after cp: loss_mask torch.Size([1, 49152])
21444
  batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21445
  batch tensor after cp: position_ids torch.Size([1, 49152])
21446
+ batch tensor: tokens torch.Size([1, 98304])
21447
+ batch tensor: labels torch.Size([1, 98304])
21448
+ batch tensor: loss_mask torch.Size([1, 98304])
21449
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21450
+ batch tensor: position_ids torch.Size([1, 98304])
21451
+ batch tensor after cp: tokens torch.Size([1, 49152])
21452
+ batch tensor after cp: labels torch.Size([1, 49152])
21453
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21454
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21455
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21456
+ Start exporting trace 6
21457
+ Done exporting trace 6
21458
+ [2025-06-21 21:59:39] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 75055.9 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
21459
+ batch tensor: tokens torch.Size([1, 98304])
21460
+ batch tensor: labels torch.Size([1, 98304])
21461
+ batch tensor: loss_mask torch.Size([1, 98304])
21462
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21463
+ batch tensor: position_ids torch.Size([1, 98304])
21464
+ batch tensor after cp: tokens torch.Size([1, 49152])
21465
+ batch tensor after cp: labels torch.Size([1, 49152])
21466
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21467
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21468
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21469
+ batch tensor: tokens torch.Size([1, 98304])
21470
+ batch tensor: labels torch.Size([1, 98304])
21471
+ batch tensor: loss_mask torch.Size([1, 98304])
21472
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21473
+ batch tensor: position_ids torch.Size([1, 98304])
21474
+ batch tensor after cp: tokens torch.Size([1, 49152])
21475
+ batch tensor after cp: labels torch.Size([1, 49152])
21476
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21477
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21478
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21479
+ batch tensor: tokens torch.Size([1, 98304])
21480
+ batch tensor: labels torch.Size([1, 98304])
21481
+ batch tensor: loss_mask torch.Size([1, 98304])
21482
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21483
+ batch tensor: position_ids torch.Size([1, 98304])
21484
+ batch tensor after cp: tokens torch.Size([1, 49152])
21485
+ batch tensor after cp: labels torch.Size([1, 49152])
21486
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21487
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21488
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21489
+ batch tensor: tokens torch.Size([1, 98304])
21490
+ batch tensor: labels torch.Size([1, 98304])
21491
+ batch tensor: loss_mask torch.Size([1, 98304])
21492
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21493
+ batch tensor: position_ids torch.Size([1, 98304])
21494
+ batch tensor after cp: tokens torch.Size([1, 49152])
21495
+ batch tensor after cp: labels torch.Size([1, 49152])
21496
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21497
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21498
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21499
+ batch tensor: tokens torch.Size([1, 98304])
21500
+ batch tensor: labels torch.Size([1, 98304])
21501
+ batch tensor: loss_mask torch.Size([1, 98304])
21502
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21503
+ batch tensor: position_ids torch.Size([1, 98304])
21504
+ batch tensor after cp: tokens torch.Size([1, 49152])
21505
+ batch tensor after cp: labels torch.Size([1, 49152])
21506
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21507
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21508
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21509
+ batch tensor: tokens torch.Size([1, 98304])
21510
+ batch tensor: labels torch.Size([1, 98304])
21511
+ batch tensor: loss_mask torch.Size([1, 98304])
21512
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21513
+ batch tensor: position_ids torch.Size([1, 98304])
21514
+ batch tensor after cp: tokens torch.Size([1, 49152])
21515
+ batch tensor after cp: labels torch.Size([1, 49152])
21516
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21517
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21518
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21519
+ batch tensor: tokens torch.Size([1, 98304])
21520
+ batch tensor: labels torch.Size([1, 98304])
21521
+ batch tensor: loss_mask torch.Size([1, 98304])
21522
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21523
+ batch tensor: position_ids torch.Size([1, 98304])
21524
+ batch tensor after cp: tokens torch.Size([1, 49152])
21525
+ batch tensor after cp: labels torch.Size([1, 49152])
21526
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21527
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21528
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21529
+ batch tensor: tokens torch.Size([1, 98304])
21530
+ batch tensor: labels torch.Size([1, 98304])
21531
+ batch tensor: loss_mask torch.Size([1, 98304])
21532
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21533
+ batch tensor: position_ids torch.Size([1, 98304])
21534
+ batch tensor after cp: tokens torch.Size([1, 49152])
21535
+ batch tensor after cp: labels torch.Size([1, 49152])
21536
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21537
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21538
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21539
+ Start exporting trace 7
21540
+ Done exporting trace 7
21541
+ [2025-06-21 22:01:00] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 80849.2 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
21542
+ batch tensor: tokens torch.Size([1, 98304])
21543
+ batch tensor: labels torch.Size([1, 98304])
21544
+ batch tensor: loss_mask torch.Size([1, 98304])
21545
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21546
+ batch tensor: position_ids torch.Size([1, 98304])
21547
+ batch tensor after cp: tokens torch.Size([1, 49152])
21548
+ batch tensor after cp: labels torch.Size([1, 49152])
21549
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21550
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21551
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21552
+ batch tensor: tokens torch.Size([1, 98304])
21553
+ batch tensor: labels torch.Size([1, 98304])
21554
+ batch tensor: loss_mask torch.Size([1, 98304])
21555
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21556
+ batch tensor: position_ids torch.Size([1, 98304])
21557
+ batch tensor after cp: tokens torch.Size([1, 49152])
21558
+ batch tensor after cp: labels torch.Size([1, 49152])
21559
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21560
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21561
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21562
+ batch tensor: tokens torch.Size([1, 98304])
21563
+ batch tensor: labels torch.Size([1, 98304])
21564
+ batch tensor: loss_mask torch.Size([1, 98304])
21565
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21566
+ batch tensor: position_ids torch.Size([1, 98304])
21567
+ batch tensor after cp: tokens torch.Size([1, 49152])
21568
+ batch tensor after cp: labels torch.Size([1, 49152])
21569
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21570
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21571
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21572
+ batch tensor: tokens torch.Size([1, 98304])
21573
+ batch tensor: labels torch.Size([1, 98304])
21574
+ batch tensor: loss_mask torch.Size([1, 98304])
21575
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21576
+ batch tensor: position_ids torch.Size([1, 98304])
21577
+ batch tensor after cp: tokens torch.Size([1, 49152])
21578
+ batch tensor after cp: labels torch.Size([1, 49152])
21579
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21580
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21581
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21582
+ batch tensor: tokens torch.Size([1, 98304])
21583
+ batch tensor: labels torch.Size([1, 98304])
21584
+ batch tensor: loss_mask torch.Size([1, 98304])
21585
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21586
+ batch tensor: position_ids torch.Size([1, 98304])
21587
+ batch tensor after cp: tokens torch.Size([1, 49152])
21588
+ batch tensor after cp: labels torch.Size([1, 49152])
21589
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21590
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21591
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21592
+ batch tensor: tokens torch.Size([1, 98304])
21593
+ batch tensor: labels torch.Size([1, 98304])
21594
+ batch tensor: loss_mask torch.Size([1, 98304])
21595
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21596
+ batch tensor: position_ids torch.Size([1, 98304])
21597
+ batch tensor after cp: tokens torch.Size([1, 49152])
21598
+ batch tensor after cp: labels torch.Size([1, 49152])
21599
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21600
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21601
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21602
+ batch tensor: tokens torch.Size([1, 98304])
21603
+ batch tensor: labels torch.Size([1, 98304])
21604
+ batch tensor: loss_mask torch.Size([1, 98304])
21605
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21606
+ batch tensor: position_ids torch.Size([1, 98304])
21607
+ batch tensor after cp: tokens torch.Size([1, 49152])
21608
+ batch tensor after cp: labels torch.Size([1, 49152])
21609
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21610
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21611
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21612
+ batch tensor: tokens torch.Size([1, 98304])
21613
+ batch tensor: labels torch.Size([1, 98304])
21614
+ batch tensor: loss_mask torch.Size([1, 98304])
21615
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21616
+ batch tensor: position_ids torch.Size([1, 98304])
21617
+ batch tensor after cp: tokens torch.Size([1, 49152])
21618
+ batch tensor after cp: labels torch.Size([1, 49152])
21619
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21620
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21621
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21622
+ Start exporting trace 8
21623
+ Done exporting trace 8
21624
+ [2025-06-21 22:02:04] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 64767.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
21625
+ batch tensor: tokens torch.Size([1, 98304])
21626
+ batch tensor: labels torch.Size([1, 98304])
21627
+ batch tensor: loss_mask torch.Size([1, 98304])
21628
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21629
+ batch tensor: position_ids torch.Size([1, 98304])
21630
+ batch tensor after cp: tokens torch.Size([1, 49152])
21631
+ batch tensor after cp: labels torch.Size([1, 49152])
21632
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21633
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21634
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21635
+ batch tensor: tokens torch.Size([1, 98304])
21636
+ batch tensor: labels torch.Size([1, 98304])
21637
+ batch tensor: loss_mask torch.Size([1, 98304])
21638
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21639
+ batch tensor: position_ids torch.Size([1, 98304])
21640
+ batch tensor after cp: tokens torch.Size([1, 49152])
21641
+ batch tensor after cp: labels torch.Size([1, 49152])
21642
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21643
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21644
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21645
+ batch tensor: tokens torch.Size([1, 98304])
21646
+ batch tensor: labels torch.Size([1, 98304])
21647
+ batch tensor: loss_mask torch.Size([1, 98304])
21648
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21649
+ batch tensor: position_ids torch.Size([1, 98304])
21650
+ batch tensor after cp: tokens torch.Size([1, 49152])
21651
+ batch tensor after cp: labels torch.Size([1, 49152])
21652
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21653
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21654
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21655
+ batch tensor: tokens torch.Size([1, 98304])
21656
+ batch tensor: labels torch.Size([1, 98304])
21657
+ batch tensor: loss_mask torch.Size([1, 98304])
21658
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21659
+ batch tensor: position_ids torch.Size([1, 98304])
21660
+ batch tensor after cp: tokens torch.Size([1, 49152])
21661
+ batch tensor after cp: labels torch.Size([1, 49152])
21662
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21663
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21664
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21665
+ batch tensor: tokens torch.Size([1, 98304])
21666
+ batch tensor: labels torch.Size([1, 98304])
21667
+ batch tensor: loss_mask torch.Size([1, 98304])
21668
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21669
+ batch tensor: position_ids torch.Size([1, 98304])
21670
+ batch tensor after cp: tokens torch.Size([1, 49152])
21671
+ batch tensor after cp: labels torch.Size([1, 49152])
21672
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21673
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21674
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21675
+ batch tensor: tokens torch.Size([1, 98304])
21676
+ batch tensor: labels torch.Size([1, 98304])
21677
+ batch tensor: loss_mask torch.Size([1, 98304])
21678
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21679
+ batch tensor: position_ids torch.Size([1, 98304])
21680
+ batch tensor after cp: tokens torch.Size([1, 49152])
21681
+ batch tensor after cp: labels torch.Size([1, 49152])
21682
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21683
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21684
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21685
+ batch tensor: tokens torch.Size([1, 98304])
21686
+ batch tensor: labels torch.Size([1, 98304])
21687
+ batch tensor: loss_mask torch.Size([1, 98304])
21688
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21689
+ batch tensor: position_ids torch.Size([1, 98304])
21690
+ batch tensor after cp: tokens torch.Size([1, 49152])
21691
+ batch tensor after cp: labels torch.Size([1, 49152])
21692
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21693
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21694
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21695
+ batch tensor: tokens torch.Size([1, 98304])
21696
+ batch tensor: labels torch.Size([1, 98304])
21697
+ batch tensor: loss_mask torch.Size([1, 98304])
21698
+ batch tensor: attention_mask torch.Size([1, 1, 98304, 98304])
21699
+ batch tensor: position_ids torch.Size([1, 98304])
21700
+ batch tensor after cp: tokens torch.Size([1, 49152])
21701
+ batch tensor after cp: labels torch.Size([1, 49152])
21702
+ batch tensor after cp: loss_mask torch.Size([1, 49152])
21703
+ batch tensor after cp: attention_mask torch.Size([1, 1, 49152, 98304])
21704
+ batch tensor after cp: position_ids torch.Size([1, 49152])
21705
+ Start exporting trace 9
21706
+ Done exporting trace 9
21707
+ [2025-06-21 22:03:38] iteration 10/ 10 | consumed samples: 10 | elapsed time per iteration (ms): 93378.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 8388608.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
21708
+ [after training is done] datetime: 2025-06-21 22:03:38
21709
+ saving checkpoint at iteration 10 to gpt-checkpoint in torch_dist format
21710
+ DEBUG:megatron.training.checkpointing:rank: 2, takes 0.07908964157104492 to prepare state dict for ckpt
21711
+ DEBUG:megatron.training.checkpointing:rank: 6, takes 0.07910752296447754 to prepare state dict for ckpt
21712
+ DEBUG:megatron.training.checkpointing:rank: 1, takes 0.07910609245300293 to prepare state dict for ckpt
21713
+ DEBUG:megatron.training.checkpointing:rank: 5, takes 0.07912921905517578 to prepare state dict for ckpt
21714
+ DEBUG:megatron.training.checkpointing:rank: 7, takes 0.07905840873718262 to prepare state dict for ckpt
21715
+ DEBUG:megatron.training.checkpointing:rank: 3, takes 0.07906150817871094 to prepare state dict for ckpt
21716
+ DEBUG:megatron.training.checkpointing:rank: 0, takes 0.0825493335723877 to prepare state dict for ckpt
21717
+ DEBUG:megatron.training.checkpointing:rank: 4, takes 0.14761972427368164 to prepare state dict for ckpt
21718
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21719
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21720
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21721
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21722
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21723
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21724
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(417400832), 0), (np.int64(422576128), 1)]
21725
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(417400832), 0), (np.int64(422576128), 1)]
21726
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(417400832), 0), (np.int64(422576128), 1)]
21727
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(417400832), 0), (np.int64(422576128), 1)]
21728
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(417400832), 0), (np.int64(422576128), 1)]
21729
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(417400832), 0), (np.int64(422576128), 1)]
21730
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21731
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
21732
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(1631584256), 0), (np.int64(1624655872), 1)]
21733
+ DEBUG:megatron.core.dist_checkpointing.exchange_utils:distribute_shards_to_ranks distribution: [(np.int64(1631584256), 0), (np.int64(1624655872), 1)]
21734
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 37.76030206680298
21735
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 37.76056408882141
21736
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 37.760433197021484
21737
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 37.760650873184204
21738
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 37.760414123535156
21739
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 37.76091694831848
21740
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 0.028193950653076172
21741
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 6, starting state dict save
21742
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 5, starting state dict save
21743
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 7, starting state dict save
21744
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21745
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21746
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21747
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21748
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21749
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21750
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 0, starting state dict save
21751
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 2, starting state dict save
21752
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 3, starting state dict save
21753
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 1, starting state dict save
21754
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21755
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21756
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21757
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21758
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21759
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21760
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21761
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21762
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:parallel save sharding, time: 37.775845527648926
21763
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 4, starting state dict save
21764
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:verifying reuse of global metadata
21765
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:loaded global metadata reuse verification: no loaded plans passed
21766
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 5, plan time: 0.07368707656860352
21767
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.2063708
21768
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 6, plan time: 0.07391166687011719
21769
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.2064087
21770
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 7, plan time: 0.07307553291320801
21771
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.2065277
21772
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 1, plan time: 0.06815838813781738
21773
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 2, plan time: 0.06845450401306152
21774
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.2066731
21775
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.2066875
21776
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 9.5367431640625e-05
21777
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 3, plan time: 0.0684041976928711
21778
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.206915
21779
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.00032067298889160156
21780
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 9.72747802734375e-05
21781
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.0005800724029541016
21782
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.0006380081176757812
21783
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.0005955696105957031
21784
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 4, plan time: 0.02703571319580078
21785
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.210689
21786
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 0.001257181167602539
21787
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:rank: 0, plan time: 0.0778207778930664
21788
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:thread_count: 2, time: 1750543457.2154331
21789
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:bucket_prep, time: 6.413459777832031e-05
21790
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05709362030029297
21791
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05720639228820801
21792
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.2645063 rank: 6, write(async) time: 0.05809736251831055
21793
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05711174011230469
21794
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.2645593 rank: 3, write(async) time: 0.057645559310913086
21795
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.2646434 rank: 7, write(async) time: 0.05811643600463867
21796
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.057874202728271484
21797
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05771374702453613
21798
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.264992 rank: 2, write(async) time: 0.05830240249633789
21799
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.265057 rank: 1, write(async) time: 0.05838346481323242
21800
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.05812430381774902
21801
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.265517 rank: 5, write(async) time: 0.05914449691772461
21802
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.07155466079711914
21803
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.2875042 rank: 0, write(async) time: 0.07206296920776367
21804
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:D2H and push, time: 0.1144871711730957
21805
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543457.3269794 rank: 4, write(async) time: 0.11631417274475098
21806
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, takes 1.8358230590820312e-05 to finish D2H
21807
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, takes 1.811981201171875e-05 to finish D2H
21808
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, takes 1.8835067749023438e-05 to finish D2H
21809
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, takes 0.0258786678314209 to schedule async ckpt
21810
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, takes 0.025389671325683594 to schedule async ckpt
21811
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, takes 0.026950359344482422 to schedule async ckpt
21812
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, takes 1.8358230590820312e-05 to finish D2H
21813
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, takes 1.6927719116210938e-05 to finish D2H
21814
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, takes 1.9311904907226562e-05 to finish D2H
21815
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21816
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21817
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21818
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21819
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21820
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21821
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21822
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21823
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, takes 0.02531123161315918 to schedule async ckpt
21824
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, takes 0.025214672088623047 to schedule async ckpt
21825
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, takes 0.025298357009887695 to schedule async ckpt
21826
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21827
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21828
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21829
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21830
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21831
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21832
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21833
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21834
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21835
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21836
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 217210880, before: 1648107520, after: 1865318400
21837
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, takes 1.9311904907226562e-05 to finish D2H
21838
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 218206208, before: 1620013056, after: 1838219264
21839
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 218083328, before: 1636126720, after: 1854210048
21840
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, takes 0.038712263107299805 to schedule async ckpt
21841
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 214204416, before: 1620013056, after: 1834217472
21842
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 214429696, before: 1614884864, after: 1829314560
21843
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 214933504, before: 1636126720, after: 1851060224
21844
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21845
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21846
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543458.416601, rank: 6, write(sync,parallel): 0.9993560314178467
21847
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 212500480, before: 1633570816, after: 1846071296
21848
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21849
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 214368256, before: 1633574912, after: 1847943168
21850
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543458.4318566, rank: 5, write(sync,parallel): 1.011610507965088
21851
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21852
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21853
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 214933504, before: 1648107520, after: 1863041024
21854
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 212475904, before: 1614884864, after: 1827360768
21855
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21856
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543458.4699008, rank: 3, write(sync,parallel): 0.9958508014678955
21857
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 212373504, before: 1617059840, after: 1829433344
21858
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21859
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543458.481593, rank: 7, write(sync,parallel): 1.064600944519043
21860
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21861
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543458.499954, rank: 2, write(sync,parallel): 1.0260334014892578
21862
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 214335488, before: 1617063936, after: 1831399424
21863
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21864
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543458.5581553, rank: 1, write(sync,parallel): 1.0821151733398438
21865
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, takes 6.389617919921875e-05 to finish D2H
21866
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, takes 0.04180765151977539 to schedule async ckpt
21867
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 1, joining self.process
21868
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 2, joining self.process
21869
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.42s from forking
21870
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.42s from forking
21871
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 3, joining self.process
21872
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 5, joining self.process
21873
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 7, joining self.process
21874
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.42s from forking
21875
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.47s from forking
21876
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.47s from forking
21877
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 6, joining self.process
21878
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 1.47s from forking
21879
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 4, joining self.process
21880
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 started
21881
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:rank: 0, joining self.process
21882
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collecting worker results...
21883
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 started
21884
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 25505792, before: 1899667456, after: 1925173248
21885
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 818884608, before: 1620201472, after: 2439086080
21886
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1 consumed: 816308224, before: 1620213760, after: 2436521984
21887
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21888
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543461.565737, rank: 4, write(sync,parallel): 3.2021517753601074
21889
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 3.29s from forking
21890
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:0 consumed: 1615142912, before: 1899667456, after: 3514810368
21891
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:FileSystemWriterAsync: collected worker results successfully
21892
+ DEBUG:megatron.core.dist_checkpointing.strategies.filesystem_async:1750543464.5586467, rank: 0, write(sync,parallel): 5.696138143539429
21893
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:TemporalAsyncCaller: Async process join finished after 5.78s from forking
21894
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.6032062, 1, gather: 5.740522146224976
21895
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.6032386, 3, gather: 5.740435838699341
21896
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.6033263, 6, gather: 5.7400062084198
21897
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.603318, 5, gather: 5.740565776824951
21898
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.6032891, 2, gather: 5.741005897521973
21899
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.6035469, 7, gather: 5.740869045257568
21900
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.6084177, 0, gather: 0.008083581924438477
21901
+ DEBUG:megatron.core.dist_checkpointing.strategies.async_utils:finalize took 0.0105s
21902
+ DEBUG:megatron.core.dist_checkpointing.strategies.state_dict_saver:1750543464.6084206, 4, gather: 2.9939053058624268
21903
+ Running ctx_length=131072, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=1
21904
+ Cleaning up checkpoint directory: gpt-checkpoint
21905
+ --------------------------------
21906
+ CTX_LENGTH: 131072
21907
+ TP_SIZE: 4
21908
+ CP_SIZE: 2
21909
+ CHECKPOINT_PATH: gpt-checkpoint
21910
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
21911
+ --------------------------------
21912
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
21913
+ using world size: 8, data-parallel size: 1, context-parallel size: 2, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 4, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
21914
+ Number of virtual stages per pipeline stage: None
21915
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
21916
+ using torch.float16 for parameters ...
21917
+ ------------------------ arguments ------------------------
21918
+ account_for_embedding_in_pipeline_split ......... False
21919
+ account_for_loss_in_pipeline_split .............. False
21920
+ accumulate_allreduce_grads_in_fp32 .............. False
21921
+ adam_beta1 ...................................... 0.9
21922
+ adam_beta2 ...................................... 0.999
21923
+ adam_eps ........................................ 1e-08
21924
+ add_bias_linear ................................. True
21925
+ add_position_embedding .......................... True
21926
+ add_qkv_bias .................................... True
21927
+ adlr_autoresume ................................. False
21928
+ adlr_autoresume_interval ........................ 1000
21929
+ align_grad_reduce ............................... True
21930
+ align_param_gather .............................. False
21931
+ app_tag_run_name ................................ None
21932
+ app_tag_run_version ............................. 0.0.0
21933
+ apply_layernorm_1p .............................. False
21934
+ apply_query_key_layer_scaling ................... False
21935
+ apply_residual_connection_post_layernorm ........ False
21936
+ apply_rope_fusion ............................... False
21937
+ async_save ...................................... None
21938
+ async_tensor_model_parallel_allreduce ........... True
21939
+ attention_backend ............................... AttnBackend.auto
21940
+ attention_dropout ............................... 0.1
21941
+ attention_softmax_in_fp32 ....................... False
21942
+ auto_detect_ckpt_format ......................... False
21943
+ barrier_with_L1_time ............................ True
21944
+ bert_binary_head ................................ True
21945
+ bert_embedder_type .............................. megatron
21946
+ bert_load ....................................... None
21947
+ bf16 ............................................ False
21948
+ bias_dropout_fusion ............................. True
21949
+ bias_gelu_fusion ................................ True
21950
+ bias_swiglu_fusion .............................. True
21951
+ biencoder_projection_dim ........................ 0
21952
+ biencoder_shared_query_context_model ............ False
21953
+ block_data_path ................................. None
21954
+ calc_ft_timeouts ................................ False
21955
+ calculate_per_token_loss ........................ False
21956
+ check_for_large_grads ........................... False
21957
+ check_for_nan_in_loss_and_grad .................. False
21958
+ check_for_spiky_loss ............................ False
21959
+ check_weight_hash_across_dp_replicas_interval ... None
21960
+ ckpt_assume_constant_structure .................. False
21961
+ ckpt_convert_format ............................. None
21962
+ ckpt_convert_save ............................... None
21963
+ ckpt_convert_update_legacy_dist_opt_format ...... False
21964
+ ckpt_format ..................................... torch_dist
21965
+ ckpt_fully_parallel_load ........................ False
21966
+ ckpt_fully_parallel_save ........................ True
21967
+ ckpt_fully_parallel_save_deprecated ............. False
21968
+ ckpt_step ....................................... None
21969
+ classes_fraction ................................ 1.0
21970
+ clip_grad ....................................... 1.0
21971
+ clone_scatter_output_in_embedding ............... True
21972
+ config_logger_dir ...............................
21973
+ consumed_train_samples .......................... 0
21974
+ consumed_valid_samples .......................... 0
21975
+ context_parallel_size ........................... 2
21976
+ cp_comm_type .................................... ['p2p']
21977
+ create_attention_mask_in_dataloader ............. True
21978
+ cross_entropy_fusion_impl ....................... native
21979
+ cross_entropy_loss_fusion ....................... False
21980
+ cuda_graph_scope ................................ full
21981
+ cuda_graph_warmup_steps ......................... 3
21982
+ data_args_path .................................. None
21983
+ data_cache_path ................................. None
21984
+ data_parallel_random_init ....................... False
21985
+ data_parallel_sharding_strategy ................. no_shard
21986
+ data_parallel_size .............................. 1
21987
+ data_path ....................................... None
21988
+ data_per_class_fraction ......................... 1.0
21989
+ data_sharding ................................... True
21990
+ dataloader_type ................................. single
21991
+ ddp_average_in_collective ....................... False
21992
+ ddp_bucket_size ................................. None
21993
+ ddp_num_buckets ................................. None
21994
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
21995
+ decoder_first_pipeline_num_layers ............... None
21996
+ decoder_last_pipeline_num_layers ................ None
21997
+ decoder_num_layers .............................. None
21998
+ decoder_seq_length .............................. None
21999
+ decoupled_lr .................................... None
22000
+ decoupled_min_lr ................................ None
22001
+ decrease_batch_size_if_needed ................... False
22002
+ defer_embedding_wgrad_compute ................... False
22003
+ deprecated_use_mcore_models ..................... False
22004
+ deterministic_mode .............................. False
22005
+ dino_bottleneck_size ............................ 256
22006
+ dino_freeze_last_layer .......................... 1
22007
+ dino_head_hidden_size ........................... 2048
22008
+ dino_local_crops_number ......................... 10
22009
+ dino_local_img_size ............................. 96
22010
+ dino_norm_last_layer ............................ False
22011
+ dino_teacher_temp ............................... 0.07
22012
+ dino_warmup_teacher_temp ........................ 0.04
22013
+ dino_warmup_teacher_temp_epochs ................. 30
22014
+ disable_bf16_reduced_precision_matmul ........... False
22015
+ disable_mamba_mem_eff_path ...................... False
22016
+ disable_straggler_on_startup .................... False
22017
+ dist_ckpt_format_deprecated ..................... None
22018
+ dist_ckpt_strictness ............................ assume_ok_unexpected
22019
+ distribute_saved_activations .................... False
22020
+ distributed_backend ............................. nccl
22021
+ distributed_timeout_minutes ..................... 10
22022
+ embedding_path .................................. None
22023
+ empty_unused_memory_level ....................... 0
22024
+ enable_cuda_graph ............................... False
22025
+ enable_ft_package ............................... False
22026
+ enable_gloo_process_groups ...................... True
22027
+ enable_msc ...................................... True
22028
+ enable_one_logger ............................... True
22029
+ encoder_num_layers .............................. 2
22030
+ encoder_pipeline_model_parallel_size ............ 0
22031
+ encoder_seq_length .............................. 131072
22032
+ encoder_tensor_model_parallel_size .............. 0
22033
+ end_weight_decay ................................ 0.1
22034
+ eod_mask_loss ................................... False
22035
+ error_injection_rate ............................ 0
22036
+ error_injection_type ............................ transient_error
22037
+ eval_interval ................................... 16
22038
+ eval_iters ...................................... 1
22039
+ evidence_data_path .............................. None
22040
+ exit_duration_in_mins ........................... None
22041
+ exit_interval ................................... None
22042
+ exit_on_missing_checkpoint ...................... False
22043
+ exit_signal_handler ............................. False
22044
+ exp_avg_dtype ................................... torch.float32
22045
+ exp_avg_sq_dtype ................................ torch.float32
22046
+ expert_model_parallel_size ...................... 1
22047
+ expert_tensor_parallel_size ..................... 4
22048
+ external_cuda_graph ............................. False
22049
+ ffn_hidden_size ................................. 16384
22050
+ finetune ........................................ False
22051
+ first_last_layers_bf16 .......................... False
22052
+ flash_decode .................................... False
22053
+ fp16 ............................................ True
22054
+ fp16_lm_cross_entropy ........................... False
22055
+ fp32_residual_connection ........................ False
22056
+ fp8 ............................................. None
22057
+ fp8_amax_compute_algo ........................... most_recent
22058
+ fp8_amax_history_len ............................ 1
22059
+ fp8_interval .................................... 1
22060
+ fp8_margin ...................................... 0
22061
+ fp8_param_gather ................................ False
22062
+ fp8_recipe ...................................... delayed
22063
+ fp8_wgrad ....................................... True
22064
+ fsdp_double_buffer .............................. False
22065
+ global_batch_size ............................... 1
22066
+ grad_reduce_in_bf16 ............................. False
22067
+ gradient_accumulation_fusion .................... True
22068
+ gradient_reduce_div_fusion ...................... True
22069
+ group_query_attention ........................... True
22070
+ head_lr_mult .................................... 1.0
22071
+ heterogeneous_layers_config_encoded_json ........ None
22072
+ heterogeneous_layers_config_path ................ None
22073
+ hidden_dropout .................................. 0.1
22074
+ hidden_size ..................................... 4096
22075
+ hierarchical_context_parallel_sizes ............. None
22076
+ high_priority_stream_groups ..................... []
22077
+ hybrid_attention_ratio .......................... 0.0
22078
+ hybrid_mlp_ratio ................................ 0.0
22079
+ hybrid_override_pattern ......................... None
22080
+ hysteresis ...................................... 2
22081
+ ict_head_size ................................... None
22082
+ ict_load ........................................ None
22083
+ img_h ........................................... 224
22084
+ img_w ........................................... 224
22085
+ indexer_batch_size .............................. 128
22086
+ indexer_log_interval ............................ 1000
22087
+ inference_batch_times_seqlen_threshold .......... -1
22088
+ inference_dynamic_batching ...................... False
22089
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
22090
+ inference_dynamic_batching_buffer_overflow_factor None
22091
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
22092
+ inference_dynamic_batching_chunk_size ........... 256
22093
+ inference_dynamic_batching_max_requests_override None
22094
+ inference_dynamic_batching_max_tokens_override .. None
22095
+ inference_max_batch_size ........................ 8
22096
+ inference_max_seq_length ........................ 2560
22097
+ inference_rng_tracker ........................... False
22098
+ init_method_std ................................. 0.02
22099
+ init_method_xavier_uniform ...................... False
22100
+ init_model_with_meta_device ..................... False
22101
+ initial_loss_scale .............................. 4294967296
22102
+ inprocess_active_world_size ..................... 8
22103
+ inprocess_barrier_timeout ....................... 120
22104
+ inprocess_completion_timeout .................... 120
22105
+ inprocess_empty_cuda_cache ...................... False
22106
+ inprocess_granularity ........................... node
22107
+ inprocess_hard_timeout .......................... 90
22108
+ inprocess_heartbeat_interval .................... 30
22109
+ inprocess_heartbeat_timeout ..................... 60
22110
+ inprocess_last_call_wait ........................ 1
22111
+ inprocess_max_iterations ........................ None
22112
+ inprocess_monitor_process_interval .............. 1.0
22113
+ inprocess_monitor_thread_interval ............... 1.0
22114
+ inprocess_progress_watchdog_interval ............ 1.0
22115
+ inprocess_restart ............................... False
22116
+ inprocess_soft_timeout .......................... 60
22117
+ inprocess_termination_grace_time ................ 1
22118
+ is_hybrid_model ................................. False
22119
+ iter_per_epoch .................................. 1250
22120
+ iterations_to_skip .............................. []
22121
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
22122
+ kv_channels ..................................... 64
22123
+ kv_lora_rank .................................... 32
22124
+ lazy_mpu_init ................................... None
22125
+ load ............................................ gpt-checkpoint
22126
+ load_model_opt_format ........................... False
22127
+ local_rank ...................................... 0
22128
+ log_interval .................................... 1
22129
+ log_loss_scale_to_tensorboard ................... True
22130
+ log_memory_to_tensorboard ....................... False
22131
+ log_num_zeros_in_grad ........................... False
22132
+ log_params_norm ................................. False
22133
+ log_progress .................................... False
22134
+ log_straggler ................................... False
22135
+ log_throughput .................................. False
22136
+ log_timers_to_tensorboard ....................... False
22137
+ log_validation_ppl_to_tensorboard ............... False
22138
+ log_world_size_to_tensorboard ................... False
22139
+ logging_level ................................... 0
22140
+ loss_scale ...................................... None
22141
+ loss_scale_window ............................... 1000
22142
+ lr .............................................. 0.0005
22143
+ lr_decay_iters .................................. 150000
22144
+ lr_decay_samples ................................ None
22145
+ lr_decay_style .................................. cosine
22146
+ lr_warmup_fraction .............................. None
22147
+ lr_warmup_init .................................. 0.0
22148
+ lr_warmup_iters ................................. 2
22149
+ lr_warmup_samples ............................... 0
22150
+ lr_wsd_decay_iters .............................. None
22151
+ lr_wsd_decay_samples ............................ None
22152
+ lr_wsd_decay_style .............................. exponential
22153
+ main_grads_dtype ................................ torch.float32
22154
+ main_params_dtype ............................... torch.float32
22155
+ make_vocab_size_divisible_by .................... 128
22156
+ mamba_head_dim .................................. 64
22157
+ mamba_num_groups ................................ 8
22158
+ mamba_num_heads ................................. None
22159
+ mamba_state_dim ................................. 128
22160
+ manual_gc ....................................... False
22161
+ manual_gc_eval .................................. True
22162
+ manual_gc_interval .............................. 0
22163
+ mask_factor ..................................... 1.0
22164
+ mask_prob ....................................... 0.15
22165
+ mask_type ....................................... random
22166
+ masked_softmax_fusion ........................... True
22167
+ max_position_embeddings ......................... 131072
22168
+ max_tokens_to_oom ............................... 12000
22169
+ memory_snapshot_path ............................ snapshot.pickle
22170
+ merge_file ...................................... merges.txt
22171
+ micro_batch_size ................................ 1
22172
+ microbatch_group_size_per_vp_stage .............. None
22173
+ mid_level_dataset_surplus ....................... 0.005
22174
+ min_loss_scale .................................. 1.0
22175
+ min_lr .......................................... 0.0
22176
+ mlp_chunks_for_prefill .......................... 1
22177
+ mmap_bin_files .................................. True
22178
+ mock_data ....................................... True
22179
+ moe_apply_probs_on_input ........................ False
22180
+ moe_aux_loss_coeff .............................. 0.0
22181
+ moe_enable_deepep ............................... False
22182
+ moe_expert_capacity_factor ...................... None
22183
+ moe_extended_tp ................................. False
22184
+ moe_ffn_hidden_size ............................. None
22185
+ moe_grouped_gemm ................................ False
22186
+ moe_input_jitter_eps ............................ None
22187
+ moe_layer_freq .................................. 1
22188
+ moe_layer_recompute ............................. False
22189
+ moe_pad_expert_input_to_capacity ................ False
22190
+ moe_per_layer_logging ........................... False
22191
+ moe_permute_fusion .............................. False
22192
+ moe_router_bias_update_rate ..................... 0.001
22193
+ moe_router_dtype ................................ None
22194
+ moe_router_enable_expert_bias ................... False
22195
+ moe_router_force_load_balancing ................. False
22196
+ moe_router_group_topk ........................... None
22197
+ moe_router_load_balancing_type .................. aux_loss
22198
+ moe_router_num_groups ........................... None
22199
+ moe_router_padding_for_fp8 ...................... False
22200
+ moe_router_pre_softmax .......................... False
22201
+ moe_router_score_function ....................... softmax
22202
+ moe_router_topk ................................. 2
22203
+ moe_router_topk_scaling_factor .................. None
22204
+ moe_shared_expert_intermediate_size ............. None
22205
+ moe_shared_expert_overlap ....................... False
22206
+ moe_token_dispatcher_type ....................... allgather
22207
+ moe_token_drop_policy ........................... probs
22208
+ moe_use_legacy_grouped_gemm ..................... False
22209
+ moe_use_upcycling ............................... False
22210
+ moe_z_loss_coeff ................................ None
22211
+ mrope_section ................................... None
22212
+ mscale .......................................... 1.0
22213
+ mscale_all_dim .................................. 1.0
22214
+ mtp_loss_scaling_factor ......................... 0.1
22215
+ mtp_num_layers .................................. None
22216
+ multi_latent_attention .......................... False
22217
+ nccl_all_reduce_for_prefill ..................... False
22218
+ nccl_communicator_config_path ................... None
22219
+ nccl_ub ......................................... False
22220
+ no_load_optim ................................... None
22221
+ no_load_rng ..................................... None
22222
+ no_persist_layer_norm ........................... False
22223
+ no_rope_freq .................................... None
22224
+ no_save_optim ................................... None
22225
+ no_save_rng ..................................... None
22226
+ non_persistent_ckpt_type ........................ None
22227
+ non_persistent_global_ckpt_dir .................. None
22228
+ non_persistent_local_ckpt_algo .................. fully_parallel
22229
+ non_persistent_local_ckpt_dir ................... None
22230
+ non_persistent_save_interval .................... None
22231
+ norm_epsilon .................................... 1e-05
22232
+ normalization ................................... LayerNorm
22233
+ num_attention_heads ............................. 64
22234
+ num_channels .................................... 3
22235
+ num_classes ..................................... 1000
22236
+ num_dataset_builder_threads ..................... 1
22237
+ num_distributed_optimizer_instances ............. 1
22238
+ num_experts ..................................... None
22239
+ num_layers ...................................... 2
22240
+ num_layers_at_end_in_bf16 ....................... 1
22241
+ num_layers_at_start_in_bf16 ..................... 1
22242
+ num_layers_per_virtual_pipeline_stage ........... None
22243
+ num_query_groups ................................ 16
22244
+ num_virtual_stages_per_pipeline_rank ............ None
22245
+ num_workers ..................................... 2
22246
+ object_storage_cache_path ....................... None
22247
+ one_logger_async ................................ False
22248
+ one_logger_project .............................. megatron-lm
22249
+ one_logger_run_name ............................. None
22250
+ onnx_safe ....................................... None
22251
+ openai_gelu ..................................... False
22252
+ optimizer ....................................... adam
22253
+ optimizer_cpu_offload ........................... False
22254
+ optimizer_offload_fraction ...................... 1.0
22255
+ output_bert_embeddings .......................... False
22256
+ overlap_cpu_optimizer_d2h_h2d ................... False
22257
+ overlap_grad_reduce ............................. False
22258
+ overlap_p2p_comm ................................ False
22259
+ overlap_p2p_comm_warmup_flush ................... False
22260
+ overlap_param_gather ............................ False
22261
+ overlap_param_gather_with_optimizer_step ........ False
22262
+ override_opt_param_scheduler .................... False
22263
+ params_dtype .................................... torch.float16
22264
+ patch_dim ....................................... 16
22265
+ per_split_data_args_path ........................ None
22266
+ perform_initialization .......................... True
22267
+ pin_cpu_grads ................................... True
22268
+ pin_cpu_params .................................. True
22269
+ pipeline_model_parallel_comm_backend ............ None
22270
+ pipeline_model_parallel_size .................... 1
22271
+ pipeline_model_parallel_split_rank .............. None
22272
+ position_embedding_type ......................... learned_absolute
22273
+ pretrained_checkpoint ........................... None
22274
+ profile ......................................... False
22275
+ profile_ranks ................................... [0]
22276
+ profile_step_end ................................ 12
22277
+ profile_step_start .............................. 10
22278
+ q_lora_rank ..................................... None
22279
+ qk_head_dim ..................................... 128
22280
+ qk_l2_norm ...................................... False
22281
+ qk_layernorm .................................... False
22282
+ qk_pos_emb_head_dim ............................. 64
22283
+ query_in_block_prob ............................. 0.1
22284
+ rampup_batch_size ............................... None
22285
+ rank ............................................ 0
22286
+ recompute_granularity ........................... None
22287
+ recompute_method ................................ None
22288
+ recompute_modules ............................... None
22289
+ recompute_num_layers ............................ None
22290
+ record_memory_history ........................... False
22291
+ relative_attention_max_distance ................. 128
22292
+ relative_attention_num_buckets .................. 32
22293
+ replication ..................................... False
22294
+ replication_factor .............................. 2
22295
+ replication_jump ................................ None
22296
+ rerun_mode ...................................... disabled
22297
+ reset_attention_mask ............................ False
22298
+ reset_position_ids .............................. False
22299
+ result_rejected_tracker_filename ................ None
22300
+ retriever_report_topk_accuracies ................ []
22301
+ retriever_score_scaling ......................... False
22302
+ retriever_seq_length ............................ 256
22303
+ retro_add_retriever ............................. False
22304
+ retro_attention_gate ............................ 1
22305
+ retro_cyclic_train_iters ........................ None
22306
+ retro_encoder_attention_dropout ................. 0.1
22307
+ retro_encoder_hidden_dropout .................... 0.1
22308
+ retro_encoder_layers ............................ 2
22309
+ retro_num_neighbors ............................. 2
22310
+ retro_num_retrieved_chunks ...................... 2
22311
+ retro_project_dir ............................... None
22312
+ retro_verify_neighbor_count ..................... True
22313
+ rope_scaling_factor ............................. 8.0
22314
+ rotary_base ..................................... 10000
22315
+ rotary_interleaved .............................. False
22316
+ rotary_percent .................................. 1.0
22317
+ rotary_scaling_factor ........................... 1.0
22318
+ rotary_seq_len_interpolation_factor ............. None
22319
+ run_workload_inspector_server ................... False
22320
+ sample_rate ..................................... 1.0
22321
+ save ............................................ gpt-checkpoint
22322
+ save_interval ................................... 16
22323
+ scatter_gather_tensors_in_pipeline .............. True
22324
+ seed ............................................ 1234
22325
+ seq_length ...................................... 131072
22326
+ sequence_parallel ............................... False
22327
+ sgd_momentum .................................... 0.9
22328
+ short_seq_prob .................................. 0.1
22329
+ skip_train ...................................... False
22330
+ skipped_train_samples ........................... 0
22331
+ spec ............................................ None
22332
+ split ........................................... None
22333
+ squared_relu .................................... False
22334
+ start_weight_decay .............................. 0.1
22335
+ straggler_ctrlr_port ............................ 65535
22336
+ straggler_minmax_count .......................... 1
22337
+ suggested_communication_unit_size ............... None
22338
+ swiglu .......................................... False
22339
+ swin_backbone_type .............................. tiny
22340
+ symmetric_ar_type ............................... None
22341
+ te_rng_tracker .................................. False
22342
+ tensor_model_parallel_size ...................... 4
22343
+ tensorboard_dir ................................. tensorboard-logs/
22344
+ tensorboard_log_interval ........................ 1
22345
+ tensorboard_queue_size .......................... 1000
22346
+ test_data_path .................................. None
22347
+ test_mode ....................................... False
22348
+ tiktoken_num_special_tokens ..................... 1000
22349
+ tiktoken_pattern ................................ None
22350
+ tiktoken_special_tokens ......................... None
22351
+ timing_log_level ................................ 0
22352
+ timing_log_option ............................... minmax
22353
+ titles_data_path ................................ None
22354
+ tokenizer_model ................................. None
22355
+ tokenizer_type .................................. GPT2BPETokenizer
22356
+ torch_fsdp2_reshard_after_forward ............... True
22357
+ tp_comm_bootstrap_backend ....................... nccl
22358
+ tp_comm_bulk_dgrad .............................. True
22359
+ tp_comm_bulk_wgrad .............................. True
22360
+ tp_comm_overlap ................................. False
22361
+ tp_comm_overlap_ag .............................. True
22362
+ tp_comm_overlap_cfg ............................. None
22363
+ tp_comm_overlap_rs .............................. True
22364
+ tp_comm_overlap_rs_dgrad ........................ False
22365
+ tp_comm_split_ag ................................ True
22366
+ tp_comm_split_rs ................................ True
22367
+ train_data_path ................................. None
22368
+ train_iters ..................................... 10
22369
+ train_samples ................................... None
22370
+ train_sync_interval ............................. None
22371
+ transformer_impl ................................ transformer_engine
22372
+ transformer_pipeline_model_parallel_size ........ 1
22373
+ untie_embeddings_and_output_weights ............. False
22374
+ use_checkpoint_args ............................. False
22375
+ use_checkpoint_opt_param_scheduler .............. False
22376
+ use_cpu_initialization .......................... None
22377
+ use_custom_fsdp ................................. False
22378
+ use_dist_ckpt ................................... True
22379
+ use_dist_ckpt_deprecated ........................ False
22380
+ use_distributed_optimizer ....................... False
22381
+ use_flash_attn .................................. False
22382
+ use_legacy_models ............................... False
22383
+ use_mp_args_from_checkpoint_args ................ False
22384
+ use_one_sent_docs ............................... False
22385
+ use_persistent_ckpt_worker ...................... False
22386
+ use_precision_aware_optimizer ................... False
22387
+ use_pytorch_profiler ............................ False
22388
+ use_ring_exchange_p2p ........................... False
22389
+ use_rope_scaling ................................ False
22390
+ use_rotary_position_embeddings .................. False
22391
+ use_sharp ....................................... False
22392
+ use_tokenizer_model_from_checkpoint_args ........ True
22393
+ use_torch_fsdp2 ................................. False
22394
+ use_torch_optimizer_for_cpu_offload ............. False
22395
+ use_tp_pp_dp_mapping ............................ False
22396
+ v_head_dim ...................................... 128
22397
+ valid_data_path ................................. None
22398
+ variable_seq_lengths ............................ False
22399
+ virtual_pipeline_model_parallel_size ............ None
22400
+ vision_backbone_type ............................ vit
22401
+ vision_pretraining .............................. False
22402
+ vision_pretraining_type ......................... classify
22403
+ vocab_extra_ids ................................. 0
22404
+ vocab_file ...................................... vocab.json
22405
+ vocab_size ...................................... None
22406
+ wandb_exp_name ..................................
22407
+ wandb_project ...................................
22408
+ wandb_save_dir ..................................
22409
+ weight_decay .................................... 0.1
22410
+ weight_decay_incr_style ......................... constant
22411
+ wgrad_deferral_limit ............................ 0
22412
+ world_size ...................................... 8
22413
+ yaml_cfg ........................................ None
22414
+ -------------------- end of arguments ---------------------
22415
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
22416
+ > building GPT2BPETokenizer tokenizer ...
22417
+ INFO:megatron.training.initialize:Setting logging level to 0
22418
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
22419
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
22420
+ INFO:megatron.training.initialize:Setting logging level to 0
22421
+ INFO:megatron.training.initialize:Setting logging level to 0
22422
+ INFO:megatron.training.initialize:Setting logging level to 0
22423
+ > padded vocab (size: 50257) with 431 dummy tokens (new size: 50688)
22424
+ INFO:megatron.training.initialize:Setting logging level to 0
22425
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
22426
+ > initializing torch distributed ...
22427
+ INFO:megatron.training.initialize:Setting logging level to 0
22428
+ INFO:megatron.training.initialize:Setting logging level to 0
22429
+ INFO:megatron.training.initialize:Setting logging level to 0
22430
+ > initialized tensor model parallel with size 4
22431
+ > initialized pipeline model parallel with size 1
22432
+ > setting random seeds to 1234 ...
22433
+ > compiling dataset index builder ...
22434
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
22435
+ make: Nothing to be done for 'default'.
22436
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
22437
+ >>> done with dataset index builder. Compilation time: 0.046 seconds
22438
+ WARNING: constraints for invoking optimized fused softmax kernel are not met. We default back to unfused kernel invocations.
22439
+ > compiling and loading fused kernels ...
22440
+ >>> done with compiling and loading fused kernels. Compilation time: 2.242 seconds
22441
+ time to initialize megatron (seconds): 7.855
22442
+ [after megatron is initialized] datetime: 2025-06-21 22:06:34
22443
+ building GPT model ...
22444
+ >>> embedding
22445
+ >>> decoder
22446
+ >>> output_layer
22447
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
22448
+ >>> embedding
22449
+ >>> decoder
22450
+ >>> output_layer
22451
+ > number of parameters on (tensor, pipeline) model parallel rank (3, 0): 676924416
22452
+ >>> embedding
22453
+ >>> decoder
22454
+ >>> output_layer
22455
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
22456
+ >>> embedding
22457
+ >>> decoder
22458
+ >>> output_layer
22459
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
22460
+ >>> embedding
22461
+ >>> decoder
22462
+ >>> output_layer
22463
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
22464
+ >>> embedding
22465
+ >>> decoder
22466
+ >>> output_layer
22467
+ > number of parameters on (tensor, pipeline) model parallel rank (1, 0): 676924416
22468
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
22469
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
22470
+ Params for bucket 1 (676924416 elements, 676924416 padded size):
22471
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
22472
+ module.decoder.layers.0.mlp.linear_fc2.weight
22473
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
22474
+ module.embedding.word_embeddings.weight
22475
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
22476
+ module.decoder.layers.1.self_attention.linear_qkv.bias
22477
+ module.decoder.layers.0.mlp.linear_fc2.bias
22478
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
22479
+ module.decoder.layers.0.self_attention.linear_qkv.bias
22480
+ module.decoder.layers.0.self_attention.linear_proj.weight
22481
+ module.decoder.final_layernorm.bias
22482
+ module.decoder.layers.1.mlp.linear_fc1.weight
22483
+ module.decoder.layers.0.mlp.linear_fc1.weight
22484
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
22485
+ module.decoder.layers.1.mlp.linear_fc2.bias
22486
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
22487
+ module.decoder.final_layernorm.weight
22488
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
22489
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
22490
+ module.decoder.layers.0.self_attention.linear_proj.bias
22491
+ module.decoder.layers.1.mlp.linear_fc1.bias
22492
+ module.decoder.layers.0.mlp.linear_fc1.bias
22493
+ module.decoder.layers.1.self_attention.linear_qkv.weight
22494
+ module.decoder.layers.1.self_attention.linear_proj.weight
22495
+ module.decoder.layers.0.self_attention.linear_qkv.weight
22496
+ module.embedding.position_embeddings.weight
22497
+ module.decoder.layers.1.mlp.linear_fc2.weight
22498
+ module.decoder.layers.1.self_attention.linear_proj.bias
22499
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14d42677eb10>, config_logger_dir='')
22500
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
22501
+ >>> embedding
22502
+ >>> decoder
22503
+ >>> output_layer
22504
+ > number of parameters on (tensor, pipeline) model parallel rank (2, 0): 676924416
22505
+ >>> embedding
22506
+ >>> decoder
22507
+ >>> output_layer
22508
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 676924416
22509
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
22510
+ will not load any checkpoints and will start from random
22511
+ (min, max) time across ranks (ms):
22512
+ load-checkpoint ................................: (2.95, 3.93)
22513
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 22:06:42
22514
+ > building train, validation, and test datasets ...
22515
+ > datasets target sizes (minimum size):
22516
+ train: 10
22517
+ validation: 1
22518
+ test: 1
22519
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
22520
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
22521
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
22522
+ > building train, validation, and test datasets for GPT ...
22523
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=131072, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x14d42671f050>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
22524
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
22525
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
22526
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
22527
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.004888 seconds
22528
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
22529
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
22530
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
22531
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
22532
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
22533
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001661 seconds
22534
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
22535
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
22536
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
22537
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
22538
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
22539
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.001424 seconds
22540
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 520
22541
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
22542
+ > finished creating GPT datasets ...
22543
+ [after dataloaders are built] datetime: 2025-06-21 22:06:42
22544
+ done with setup ...
22545
+ (min, max) time across ranks (ms):
22546
+ model-and-optimizer-setup ......................: (8039.58, 8039.75)
22547
+ train/valid/test-data-iterators-setup ..........: (21.56, 114.70)
22548
+ training ...
22549
+ Setting rerun_state_machine.current_iteration to 0...
22550
+ [before the start of training step] datetime: 2025-06-21 22:06:42
22551
+ batch tensor: tokens torch.Size([1, 131072])
22552
+ batch tensor: labels torch.Size([1, 131072])
22553
+ batch tensor: loss_mask torch.Size([1, 131072])
22554
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22555
+ batch tensor: position_ids torch.Size([1, 131072])
22556
+ batch tensor after cp: tokens torch.Size([1, 65536])
22557
+ batch tensor after cp: labels torch.Size([1, 65536])
22558
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22559
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22560
+ batch tensor after cp: position_ids torch.Size([1, 65536])
22561
+ batch tensor: tokens torch.Size([1, 131072])
22562
+ batch tensor: labels torch.Size([1, 131072])
22563
+ batch tensor: loss_mask torch.Size([1, 131072])
22564
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22565
+ batch tensor: position_ids torch.Size([1, 131072])
22566
+ batch tensor after cp: tokens torch.Size([1, 65536])
22567
+ batch tensor after cp: labels torch.Size([1, 65536])
22568
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22569
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22570
+ batch tensor after cp: position_ids torch.Size([1, 65536])
22571
+ batch tensor: tokens torch.Size([1, 131072])
22572
+ batch tensor: labels torch.Size([1, 131072])
22573
+ batch tensor: loss_mask torch.Size([1, 131072])
22574
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22575
+ batch tensor: position_ids torch.Size([1, 131072])
22576
+ batch tensor: tokens torch.Size([1, 131072])
22577
+ batch tensor: labels torch.Size([1, 131072])
22578
+ batch tensor: loss_mask torch.Size([1, 131072])
22579
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22580
+ batch tensor: position_ids torch.Size([1, 131072])
22581
+ batch tensor after cp: tokens torch.Size([1, 65536])
22582
+ batch tensor after cp: labels torch.Size([1, 65536])
22583
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22584
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22585
+ batch tensor after cp: position_ids torch.Size([1, 65536])
22586
+ batch tensor after cp: tokens torch.Size([1, 65536])
22587
+ batch tensor after cp: labels torch.Size([1, 65536])
22588
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22589
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22590
+ batch tensor after cp: position_ids torch.Size([1, 65536])
22591
+ batch tensor: tokens torch.Size([1, 131072])
22592
+ batch tensor: labels torch.Size([1, 131072])
22593
+ batch tensor: loss_mask torch.Size([1, 131072])
22594
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22595
+ batch tensor: position_ids torch.Size([1, 131072])
22596
+ batch tensor after cp: tokens torch.Size([1, 65536])
22597
+ batch tensor after cp: labels torch.Size([1, 65536])
22598
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22599
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22600
+ batch tensor after cp: position_ids torch.Size([1, 65536])
22601
+ batch tensor: tokens torch.Size([1, 131072])
22602
+ batch tensor: labels torch.Size([1, 131072])
22603
+ batch tensor: loss_mask torch.Size([1, 131072])
22604
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22605
+ batch tensor: position_ids torch.Size([1, 131072])
22606
+ batch tensor after cp: tokens torch.Size([1, 65536])
22607
+ batch tensor after cp: labels torch.Size([1, 65536])
22608
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22609
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22610
+ batch tensor after cp: position_ids torch.Size([1, 65536])
22611
+ batch tensor: tokens torch.Size([1, 131072])
22612
+ batch tensor: labels torch.Size([1, 131072])
22613
+ batch tensor: loss_mask torch.Size([1, 131072])
22614
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22615
+ batch tensor: position_ids torch.Size([1, 131072])
22616
+ batch tensor after cp: tokens torch.Size([1, 65536])
22617
+ batch tensor after cp: labels torch.Size([1, 65536])
22618
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22619
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22620
+ batch tensor after cp: position_ids torch.Size([1, 65536])
22621
+ batch tensor: tokens torch.Size([1, 131072])
22622
+ batch tensor: labels torch.Size([1, 131072])
22623
+ batch tensor: loss_mask torch.Size([1, 131072])
22624
+ batch tensor: attention_mask torch.Size([1, 1, 131072, 131072])
22625
+ batch tensor: position_ids torch.Size([1, 131072])
22626
+ batch tensor after cp: tokens torch.Size([1, 65536])
22627
+ batch tensor after cp: labels torch.Size([1, 65536])
22628
+ batch tensor after cp: loss_mask torch.Size([1, 65536])
22629
+ batch tensor after cp: attention_mask torch.Size([1, 1, 65536, 131072])
22630
+ batch tensor after cp: position_ids torch.Size([1, 65536])
attnserver.run_attnserver.slurm.sh.343226.err.log CHANGED
@@ -1297,3 +1297,74 @@ W0621 21:55:51.007000 1996275 site-packages/torch/distributed/run.py:766] ******
1297
  warnings.warn(
1298
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1299
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1297
  warnings.warn(
1298
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1299
  warnings.warn(
1300
+ [rank2]:[W621 22:04:59.407544011 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1301
+ [rank3]:[W621 22:04:59.608853506 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1302
+ [rank7]:[W621 22:04:59.678669926 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1303
+ [rank1]:[W621 22:04:59.700049367 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1304
+ [rank6]:[W621 22:04:59.938906957 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1305
+ [rank5]:[W621 22:05:00.259868129 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1306
+ [rank0]:[W621 22:05:00.324680781 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1307
+ [rank4]:[W621 22:05:00.380660785 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
1308
+ + set +x
1309
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
1310
+ + export PROF_CTX_LENGTH=81920
1311
+ + PROF_CTX_LENGTH=81920
1312
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp4.cp2.bs2.json'
1313
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp4.cp2.bs2.json' ']'
1314
+ + echo 'Running ctx_length=81920, TP_SIZE=4, CP_SIZE=2, BATCH_SIZE=2'
1315
+ + srun bash ./attnserver.sh
1316
+ + which python3
1317
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343226 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-896:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 4 --context-parallel-size 2 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 81920 --max-position-embeddings 81920 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
1318
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
1319
+ and will be removed in future. Use torchrun.
1320
+ Note that --use-env is set by default in torchrun.
1321
+ If your script expects `--local-rank` argument to be set, please
1322
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
1323
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
1324
+ further instructions
1325
+
1326
+ main()
1327
+ W0621 22:05:16.304000 2000339 site-packages/torch/distributed/run.py:766]
1328
+ W0621 22:05:16.304000 2000339 site-packages/torch/distributed/run.py:766] *****************************************
1329
+ W0621 22:05:16.304000 2000339 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1330
+ W0621 22:05:16.304000 2000339 site-packages/torch/distributed/run.py:766] *****************************************
1331
+ [rank7]:[W621 22:05:38.315413964 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1332
+ [rank3]:[W621 22:05:38.315420577 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1333
+ [rank1]:[W621 22:05:38.339507253 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1334
+ [rank5]:[W621 22:05:38.339635072 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1335
+ [rank6]:[W621 22:05:38.340067732 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1336
+ [rank2]:[W621 22:05:38.341018027 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1337
+ [rank4]:[W621 22:05:38.344861448 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1338
+ [rank0]:[W621 22:05:38.496511209 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
1339
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1340
+ warnings.warn(
1341
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1342
+ warnings.warn(
1343
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1344
+ warnings.warn(
1345
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1346
+ warnings.warn(
1347
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1348
+ warnings.warn(
1349
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1350
+ warnings.warn(
1351
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1352
+ warnings.warn(
1353
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
1354
+ warnings.warn(
1355
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1356
+ warnings.warn(
1357
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1358
+ warnings.warn(
1359
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1360
+ warnings.warn(
1361
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1362
+ warnings.warn(
1363
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1364
+ warnings.warn(
1365
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1366
+ warnings.warn(
1367
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1368
+ warnings.warn(
1369
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
1370
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343226.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343237.err.log CHANGED
@@ -2118,3 +2118,355 @@ W0621 21:59:08.581000 1124226 site-packages/torch/distributed/run.py:766] ******
2118
  [rank13]:[W621 21:59:34.544805119 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2119
  [rank8]:[W621 21:59:34.671912210 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2120
  [rank0]:[W621 21:59:34.026347727 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2118
  [rank13]:[W621 21:59:34.544805119 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2119
  [rank8]:[W621 21:59:34.671912210 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2120
  [rank0]:[W621 21:59:34.026347727 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2121
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2122
+ warnings.warn(
2123
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2124
+ warnings.warn(
2125
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2126
+ warnings.warn(
2127
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2128
+ warnings.warn(
2129
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2130
+ warnings.warn(
2131
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2132
+ warnings.warn(
2133
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2134
+ warnings.warn(
2135
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2136
+ warnings.warn(
2137
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2138
+ warnings.warn(
2139
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2140
+ warnings.warn(
2141
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2142
+ warnings.warn(
2143
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2144
+ warnings.warn(
2145
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2146
+ warnings.warn(
2147
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2148
+ warnings.warn(
2149
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2150
+ warnings.warn(
2151
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2152
+ warnings.warn(
2153
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2154
+ warnings.warn(
2155
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2156
+ warnings.warn(
2157
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2158
+ warnings.warn(
2159
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2160
+ warnings.warn(
2161
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2162
+ warnings.warn(
2163
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2164
+ warnings.warn(
2165
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2166
+ warnings.warn(
2167
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2168
+ warnings.warn(
2169
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2170
+ warnings.warn(
2171
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2172
+ warnings.warn(
2173
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2174
+ warnings.warn(
2175
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2176
+ warnings.warn(
2177
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2178
+ warnings.warn(
2179
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2180
+ warnings.warn(
2181
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2182
+ warnings.warn(
2183
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2184
+ warnings.warn(
2185
+ [rank0]: Traceback (most recent call last):
2186
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2187
+ [rank0]: pretrain(
2188
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
2189
+ [rank0]: save_checkpoint(
2190
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
2191
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
2192
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2193
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
2194
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
2195
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
2196
+ [rank0]: torch.save(common_state_dict, path)
2197
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
2198
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
2199
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
2200
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
2201
+ [rank0]: return container(name_or_buffer)
2202
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
2203
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
2204
+ [rank0]: torch._C.PyTorchFileWriter(
2205
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
2206
+ [rank0]:[W621 22:04:21.659783891 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2207
+ W0621 22:04:31.929000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 849652 closing signal SIGTERM
2208
+ W0621 22:04:31.932000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 849653 closing signal SIGTERM
2209
+ W0621 22:04:31.934000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 849654 closing signal SIGTERM
2210
+ W0621 22:04:31.937000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 849655 closing signal SIGTERM
2211
+ W0621 22:04:31.940000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 849656 closing signal SIGTERM
2212
+ W0621 22:04:31.943000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 849657 closing signal SIGTERM
2213
+ W0621 22:04:31.960000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 849658 closing signal SIGTERM
2214
+ E0621 22:04:35.819000 849579 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 849651) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
2215
+ Traceback (most recent call last):
2216
+ File "<frozen runpy>", line 198, in _run_module_as_main
2217
+ File "<frozen runpy>", line 88, in _run_code
2218
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2219
+ main()
2220
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2221
+ return arg(*args, **kwargs)
2222
+ ^^^^^^^^^^^^^^^^^^^^
2223
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2224
+ launch(args)
2225
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2226
+ run(args)
2227
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2228
+ elastic_launch(
2229
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2230
+ return launch_agent(self._config, self._entrypoint, list(args))
2231
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2232
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
2233
+ raise ChildFailedError(
2234
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
2235
+ ============================================================
2236
+ ./pretrain_gpt_profile.py FAILED
2237
+ ------------------------------------------------------------
2238
+ Failures:
2239
+ <NO_OTHER_FAILURES>
2240
+ ------------------------------------------------------------
2241
+ Root Cause (first observed failure):
2242
+ [0]:
2243
+ time : 2025-06-21_22:04:31
2244
+ host : fs-mbz-gpu-274
2245
+ rank : 0 (local_rank: 0)
2246
+ exitcode : 1 (pid: 849651)
2247
+ error_file: <N/A>
2248
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
2249
+ ============================================================
2250
+ + set +x
2251
+ W0621 22:04:36.170000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124296 closing signal SIGTERM
2252
+ W0621 22:04:36.171000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124297 closing signal SIGTERM
2253
+ W0621 22:04:36.176000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124298 closing signal SIGTERM
2254
+ W0621 22:04:36.179000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124299 closing signal SIGTERM
2255
+ W0621 22:04:36.182000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124300 closing signal SIGTERM
2256
+ W0621 22:04:36.200000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124301 closing signal SIGTERM
2257
+ W0621 22:04:36.204000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124302 closing signal SIGTERM
2258
+ W0621 22:04:36.213000 1124226 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1124303 closing signal SIGTERM
2259
+ [W621 22:04:39.022871617 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-476]:33082, remote=[fs-mbz-gpu-274]:29500): Broken pipe
2260
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
2261
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14b0815785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2262
+ frame #1: <unknown function> + 0x5ba8afe (0x14b06a45aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2263
+ frame #2: <unknown function> + 0x5baa358 (0x14b06a45c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2264
+ frame #3: <unknown function> + 0x5babb3e (0x14b06a45db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2265
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14b06a457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2266
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14b06a457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2267
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14b06a458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2268
+ frame #7: <unknown function> + 0xc0f526 (0x14b07978b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2269
+ frame #8: <unknown function> + 0x37f17d (0x14b078efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2270
+ <omitting python frames>
2271
+ frame #17: <unknown function> + 0x94ac3 (0x14b082640ac3 in /lib/x86_64-linux-gnu/libc.so.6)
2272
+ frame #18: <unknown function> + 0x126850 (0x14b0826d2850 in /lib/x86_64-linux-gnu/libc.so.6)
2273
+
2274
+ W0621 22:04:39.114000 1124226 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-476_1124226_0' has failed to send a keep-alive heartbeat to the rendezvous '343237' due to an error of type RendezvousConnectionError.
2275
+ [W621 22:04:39.362549495 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-476]:33082, remote=[fs-mbz-gpu-274]:29500): Broken pipe
2276
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
2277
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14b0815785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2278
+ frame #1: <unknown function> + 0x5ba8afe (0x14b06a45aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2279
+ frame #2: <unknown function> + 0x5baa358 (0x14b06a45c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2280
+ frame #3: <unknown function> + 0x5babb3e (0x14b06a45db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2281
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14b06a457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2282
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14b06a457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2283
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14b06a458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2284
+ frame #7: <unknown function> + 0xc0f526 (0x14b07978b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2285
+ frame #8: <unknown function> + 0x37f17d (0x14b078efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2286
+ <omitting python frames>
2287
+ frame #26: <unknown function> + 0x29d90 (0x14b0825d5d90 in /lib/x86_64-linux-gnu/libc.so.6)
2288
+ frame #27: __libc_start_main + 0x80 (0x14b0825d5e40 in /lib/x86_64-linux-gnu/libc.so.6)
2289
+
2290
+ W0621 22:04:39.457000 1124226 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-476_1124226_0' has failed to shutdown the rendezvous '343237' due to an error of type RendezvousConnectionError.
2291
+ [W621 22:04:39.377055685 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=3, addr=[fs-mbz-gpu-476]:33082, remote=[fs-mbz-gpu-274]:29500): Broken pipe
2292
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
2293
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14b0815785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
2294
+ frame #1: <unknown function> + 0x5ba8afe (0x14b06a45aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2295
+ frame #2: <unknown function> + 0x5baa358 (0x14b06a45c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2296
+ frame #3: <unknown function> + 0x5babb3e (0x14b06a45db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2297
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14b06a457ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2298
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14b06a457ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2299
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14b06a458f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
2300
+ frame #7: <unknown function> + 0xc0f526 (0x14b07978b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2301
+ frame #8: <unknown function> + 0x37f17d (0x14b078efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
2302
+ <omitting python frames>
2303
+ frame #26: <unknown function> + 0x29d90 (0x14b0825d5d90 in /lib/x86_64-linux-gnu/libc.so.6)
2304
+ frame #27: __libc_start_main + 0x80 (0x14b0825d5e40 in /lib/x86_64-linux-gnu/libc.so.6)
2305
+
2306
+ W0621 22:04:39.469000 1124226 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-476_1124226_0' has failed to shutdown the rendezvous '343237' due to an error of type RendezvousConnectionError.
2307
+ Traceback (most recent call last):
2308
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
2309
+ return getattr(self._store, store_op)(*args, **kwargs)
2310
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2311
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
2312
+
2313
+ The above exception was the direct cause of the following exception:
2314
+
2315
+ Traceback (most recent call last):
2316
+ File "<frozen runpy>", line 198, in _run_module_as_main
2317
+ File "<frozen runpy>", line 88, in _run_code
2318
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2319
+ main()
2320
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2321
+ return arg(*args, **kwargs)
2322
+ ^^^^^^^^^^^^^^^^^^^^
2323
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2324
+ launch(args)
2325
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2326
+ run(args)
2327
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2328
+ elastic_launch(
2329
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2330
+ return launch_agent(self._config, self._entrypoint, list(args))
2331
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2332
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
2333
+ result = agent.run()
2334
+ ^^^^^^^^^^^
2335
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
2336
+ result = f(*args, **kwargs)
2337
+ ^^^^^^^^^^^^^^^^^^
2338
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
2339
+ result = self._invoke_run(role)
2340
+ ^^^^^^^^^^^^^^^^^^^^^^
2341
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
2342
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
2343
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2344
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
2345
+ self._state_holder.sync()
2346
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
2347
+ get_response = self._backend.get_state()
2348
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
2349
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
2350
+ base64_state: bytes = self._call_store("get", self._key)
2351
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2352
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
2353
+ raise RendezvousConnectionError(
2354
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
2355
+ + set +x
2356
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
2357
+ + export PROF_CTX_LENGTH=81920
2358
+ + PROF_CTX_LENGTH=81920
2359
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp2.cp8.bs1.json'
2360
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp2.cp8.bs1.json' ']'
2361
+ + echo 'Running ctx_length=81920, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=1'
2362
+ + srun bash ./attnserver.sh
2363
+ + which python3
2364
+ + which python3
2365
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343237 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-274:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 81920 --max-position-embeddings 81920 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2366
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343237 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-274:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 81920 --max-position-embeddings 81920 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2367
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2368
+ and will be removed in future. Use torchrun.
2369
+ Note that --use-env is set by default in torchrun.
2370
+ If your script expects `--local-rank` argument to be set, please
2371
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2372
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2373
+ further instructions
2374
+
2375
+ main()
2376
+ W0621 22:05:02.807000 853291 site-packages/torch/distributed/run.py:766]
2377
+ W0621 22:05:02.807000 853291 site-packages/torch/distributed/run.py:766] *****************************************
2378
+ W0621 22:05:02.807000 853291 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2379
+ W0621 22:05:02.807000 853291 site-packages/torch/distributed/run.py:766] *****************************************
2380
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2381
+ and will be removed in future. Use torchrun.
2382
+ Note that --use-env is set by default in torchrun.
2383
+ If your script expects `--local-rank` argument to be set, please
2384
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2385
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2386
+ further instructions
2387
+
2388
+ main()
2389
+ W0621 22:05:02.863000 1127779 site-packages/torch/distributed/run.py:766]
2390
+ W0621 22:05:02.863000 1127779 site-packages/torch/distributed/run.py:766] *****************************************
2391
+ W0621 22:05:02.863000 1127779 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2392
+ W0621 22:05:02.863000 1127779 site-packages/torch/distributed/run.py:766] *****************************************
2393
+ [rank9]:[W621 22:05:26.047374057 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2394
+ [rank1]:[W621 22:05:26.386654497 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2395
+ [rank5]:[W621 22:05:26.387130751 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2396
+ [rank2]:[W621 22:05:26.387149164 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2397
+ [rank3]:[W621 22:05:26.387344347 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2398
+ [rank7]:[W621 22:05:26.387535395 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2399
+ [rank6]:[W621 22:05:26.388452688 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2400
+ [rank4]:[W621 22:05:26.388552862 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2401
+ [rank11]:[W621 22:05:26.060819898 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2402
+ [rank10]:[W621 22:05:26.060864338 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2403
+ [rank15]:[W621 22:05:26.061040541 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2404
+ [rank12]:[W621 22:05:26.061040709 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2405
+ [rank14]:[W621 22:05:26.061049399 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2406
+ [rank13]:[W621 22:05:26.061080704 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2407
+ [rank0]:[W621 22:05:26.543826674 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2408
+ [rank8]:[W621 22:05:26.317480533 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2409
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2410
+ warnings.warn(
2411
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2412
+ warnings.warn(
2413
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2414
+ warnings.warn(
2415
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2416
+ warnings.warn(
2417
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2418
+ warnings.warn(
2419
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2420
+ warnings.warn(
2421
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2422
+ warnings.warn(
2423
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2424
+ warnings.warn(
2425
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2426
+ warnings.warn(
2427
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2428
+ warnings.warn(
2429
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2430
+ warnings.warn(
2431
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2432
+ warnings.warn(
2433
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2434
+ warnings.warn(
2435
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2436
+ warnings.warn(
2437
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2438
+ warnings.warn(
2439
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2440
+ warnings.warn(
2441
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2442
+ warnings.warn(
2443
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2444
+ warnings.warn(
2445
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2446
+ warnings.warn(
2447
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2448
+ warnings.warn(
2449
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2450
+ warnings.warn(
2451
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2452
+ warnings.warn(
2453
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2454
+ warnings.warn(
2455
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2456
+ warnings.warn(
2457
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2458
+ warnings.warn(
2459
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2460
+ warnings.warn(
2461
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2462
+ warnings.warn(
2463
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2464
+ warnings.warn(
2465
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2466
+ warnings.warn(
2467
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2468
+ warnings.warn(
2469
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2470
+ warnings.warn(
2471
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2472
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343237.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343238.err.log CHANGED
@@ -6531,3 +6531,616 @@ W0621 21:59:31.558000 3515598 site-packages/torch/distributed/elastic/multiproce
6531
  W0621 21:59:31.561000 3515598 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3515675 closing signal SIGTERM
6532
  W0621 21:59:31.584000 3515598 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3515676 closing signal SIGTERM
6533
  W0621 21:59:31.588000 3515598 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3515677 closing signal SIGTERM
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6531
  W0621 21:59:31.561000 3515598 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3515675 closing signal SIGTERM
6532
  W0621 21:59:31.584000 3515598 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3515676 closing signal SIGTERM
6533
  W0621 21:59:31.588000 3515598 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3515677 closing signal SIGTERM
6534
+ E0621 21:59:38.566000 3515598 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3515670) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
6535
+ Traceback (most recent call last):
6536
+ File "<frozen runpy>", line 198, in _run_module_as_main
6537
+ File "<frozen runpy>", line 88, in _run_code
6538
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
6539
+ main()
6540
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
6541
+ return arg(*args, **kwargs)
6542
+ ^^^^^^^^^^^^^^^^^^^^
6543
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
6544
+ launch(args)
6545
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
6546
+ run(args)
6547
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
6548
+ elastic_launch(
6549
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
6550
+ return launch_agent(self._config, self._entrypoint, list(args))
6551
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6552
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
6553
+ raise ChildFailedError(
6554
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
6555
+ ============================================================
6556
+ ./pretrain_gpt_profile.py FAILED
6557
+ ------------------------------------------------------------
6558
+ Failures:
6559
+ <NO_OTHER_FAILURES>
6560
+ ------------------------------------------------------------
6561
+ Root Cause (first observed failure):
6562
+ [0]:
6563
+ time : 2025-06-21_21:59:31
6564
+ host : fs-mbz-gpu-518
6565
+ rank : 0 (local_rank: 0)
6566
+ exitcode : 1 (pid: 3515670)
6567
+ error_file: <N/A>
6568
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
6569
+ ============================================================
6570
+ W0621 21:59:38.797000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747805 closing signal SIGTERM
6571
+ W0621 21:59:38.800000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747806 closing signal SIGTERM
6572
+ W0621 21:59:38.803000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747807 closing signal SIGTERM
6573
+ W0621 21:59:38.805000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747808 closing signal SIGTERM
6574
+ W0621 21:59:38.808000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747809 closing signal SIGTERM
6575
+ W0621 21:59:38.812000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747810 closing signal SIGTERM
6576
+ W0621 21:59:38.815000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747811 closing signal SIGTERM
6577
+ W0621 21:59:38.817000 2747734 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2747812 closing signal SIGTERM
6578
+ + set +x
6579
+ [W621 21:59:39.196576404 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:59960, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6580
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6581
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14fb1c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6582
+ frame #1: <unknown function> + 0x5ba8afe (0x14fb0585aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6583
+ frame #2: <unknown function> + 0x5baa358 (0x14fb0585c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6584
+ frame #3: <unknown function> + 0x5babb3e (0x14fb0585db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6585
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14fb05857ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6586
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14fb05857ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6587
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14fb05858f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6588
+ frame #7: <unknown function> + 0xc0f526 (0x14fb14b8b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6589
+ frame #8: <unknown function> + 0x37f17d (0x14fb142fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6590
+ <omitting python frames>
6591
+ frame #17: <unknown function> + 0x94ac3 (0x14fb1d8abac3 in /lib/x86_64-linux-gnu/libc.so.6)
6592
+ frame #18: <unknown function> + 0x126850 (0x14fb1d93d850 in /lib/x86_64-linux-gnu/libc.so.6)
6593
+
6594
+ W0621 21:59:39.729000 2747734 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-546_2747734_0' has failed to send a keep-alive heartbeat to the rendezvous '343238' due to an error of type RendezvousConnectionError.
6595
+ [W621 21:59:44.206199521 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:59960, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6596
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6597
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14fb1c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6598
+ frame #1: <unknown function> + 0x5ba8afe (0x14fb0585aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6599
+ frame #2: <unknown function> + 0x5baa358 (0x14fb0585c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6600
+ frame #3: <unknown function> + 0x5babb3e (0x14fb0585db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6601
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14fb05857ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6602
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14fb05857ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6603
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14fb05858f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6604
+ frame #7: <unknown function> + 0xc0f526 (0x14fb14b8b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6605
+ frame #8: <unknown function> + 0x37f17d (0x14fb142fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6606
+ <omitting python frames>
6607
+ frame #17: <unknown function> + 0x94ac3 (0x14fb1d8abac3 in /lib/x86_64-linux-gnu/libc.so.6)
6608
+ frame #18: <unknown function> + 0x126850 (0x14fb1d93d850 in /lib/x86_64-linux-gnu/libc.so.6)
6609
+
6610
+ W0621 21:59:44.737000 2747734 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-546_2747734_0' has failed to send a keep-alive heartbeat to the rendezvous '343238' due to an error of type RendezvousConnectionError.
6611
+ [W621 21:59:47.893825051 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:59960, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6612
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6613
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14fb1c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6614
+ frame #1: <unknown function> + 0x5ba8afe (0x14fb0585aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6615
+ frame #2: <unknown function> + 0x5baa358 (0x14fb0585c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6616
+ frame #3: <unknown function> + 0x5babb3e (0x14fb0585db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6617
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14fb05857ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6618
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14fb05857ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6619
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14fb05858f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6620
+ frame #7: <unknown function> + 0xc0f526 (0x14fb14b8b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6621
+ frame #8: <unknown function> + 0x37f17d (0x14fb142fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6622
+ <omitting python frames>
6623
+ frame #26: <unknown function> + 0x29d90 (0x14fb1d840d90 in /lib/x86_64-linux-gnu/libc.so.6)
6624
+ frame #27: __libc_start_main + 0x80 (0x14fb1d840e40 in /lib/x86_64-linux-gnu/libc.so.6)
6625
+
6626
+ W0621 21:59:47.430000 2747734 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-546_2747734_0' has failed to shutdown the rendezvous '343238' due to an error of type RendezvousConnectionError.
6627
+ [W621 21:59:47.908207435 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:59960, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6628
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6629
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14fb1c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6630
+ frame #1: <unknown function> + 0x5ba8afe (0x14fb0585aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6631
+ frame #2: <unknown function> + 0x5baa358 (0x14fb0585c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6632
+ frame #3: <unknown function> + 0x5babb3e (0x14fb0585db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6633
+ frame #4: c10d::TCPStore::doWait(c10::ArrayRef<std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > >, std::chrono::duration<long, std::ratio<1l, 1000l> >) + 0x1a6 (0x14fb05857ac6 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6634
+ frame #5: c10d::TCPStore::doGet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0x33 (0x14fb05857ea3 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6635
+ frame #6: c10d::TCPStore::get(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&) + 0xab (0x14fb05858f8b in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6636
+ frame #7: <unknown function> + 0xc0f526 (0x14fb14b8b526 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6637
+ frame #8: <unknown function> + 0x37f17d (0x14fb142fb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6638
+ <omitting python frames>
6639
+ frame #26: <unknown function> + 0x29d90 (0x14fb1d840d90 in /lib/x86_64-linux-gnu/libc.so.6)
6640
+ frame #27: __libc_start_main + 0x80 (0x14fb1d840e40 in /lib/x86_64-linux-gnu/libc.so.6)
6641
+
6642
+ W0621 21:59:47.441000 2747734 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-546_2747734_0' has failed to shutdown the rendezvous '343238' due to an error of type RendezvousConnectionError.
6643
+ Traceback (most recent call last):
6644
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
6645
+ return getattr(self._store, store_op)(*args, **kwargs)
6646
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6647
+ torch.distributed.DistNetworkError: failed to recv, got 0 bytes
6648
+
6649
+ The above exception was the direct cause of the following exception:
6650
+
6651
+ Traceback (most recent call last):
6652
+ File "<frozen runpy>", line 198, in _run_module_as_main
6653
+ File "<frozen runpy>", line 88, in _run_code
6654
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
6655
+ main()
6656
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
6657
+ return arg(*args, **kwargs)
6658
+ ^^^^^^^^^^^^^^^^^^^^
6659
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
6660
+ launch(args)
6661
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
6662
+ run(args)
6663
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
6664
+ elastic_launch(
6665
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
6666
+ return launch_agent(self._config, self._entrypoint, list(args))
6667
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6668
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
6669
+ result = agent.run()
6670
+ ^^^^^^^^^^^
6671
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
6672
+ result = f(*args, **kwargs)
6673
+ ^^^^^^^^^^^^^^^^^^
6674
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
6675
+ result = self._invoke_run(role)
6676
+ ^^^^^^^^^^^^^^^^^^^^^^
6677
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
6678
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
6679
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6680
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
6681
+ self._state_holder.sync()
6682
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 437, in sync
6683
+ get_response = self._backend.get_state()
6684
+ ^^^^^^^^^^^^^^^^^^^^^^^^^
6685
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 75, in get_state
6686
+ base64_state: bytes = self._call_store("get", self._key)
6687
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6688
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
6689
+ raise RendezvousConnectionError(
6690
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
6691
+ + set +x
6692
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
6693
+ + export PROF_CTX_LENGTH=49152
6694
+ + PROF_CTX_LENGTH=49152
6695
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L49152*tp2.cp8.bs2.json'
6696
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L49152*tp2.cp8.bs2.json' ']'
6697
+ + echo 'Running ctx_length=49152, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=2'
6698
+ + srun bash ./attnserver.sh
6699
+ + which python3
6700
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343238 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-518:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 49152 --max-position-embeddings 49152 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
6701
+ + which python3
6702
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343238 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-518:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 49152 --max-position-embeddings 49152 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
6703
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
6704
+ and will be removed in future. Use torchrun.
6705
+ Note that --use-env is set by default in torchrun.
6706
+ If your script expects `--local-rank` argument to be set, please
6707
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
6708
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
6709
+ further instructions
6710
+
6711
+ main()
6712
+ W0621 21:59:50.569000 2750889 site-packages/torch/distributed/run.py:766]
6713
+ W0621 21:59:50.569000 2750889 site-packages/torch/distributed/run.py:766] *****************************************
6714
+ W0621 21:59:50.569000 2750889 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
6715
+ W0621 21:59:50.569000 2750889 site-packages/torch/distributed/run.py:766] *****************************************
6716
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
6717
+ and will be removed in future. Use torchrun.
6718
+ Note that --use-env is set by default in torchrun.
6719
+ If your script expects `--local-rank` argument to be set, please
6720
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
6721
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
6722
+ further instructions
6723
+
6724
+ main()
6725
+ W0621 21:59:50.576000 3518819 site-packages/torch/distributed/run.py:766]
6726
+ W0621 21:59:50.576000 3518819 site-packages/torch/distributed/run.py:766] *****************************************
6727
+ W0621 21:59:50.576000 3518819 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
6728
+ W0621 21:59:50.576000 3518819 site-packages/torch/distributed/run.py:766] *****************************************
6729
+ [rank1]:[W621 22:00:12.751080946 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6730
+ [rank5]:[W621 22:00:12.751255399 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6731
+ [rank3]:[W621 22:00:12.752504114 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6732
+ [rank13]:[W621 22:00:12.401091126 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6733
+ [rank9]:[W621 22:00:12.401128675 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6734
+ [rank15]:[W621 22:00:12.402117847 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6735
+ [rank7]:[W621 22:00:12.754737124 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6736
+ [rank4]:[W621 22:00:12.755589107 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6737
+ [rank6]:[W621 22:00:12.756058804 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6738
+ [rank2]:[W621 22:00:12.758028576 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6739
+ [rank10]:[W621 22:00:12.418635679 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6740
+ [rank11]:[W621 22:00:12.418699043 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6741
+ [rank12]:[W621 22:00:12.418779495 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6742
+ [rank14]:[W621 22:00:12.420380263 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6743
+ [rank8]:[W621 22:00:13.525486738 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6744
+ [rank0]:[W621 22:00:13.927684252 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
6745
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6746
+ warnings.warn(
6747
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6748
+ warnings.warn(
6749
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6750
+ warnings.warn(
6751
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6752
+ warnings.warn(
6753
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6754
+ warnings.warn(
6755
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6756
+ warnings.warn(
6757
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6758
+ warnings.warn(
6759
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6760
+ warnings.warn(
6761
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6762
+ warnings.warn(
6763
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6764
+ warnings.warn(
6765
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6766
+ warnings.warn(
6767
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6768
+ warnings.warn(
6769
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6770
+ warnings.warn(
6771
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6772
+ warnings.warn(
6773
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6774
+ warnings.warn(
6775
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
6776
+ warnings.warn(
6777
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6778
+ warnings.warn(
6779
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6780
+ warnings.warn(
6781
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6782
+ warnings.warn(
6783
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6784
+ warnings.warn(
6785
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6786
+ warnings.warn(
6787
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6788
+ warnings.warn(
6789
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6790
+ warnings.warn(
6791
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6792
+ warnings.warn(
6793
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6794
+ warnings.warn(
6795
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6796
+ warnings.warn(
6797
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6798
+ warnings.warn(
6799
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6800
+ warnings.warn(
6801
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6802
+ warnings.warn(
6803
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6804
+ warnings.warn(
6805
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6806
+ warnings.warn(
6807
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
6808
+ warnings.warn(
6809
+ [rank0]: Traceback (most recent call last):
6810
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
6811
+ [rank0]: pretrain(
6812
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
6813
+ [rank0]: save_checkpoint(
6814
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
6815
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
6816
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6817
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
6818
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
6819
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
6820
+ [rank0]: torch.save(common_state_dict, path)
6821
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
6822
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
6823
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
6824
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
6825
+ [rank0]: return container(name_or_buffer)
6826
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
6827
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
6828
+ [rank0]: torch._C.PyTorchFileWriter(
6829
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
6830
+ [rank0]:[W621 22:04:04.242273949 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
6831
+ W0621 22:04:14.016000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3518893 closing signal SIGTERM
6832
+ W0621 22:04:14.019000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3518894 closing signal SIGTERM
6833
+ W0621 22:04:14.023000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3518895 closing signal SIGTERM
6834
+ W0621 22:04:14.026000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3518896 closing signal SIGTERM
6835
+ W0621 22:04:14.055000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3518897 closing signal SIGTERM
6836
+ W0621 22:04:14.071000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3518898 closing signal SIGTERM
6837
+ W0621 22:04:14.077000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 3518899 closing signal SIGTERM
6838
+ E0621 22:04:26.395000 3518819 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 3518892) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
6839
+ Traceback (most recent call last):
6840
+ File "<frozen runpy>", line 198, in _run_module_as_main
6841
+ File "<frozen runpy>", line 88, in _run_code
6842
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
6843
+ main()
6844
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
6845
+ return arg(*args, **kwargs)
6846
+ ^^^^^^^^^^^^^^^^^^^^
6847
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
6848
+ launch(args)
6849
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
6850
+ run(args)
6851
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
6852
+ elastic_launch(
6853
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
6854
+ return launch_agent(self._config, self._entrypoint, list(args))
6855
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6856
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
6857
+ raise ChildFailedError(
6858
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
6859
+ ============================================================
6860
+ ./pretrain_gpt_profile.py FAILED
6861
+ ------------------------------------------------------------
6862
+ Failures:
6863
+ <NO_OTHER_FAILURES>
6864
+ ------------------------------------------------------------
6865
+ Root Cause (first observed failure):
6866
+ [0]:
6867
+ time : 2025-06-21_22:04:14
6868
+ host : fs-mbz-gpu-518
6869
+ rank : 0 (local_rank: 0)
6870
+ exitcode : 1 (pid: 3518892)
6871
+ error_file: <N/A>
6872
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
6873
+ ============================================================
6874
+ [W621 22:04:26.058717060 TCPStore.cpp:115] [c10d] recvVector failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:33082, remote=[fs-mbz-gpu-518]:29500): failed to recv, got 0 bytes
6875
+ Exception raised from recvBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:678 (most recent call first):
6876
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f78c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6877
+ frame #1: <unknown function> + 0x5ba8afe (0x14f77545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6878
+ frame #2: <unknown function> + 0x5baa0d0 (0x14f77545c0d0 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6879
+ frame #3: <unknown function> + 0x5baa81d (0x14f77545c81d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6880
+ frame #4: <unknown function> + 0x5bab4a9 (0x14f77545d4a9 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6881
+ frame #5: c10d::TCPStore::compareSet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&) + 0x1fb (0x14f7754574cb in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6882
+ frame #6: <unknown function> + 0xc0f919 (0x14f78478b919 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6883
+ frame #7: <unknown function> + 0x37f17d (0x14f783efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6884
+ <omitting python frames>
6885
+ frame #16: <unknown function> + 0x94ac3 (0x14f78d661ac3 in /lib/x86_64-linux-gnu/libc.so.6)
6886
+ frame #17: <unknown function> + 0x126850 (0x14f78d6f3850 in /lib/x86_64-linux-gnu/libc.so.6)
6887
+
6888
+ W0621 22:04:26.588000 2750889 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-546_2750889_0' has failed to send a keep-alive heartbeat to the rendezvous '343238' due to an error of type RendezvousConnectionError.
6889
+ [W621 22:04:26.155624461 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:33082, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6890
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6891
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f78c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6892
+ frame #1: <unknown function> + 0x5ba8afe (0x14f77545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6893
+ frame #2: <unknown function> + 0x5baa358 (0x14f77545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6894
+ frame #3: <unknown function> + 0x5babb3e (0x14f77545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6895
+ frame #4: c10d::TCPStore::compareSet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&) + 0x299 (0x14f775457569 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6896
+ frame #5: <unknown function> + 0xc0f919 (0x14f78478b919 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6897
+ frame #6: <unknown function> + 0x37f17d (0x14f783efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6898
+ <omitting python frames>
6899
+ frame #24: <unknown function> + 0x29d90 (0x14f78d5f6d90 in /lib/x86_64-linux-gnu/libc.so.6)
6900
+ frame #25: __libc_start_main + 0x80 (0x14f78d5f6e40 in /lib/x86_64-linux-gnu/libc.so.6)
6901
+
6902
+ + set +x
6903
+ W0621 22:04:26.693000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750960 closing signal SIGTERM
6904
+ W0621 22:04:26.695000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750961 closing signal SIGTERM
6905
+ W0621 22:04:26.698000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750962 closing signal SIGTERM
6906
+ W0621 22:04:26.701000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750963 closing signal SIGTERM
6907
+ W0621 22:04:26.703000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750964 closing signal SIGTERM
6908
+ W0621 22:04:26.716000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750965 closing signal SIGTERM
6909
+ W0621 22:04:26.733000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750966 closing signal SIGTERM
6910
+ W0621 22:04:26.757000 2750889 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 2750967 closing signal SIGTERM
6911
+ [W621 22:04:31.065120559 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:33082, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6912
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6913
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f78c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6914
+ frame #1: <unknown function> + 0x5ba8afe (0x14f77545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6915
+ frame #2: <unknown function> + 0x5baa358 (0x14f77545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6916
+ frame #3: <unknown function> + 0x5babb3e (0x14f77545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6917
+ frame #4: c10d::TCPStore::compareSet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&) + 0x299 (0x14f775457569 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6918
+ frame #5: <unknown function> + 0xc0f919 (0x14f78478b919 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6919
+ frame #6: <unknown function> + 0x37f17d (0x14f783efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6920
+ <omitting python frames>
6921
+ frame #15: <unknown function> + 0x94ac3 (0x14f78d661ac3 in /lib/x86_64-linux-gnu/libc.so.6)
6922
+ frame #16: <unknown function> + 0x126850 (0x14f78d6f3850 in /lib/x86_64-linux-gnu/libc.so.6)
6923
+
6924
+ W0621 22:04:31.595000 2750889 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-546_2750889_0' has failed to send a keep-alive heartbeat to the rendezvous '343238' due to an error of type RendezvousConnectionError.
6925
+ [W621 22:04:36.071948889 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:33082, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6926
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6927
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f78c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6928
+ frame #1: <unknown function> + 0x5ba8afe (0x14f77545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6929
+ frame #2: <unknown function> + 0x5baa358 (0x14f77545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6930
+ frame #3: <unknown function> + 0x5babb3e (0x14f77545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6931
+ frame #4: c10d::TCPStore::compareSet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&) + 0x299 (0x14f775457569 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6932
+ frame #5: <unknown function> + 0xc0f919 (0x14f78478b919 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6933
+ frame #6: <unknown function> + 0x37f17d (0x14f783efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6934
+ <omitting python frames>
6935
+ frame #15: <unknown function> + 0x94ac3 (0x14f78d661ac3 in /lib/x86_64-linux-gnu/libc.so.6)
6936
+ frame #16: <unknown function> + 0x126850 (0x14f78d6f3850 in /lib/x86_64-linux-gnu/libc.so.6)
6937
+
6938
+ W0621 22:04:36.603000 2750889 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-546_2750889_0' has failed to send a keep-alive heartbeat to the rendezvous '343238' due to an error of type RendezvousConnectionError.
6939
+ [W621 22:04:41.079968518 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:33082, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6940
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6941
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f78c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6942
+ frame #1: <unknown function> + 0x5ba8afe (0x14f77545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6943
+ frame #2: <unknown function> + 0x5baa358 (0x14f77545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6944
+ frame #3: <unknown function> + 0x5babb3e (0x14f77545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6945
+ frame #4: c10d::TCPStore::compareSet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&) + 0x299 (0x14f775457569 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6946
+ frame #5: <unknown function> + 0xc0f919 (0x14f78478b919 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6947
+ frame #6: <unknown function> + 0x37f17d (0x14f783efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6948
+ <omitting python frames>
6949
+ frame #15: <unknown function> + 0x94ac3 (0x14f78d661ac3 in /lib/x86_64-linux-gnu/libc.so.6)
6950
+ frame #16: <unknown function> + 0x126850 (0x14f78d6f3850 in /lib/x86_64-linux-gnu/libc.so.6)
6951
+
6952
+ W0621 22:04:41.608000 2750889 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1341] The node 'fs-mbz-gpu-546_2750889_0' has failed to send a keep-alive heartbeat to the rendezvous '343238' due to an error of type RendezvousConnectionError.
6953
+ [W621 22:04:42.644396618 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:33082, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6954
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6955
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f78c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6956
+ frame #1: <unknown function> + 0x5ba8afe (0x14f77545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6957
+ frame #2: <unknown function> + 0x5baa358 (0x14f77545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6958
+ frame #3: <unknown function> + 0x5babb3e (0x14f77545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6959
+ frame #4: c10d::TCPStore::compareSet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&) + 0x299 (0x14f775457569 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6960
+ frame #5: <unknown function> + 0xc0f919 (0x14f78478b919 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6961
+ frame #6: <unknown function> + 0x37f17d (0x14f783efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6962
+ <omitting python frames>
6963
+ frame #24: <unknown function> + 0x29d90 (0x14f78d5f6d90 in /lib/x86_64-linux-gnu/libc.so.6)
6964
+ frame #25: __libc_start_main + 0x80 (0x14f78d5f6e40 in /lib/x86_64-linux-gnu/libc.so.6)
6965
+
6966
+ W0621 22:04:42.182000 2750889 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-546_2750889_0' has failed to shutdown the rendezvous '343238' due to an error of type RendezvousConnectionError.
6967
+ [W621 22:04:42.660351204 TCPStore.cpp:106] [c10d] sendBytes failed on SocketImpl(fd=4, addr=[fs-mbz-gpu-546]:33082, remote=[fs-mbz-gpu-518]:29500): Broken pipe
6968
+ Exception raised from sendBytes at /pytorch/torch/csrc/distributed/c10d/Utils.hpp:653 (most recent call first):
6969
+ frame #0: c10::Error::Error(c10::SourceLocation, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >) + 0x98 (0x14f78c5785e8 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libc10.so)
6970
+ frame #1: <unknown function> + 0x5ba8afe (0x14f77545aafe in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6971
+ frame #2: <unknown function> + 0x5baa358 (0x14f77545c358 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6972
+ frame #3: <unknown function> + 0x5babb3e (0x14f77545db3e in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6973
+ frame #4: c10d::TCPStore::compareSet(std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&, std::vector<unsigned char, std::allocator<unsigned char> > const&) + 0x299 (0x14f775457569 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_cpu.so)
6974
+ frame #5: <unknown function> + 0xc0f919 (0x14f78478b919 in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6975
+ frame #6: <unknown function> + 0x37f17d (0x14f783efb17d in /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/lib/libtorch_python.so)
6976
+ <omitting python frames>
6977
+ frame #24: <unknown function> + 0x29d90 (0x14f78d5f6d90 in /lib/x86_64-linux-gnu/libc.so.6)
6978
+ frame #25: __libc_start_main + 0x80 (0x14f78d5f6e40 in /lib/x86_64-linux-gnu/libc.so.6)
6979
+
6980
+ W0621 22:04:42.193000 2750889 site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py:1292] The node 'fs-mbz-gpu-546_2750889_0' has failed to shutdown the rendezvous '343238' due to an error of type RendezvousConnectionError.
6981
+ Traceback (most recent call last):
6982
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 117, in _call_store
6983
+ return getattr(self._store, store_op)(*args, **kwargs)
6984
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
6985
+ torch.distributed.DistNetworkError: Broken pipe
6986
+
6987
+ The above exception was the direct cause of the following exception:
6988
+
6989
+ Traceback (most recent call last):
6990
+ File "<frozen runpy>", line 198, in _run_module_as_main
6991
+ File "<frozen runpy>", line 88, in _run_code
6992
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
6993
+ main()
6994
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
6995
+ return arg(*args, **kwargs)
6996
+ ^^^^^^^^^^^^^^^^^^^^
6997
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
6998
+ launch(args)
6999
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
7000
+ run(args)
7001
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
7002
+ elastic_launch(
7003
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
7004
+ return launch_agent(self._config, self._entrypoint, list(args))
7005
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7006
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 261, in launch_agent
7007
+ result = agent.run()
7008
+ ^^^^^^^^^^^
7009
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/metrics/api.py", line 138, in wrapper
7010
+ result = f(*args, **kwargs)
7011
+ ^^^^^^^^^^^^^^^^^^
7012
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 711, in run
7013
+ result = self._invoke_run(role)
7014
+ ^^^^^^^^^^^^^^^^^^^^^^
7015
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/agent/server/api.py", line 906, in _invoke_run
7016
+ num_nodes_waiting = rdzv_handler.num_nodes_waiting()
7017
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7018
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 1263, in num_nodes_waiting
7019
+ self._state_holder.sync()
7020
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/dynamic_rendezvous.py", line 423, in sync
7021
+ set_response = self._backend.set_state(state_bits, self._token)
7022
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
7023
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 100, in set_state
7024
+ base64_state: bytes = self._call_store(
7025
+ ^^^^^^^^^^^^^^^^^
7026
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/elastic/rendezvous/c10d_rendezvous_backend.py", line 119, in _call_store
7027
+ raise RendezvousConnectionError(
7028
+ torch.distributed.elastic.rendezvous.api.RendezvousConnectionError: The connection to the C10d store has failed. See inner exception for details.
7029
+ + set +x
7030
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
7031
+ + export PROF_CTX_LENGTH=65536
7032
+ + PROF_CTX_LENGTH=65536
7033
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L65536*tp2.cp8.bs2.json'
7034
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L65536*tp2.cp8.bs2.json' ']'
7035
+ + echo 'Running ctx_length=65536, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=2'
7036
+ + srun bash ./attnserver.sh
7037
+ + which python3
7038
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343238 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-518:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 65536 --max-position-embeddings 65536 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
7039
+ + which python3
7040
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343238 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-518:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 65536 --max-position-embeddings 65536 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
7041
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
7042
+ and will be removed in future. Use torchrun.
7043
+ Note that --use-env is set by default in torchrun.
7044
+ If your script expects `--local-rank` argument to be set, please
7045
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
7046
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
7047
+ further instructions
7048
+
7049
+ main()
7050
+ W0621 22:04:45.279000 3522238 site-packages/torch/distributed/run.py:766]
7051
+ W0621 22:04:45.279000 3522238 site-packages/torch/distributed/run.py:766] *****************************************
7052
+ W0621 22:04:45.279000 3522238 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
7053
+ W0621 22:04:45.279000 3522238 site-packages/torch/distributed/run.py:766] *****************************************
7054
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
7055
+ and will be removed in future. Use torchrun.
7056
+ Note that --use-env is set by default in torchrun.
7057
+ If your script expects `--local-rank` argument to be set, please
7058
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
7059
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
7060
+ further instructions
7061
+
7062
+ main()
7063
+ W0621 22:04:45.598000 2754239 site-packages/torch/distributed/run.py:766]
7064
+ W0621 22:04:45.598000 2754239 site-packages/torch/distributed/run.py:766] *****************************************
7065
+ W0621 22:04:45.598000 2754239 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
7066
+ W0621 22:04:45.598000 2754239 site-packages/torch/distributed/run.py:766] *****************************************
7067
+ [rank1]:[W621 22:05:08.863273627 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7068
+ [rank5]:[W621 22:05:08.864178359 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7069
+ [rank11]:[W621 22:05:08.511902344 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 11] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7070
+ [rank9]:[W621 22:05:08.511901889 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 9] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7071
+ [rank3]:[W621 22:05:08.865951320 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7072
+ [rank7]:[W621 22:05:08.867427894 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7073
+ [rank13]:[W621 22:05:08.518094352 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 13] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7074
+ [rank6]:[W621 22:05:08.874100135 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7075
+ [rank2]:[W621 22:05:08.874376739 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7076
+ [rank15]:[W621 22:05:08.522487048 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 15] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7077
+ [rank4]:[W621 22:05:08.877914995 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7078
+ [rank12]:[W621 22:05:08.528926215 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 12] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7079
+ [rank14]:[W621 22:05:08.529104503 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 14] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7080
+ [rank10]:[W621 22:05:08.529138894 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 10] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7081
+ [rank8]:[W621 22:05:08.616025184 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 8] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7082
+ [rank0]:[W621 22:05:08.001813088 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
7083
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7084
+ warnings.warn(
7085
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7086
+ warnings.warn(
7087
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7088
+ warnings.warn(
7089
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7090
+ warnings.warn(
7091
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7092
+ warnings.warn(
7093
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7094
+ warnings.warn(
7095
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7096
+ warnings.warn(
7097
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7098
+ warnings.warn(
7099
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7100
+ warnings.warn(
7101
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7102
+ warnings.warn(
7103
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7104
+ warnings.warn(
7105
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7106
+ warnings.warn(
7107
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7108
+ warnings.warn(
7109
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7110
+ warnings.warn(
7111
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7112
+ warnings.warn(
7113
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
7114
+ warnings.warn(
7115
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7116
+ warnings.warn(
7117
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7118
+ warnings.warn(
7119
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7120
+ warnings.warn(
7121
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7122
+ warnings.warn(
7123
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7124
+ warnings.warn(
7125
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7126
+ warnings.warn(
7127
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7128
+ warnings.warn(
7129
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7130
+ warnings.warn(
7131
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7132
+ warnings.warn(
7133
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7134
+ warnings.warn(
7135
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7136
+ warnings.warn(
7137
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7138
+ warnings.warn(
7139
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7140
+ warnings.warn(
7141
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7142
+ warnings.warn(
7143
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7144
+ warnings.warn(
7145
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
7146
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343238.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343239.err.log CHANGED
@@ -1093,3 +1093,96 @@ Root Cause (first observed failure):
1093
  traceback : Signal 6 (SIGABRT) received by PID 2138453
1094
  ========================================================
1095
  + set +x
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1093
  traceback : Signal 6 (SIGABRT) received by PID 2138453
1094
  ========================================================
1095
  + set +x
1096
+ [rank14]:[F621 22:07:05.268307799 ProcessGroupNCCL.cpp:1554] [PG ID 0 PG GUID 0(default_pg) Rank 14] [PG ID 0 PG GUID 0(default_pg) Rank 14] Terminating the process after attempting to dump debug info, due to collective timeout or exception.
1097
+ [rank10]:[F621 22:07:05.268564615 ProcessGroupNCCL.cpp:1554] [PG ID 0 PG GUID 0(default_pg) Rank 10] [PG ID 0 PG GUID 0(default_pg) Rank 10] Terminating the process after attempting to dump debug info, due to collective timeout or exception.
1098
+ [rank12]:[F621 22:07:06.776354590 ProcessGroupNCCL.cpp:1554] [PG ID 0 PG GUID 0(default_pg) Rank 12] [PG ID 0 PG GUID 0(default_pg) Rank 12] Terminating the process after attempting to dump debug info, due to collective timeout or exception.
1099
+ [rank13]:[F621 22:07:06.776790180 ProcessGroupNCCL.cpp:1554] [PG ID 0 PG GUID 0(default_pg) Rank 13] [PG ID 0 PG GUID 0(default_pg) Rank 13] Terminating the process after attempting to dump debug info, due to collective timeout or exception.
1100
+ [rank9]:[F621 22:07:06.777117563 ProcessGroupNCCL.cpp:1554] [PG ID 0 PG GUID 0(default_pg) Rank 9] [PG ID 0 PG GUID 0(default_pg) Rank 9] Terminating the process after attempting to dump debug info, due to collective timeout or exception.
1101
+ [rank11]:[F621 22:07:06.777319662 ProcessGroupNCCL.cpp:1554] [PG ID 0 PG GUID 0(default_pg) Rank 11] [PG ID 0 PG GUID 0(default_pg) Rank 11] Terminating the process after attempting to dump debug info, due to collective timeout or exception.
1102
+ [rank15]:[F621 22:07:06.778624888 ProcessGroupNCCL.cpp:1554] [PG ID 0 PG GUID 0(default_pg) Rank 15] [PG ID 0 PG GUID 0(default_pg) Rank 15] Terminating the process after attempting to dump debug info, due to collective timeout or exception.
1103
+ W0621 22:07:06.349000 792627 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 792698 closing signal SIGTERM
1104
+ W0621 22:07:06.352000 792627 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 792699 closing signal SIGTERM
1105
+ W0621 22:07:06.353000 792627 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 792701 closing signal SIGTERM
1106
+ W0621 22:07:06.357000 792627 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 792702 closing signal SIGTERM
1107
+ W0621 22:07:06.359000 792627 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 792703 closing signal SIGTERM
1108
+ W0621 22:07:06.360000 792627 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 792705 closing signal SIGTERM
1109
+ E0621 22:07:07.268000 792627 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: -6) local_rank: 2 (pid: 792700) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
1110
+ Traceback (most recent call last):
1111
+ File "<frozen runpy>", line 198, in _run_module_as_main
1112
+ File "<frozen runpy>", line 88, in _run_code
1113
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
1114
+ main()
1115
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
1116
+ return arg(*args, **kwargs)
1117
+ ^^^^^^^^^^^^^^^^^^^^
1118
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
1119
+ launch(args)
1120
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
1121
+ run(args)
1122
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
1123
+ elastic_launch(
1124
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
1125
+ return launch_agent(self._config, self._entrypoint, list(args))
1126
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
1127
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
1128
+ raise ChildFailedError(
1129
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
1130
+ =======================================================
1131
+ ./pretrain_gpt_profile.py FAILED
1132
+ -------------------------------------------------------
1133
+ Failures:
1134
+ [1]:
1135
+ time : 2025-06-21_22:07:06
1136
+ host : fs-mbz-gpu-188
1137
+ rank : 14 (local_rank: 6)
1138
+ exitcode : -6 (pid: 792704)
1139
+ error_file: <N/A>
1140
+ traceback : Signal 6 (SIGABRT) received by PID 792704
1141
+ -------------------------------------------------------
1142
+ Root Cause (first observed failure):
1143
+ [0]:
1144
+ time : 2025-06-21_22:07:06
1145
+ host : fs-mbz-gpu-188
1146
+ rank : 10 (local_rank: 2)
1147
+ exitcode : -6 (pid: 792700)
1148
+ error_file: <N/A>
1149
+ traceback : Signal 6 (SIGABRT) received by PID 792700
1150
+ =======================================================
1151
+ + set +x
1152
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
1153
+ + export PROF_CTX_LENGTH=12288
1154
+ + PROF_CTX_LENGTH=12288
1155
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L12288*tp2.cp8.bs4.json'
1156
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L12288*tp2.cp8.bs4.json' ']'
1157
+ + echo 'Running ctx_length=12288, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=4'
1158
+ + srun bash ./attnserver.sh
1159
+ + which python3
1160
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 0 --rdzv_id 343239 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 12288 --max-position-embeddings 12288 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
1161
+ + which python3
1162
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 2 --node_rank 1 --rdzv_id 343239 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-188:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 12288 --max-position-embeddings 12288 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
1163
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
1164
+ and will be removed in future. Use torchrun.
1165
+ Note that --use-env is set by default in torchrun.
1166
+ If your script expects `--local-rank` argument to be set, please
1167
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
1168
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
1169
+ further instructions
1170
+
1171
+ main()
1172
+ W0621 22:07:10.219000 796503 site-packages/torch/distributed/run.py:766]
1173
+ W0621 22:07:10.219000 796503 site-packages/torch/distributed/run.py:766] *****************************************
1174
+ W0621 22:07:10.219000 796503 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1175
+ W0621 22:07:10.219000 796503 site-packages/torch/distributed/run.py:766] *****************************************
1176
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
1177
+ and will be removed in future. Use torchrun.
1178
+ Note that --use-env is set by default in torchrun.
1179
+ If your script expects `--local-rank` argument to be set, please
1180
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
1181
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
1182
+ further instructions
1183
+
1184
+ main()
1185
+ W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766]
1186
+ W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] *****************************************
1187
+ W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
1188
+ W0621 22:07:10.319000 2142274 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343239.out.log CHANGED
@@ -9973,3 +9973,22 @@ Params for bucket 1 (313079808 elements, 313079808 padded size):
9973
  module.decoder.layers.0.self_attention.linear_proj.bias
9974
  INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x151e86832a80>, config_logger_dir='')
9975
  INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9973
  module.decoder.layers.0.self_attention.linear_proj.bias
9974
  INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x151e86832a80>, config_logger_dir='')
9975
  INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
9976
+ Running ctx_length=12288, TP_SIZE=2, CP_SIZE=8, BATCH_SIZE=4
9977
+ Cleaning up checkpoint directory: gpt-checkpoint
9978
+ --------------------------------
9979
+ CTX_LENGTH: 12288
9980
+ TP_SIZE: 2
9981
+ CP_SIZE: 8
9982
+ CHECKPOINT_PATH: gpt-checkpoint
9983
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9984
+ --------------------------------
9985
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
9986
+ Cleaning up checkpoint directory: gpt-checkpoint
9987
+ --------------------------------
9988
+ CTX_LENGTH: 12288
9989
+ TP_SIZE: 2
9990
+ CP_SIZE: 8
9991
+ CHECKPOINT_PATH: gpt-checkpoint
9992
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9993
+ --------------------------------
9994
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
attnserver.run_attnserver.slurm.sh.343240.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343240.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343243.err.log CHANGED
@@ -2257,3 +2257,202 @@ W0621 21:58:29.557000 1699565 site-packages/torch/distributed/run.py:766] ******
2257
  warnings.warn(
2258
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2259
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2257
  warnings.warn(
2258
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2259
  warnings.warn(
2260
+ [rank1]:[W621 22:01:03.195093101 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2261
+ [rank3]:[W621 22:01:04.317047889 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2262
+ [rank5]:[W621 22:01:04.319372678 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2263
+ [rank0]:[W621 22:01:04.825261599 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2264
+ [rank4]:[W621 22:01:04.855555890 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2265
+ [rank6]:[W621 22:01:04.875952870 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2266
+ [rank2]:[W621 22:01:04.896135105 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2267
+ [rank7]:[W621 22:01:04.933639941 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2268
+ + set +x
2269
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
2270
+ + export PROF_CTX_LENGTH=65536
2271
+ + PROF_CTX_LENGTH=65536
2272
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L65536*tp2.cp4.bs1.json'
2273
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L65536*tp2.cp4.bs1.json' ']'
2274
+ + echo 'Running ctx_length=65536, TP_SIZE=2, CP_SIZE=4, BATCH_SIZE=1'
2275
+ + srun bash ./attnserver.sh
2276
+ + which python3
2277
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343243 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-296:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 65536 --max-position-embeddings 65536 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2278
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2279
+ and will be removed in future. Use torchrun.
2280
+ Note that --use-env is set by default in torchrun.
2281
+ If your script expects `--local-rank` argument to be set, please
2282
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2283
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2284
+ further instructions
2285
+
2286
+ main()
2287
+ W0621 22:01:27.928000 1703273 site-packages/torch/distributed/run.py:766]
2288
+ W0621 22:01:27.928000 1703273 site-packages/torch/distributed/run.py:766] *****************************************
2289
+ W0621 22:01:27.928000 1703273 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2290
+ W0621 22:01:27.928000 1703273 site-packages/torch/distributed/run.py:766] *****************************************
2291
+ [rank1]:[W621 22:01:49.427826166 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2292
+ [rank7]:[W621 22:01:49.427824730 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2293
+ [rank5]:[W621 22:01:49.427862574 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2294
+ [rank3]:[W621 22:01:49.428141012 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2295
+ [rank2]:[W621 22:01:49.433752632 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2296
+ [rank4]:[W621 22:01:49.433981739 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2297
+ [rank6]:[W621 22:01:49.436614926 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2298
+ [rank0]:[W621 22:01:49.574653227 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2299
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2300
+ warnings.warn(
2301
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2302
+ warnings.warn(
2303
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2304
+ warnings.warn(
2305
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2306
+ warnings.warn(
2307
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2308
+ warnings.warn(
2309
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2310
+ warnings.warn(
2311
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2312
+ warnings.warn(
2313
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2314
+ warnings.warn(
2315
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2316
+ warnings.warn(
2317
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2318
+ warnings.warn(
2319
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2320
+ warnings.warn(
2321
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2322
+ warnings.warn(
2323
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2324
+ warnings.warn(
2325
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2326
+ warnings.warn(
2327
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2328
+ warnings.warn(
2329
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2330
+ warnings.warn(
2331
+ [rank0]: Traceback (most recent call last):
2332
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
2333
+ [rank0]: pretrain(
2334
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
2335
+ [rank0]: save_checkpoint(
2336
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
2337
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
2338
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2339
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
2340
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
2341
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
2342
+ [rank0]: torch.save(common_state_dict, path)
2343
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
2344
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
2345
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
2346
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
2347
+ [rank0]: return container(name_or_buffer)
2348
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
2349
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
2350
+ [rank0]: torch._C.PyTorchFileWriter(
2351
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
2352
+ [rank0]:[W621 22:05:13.224670980 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
2353
+ W0621 22:05:22.565000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1703344 closing signal SIGTERM
2354
+ W0621 22:05:22.567000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1703345 closing signal SIGTERM
2355
+ W0621 22:05:22.571000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1703346 closing signal SIGTERM
2356
+ W0621 22:05:22.574000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1703347 closing signal SIGTERM
2357
+ W0621 22:05:22.577000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1703348 closing signal SIGTERM
2358
+ W0621 22:05:22.607000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1703349 closing signal SIGTERM
2359
+ W0621 22:05:22.630000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 1703350 closing signal SIGTERM
2360
+ E0621 22:05:25.694000 1703273 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 1703343) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
2361
+ Traceback (most recent call last):
2362
+ File "<frozen runpy>", line 198, in _run_module_as_main
2363
+ File "<frozen runpy>", line 88, in _run_code
2364
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
2365
+ main()
2366
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
2367
+ return arg(*args, **kwargs)
2368
+ ^^^^^^^^^^^^^^^^^^^^
2369
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
2370
+ launch(args)
2371
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
2372
+ run(args)
2373
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
2374
+ elastic_launch(
2375
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
2376
+ return launch_agent(self._config, self._entrypoint, list(args))
2377
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
2378
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
2379
+ raise ChildFailedError(
2380
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
2381
+ ============================================================
2382
+ ./pretrain_gpt_profile.py FAILED
2383
+ ------------------------------------------------------------
2384
+ Failures:
2385
+ <NO_OTHER_FAILURES>
2386
+ ------------------------------------------------------------
2387
+ Root Cause (first observed failure):
2388
+ [0]:
2389
+ time : 2025-06-21_22:05:22
2390
+ host : fs-mbz-gpu-296
2391
+ rank : 0 (local_rank: 0)
2392
+ exitcode : 1 (pid: 1703343)
2393
+ error_file: <N/A>
2394
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
2395
+ ============================================================
2396
+ + set +x
2397
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
2398
+ + export PROF_CTX_LENGTH=81920
2399
+ + PROF_CTX_LENGTH=81920
2400
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp2.cp4.bs1.json'
2401
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L81920*tp2.cp4.bs1.json' ']'
2402
+ + echo 'Running ctx_length=81920, TP_SIZE=2, CP_SIZE=4, BATCH_SIZE=1'
2403
+ + srun bash ./attnserver.sh
2404
+ + which python3
2405
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343243 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-296:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 81920 --max-position-embeddings 81920 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
2406
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
2407
+ and will be removed in future. Use torchrun.
2408
+ Note that --use-env is set by default in torchrun.
2409
+ If your script expects `--local-rank` argument to be set, please
2410
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
2411
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
2412
+ further instructions
2413
+
2414
+ main()
2415
+ W0621 22:05:36.831000 1706637 site-packages/torch/distributed/run.py:766]
2416
+ W0621 22:05:36.831000 1706637 site-packages/torch/distributed/run.py:766] *****************************************
2417
+ W0621 22:05:36.831000 1706637 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
2418
+ W0621 22:05:36.831000 1706637 site-packages/torch/distributed/run.py:766] *****************************************
2419
+ [rank7]:[W621 22:06:00.848046576 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2420
+ [rank3]:[W621 22:06:00.848057369 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2421
+ [rank5]:[W621 22:06:00.848088736 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2422
+ [rank1]:[W621 22:06:00.848088743 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2423
+ [rank4]:[W621 22:06:00.858281884 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2424
+ [rank6]:[W621 22:06:00.864451804 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2425
+ [rank2]:[W621 22:06:00.871896915 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2426
+ [rank0]:[W621 22:06:00.145457891 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
2427
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2428
+ warnings.warn(
2429
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2430
+ warnings.warn(
2431
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2432
+ warnings.warn(
2433
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2434
+ warnings.warn(
2435
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2436
+ warnings.warn(
2437
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2438
+ warnings.warn(
2439
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2440
+ warnings.warn(
2441
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
2442
+ warnings.warn(
2443
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2444
+ warnings.warn(
2445
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2446
+ warnings.warn(
2447
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2448
+ warnings.warn(
2449
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2450
+ warnings.warn(
2451
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2452
+ warnings.warn(
2453
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2454
+ warnings.warn(
2455
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2456
+ warnings.warn(
2457
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
2458
+ warnings.warn(
attnserver.run_attnserver.slurm.sh.343243.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343244.err.log CHANGED
@@ -3506,3 +3506,433 @@ W0621 21:58:29.857000 455826 site-packages/torch/distributed/run.py:766] *******
3506
  warnings.warn(
3507
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3508
  warnings.warn(
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3506
  warnings.warn(
3507
  /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3508
  warnings.warn(
3509
+ [rank0]: Traceback (most recent call last):
3510
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3511
+ [rank0]: pretrain(
3512
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3513
+ [rank0]: save_checkpoint(
3514
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3515
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3516
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3517
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
3518
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
3519
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
3520
+ [rank0]: torch.save(common_state_dict, path)
3521
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
3522
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
3523
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
3524
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
3525
+ [rank0]: return container(name_or_buffer)
3526
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
3527
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
3528
+ [rank0]: torch._C.PyTorchFileWriter(
3529
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
3530
+ [rank0]:[W621 22:02:15.081133392 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
3531
+ W0621 22:02:21.964000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 455898 closing signal SIGTERM
3532
+ W0621 22:02:21.972000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 455899 closing signal SIGTERM
3533
+ W0621 22:02:21.975000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 455900 closing signal SIGTERM
3534
+ W0621 22:02:21.978000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 455901 closing signal SIGTERM
3535
+ W0621 22:02:21.981000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 455902 closing signal SIGTERM
3536
+ W0621 22:02:21.999000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 455903 closing signal SIGTERM
3537
+ W0621 22:02:22.004000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 455904 closing signal SIGTERM
3538
+ E0621 22:02:26.735000 455826 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 0 (pid: 455897) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
3539
+ Traceback (most recent call last):
3540
+ File "<frozen runpy>", line 198, in _run_module_as_main
3541
+ File "<frozen runpy>", line 88, in _run_code
3542
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
3543
+ main()
3544
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
3545
+ return arg(*args, **kwargs)
3546
+ ^^^^^^^^^^^^^^^^^^^^
3547
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
3548
+ launch(args)
3549
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
3550
+ run(args)
3551
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
3552
+ elastic_launch(
3553
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
3554
+ return launch_agent(self._config, self._entrypoint, list(args))
3555
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3556
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
3557
+ raise ChildFailedError(
3558
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
3559
+ ============================================================
3560
+ ./pretrain_gpt_profile.py FAILED
3561
+ ------------------------------------------------------------
3562
+ Failures:
3563
+ <NO_OTHER_FAILURES>
3564
+ ------------------------------------------------------------
3565
+ Root Cause (first observed failure):
3566
+ [0]:
3567
+ time : 2025-06-21_22:02:21
3568
+ host : fs-mbz-gpu-898
3569
+ rank : 0 (local_rank: 0)
3570
+ exitcode : 1 (pid: 455897)
3571
+ error_file: <N/A>
3572
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
3573
+ ============================================================
3574
+ + set +x
3575
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
3576
+ + export PROF_CTX_LENGTH=49152
3577
+ + PROF_CTX_LENGTH=49152
3578
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L49152*tp2.cp4.bs2.json'
3579
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L49152*tp2.cp4.bs2.json' ']'
3580
+ + echo 'Running ctx_length=49152, TP_SIZE=2, CP_SIZE=4, BATCH_SIZE=2'
3581
+ + srun bash ./attnserver.sh
3582
+ + which python3
3583
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343244 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-898:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 49152 --max-position-embeddings 49152 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
3584
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
3585
+ and will be removed in future. Use torchrun.
3586
+ Note that --use-env is set by default in torchrun.
3587
+ If your script expects `--local-rank` argument to be set, please
3588
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
3589
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
3590
+ further instructions
3591
+
3592
+ main()
3593
+ W0621 22:02:32.110000 459115 site-packages/torch/distributed/run.py:766]
3594
+ W0621 22:02:32.110000 459115 site-packages/torch/distributed/run.py:766] *****************************************
3595
+ W0621 22:02:32.110000 459115 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
3596
+ W0621 22:02:32.110000 459115 site-packages/torch/distributed/run.py:766] *****************************************
3597
+ [rank1]:[W621 22:02:54.594917000 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3598
+ [rank3]:[W621 22:02:54.594917126 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3599
+ [rank5]:[W621 22:02:54.595014737 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3600
+ [rank7]:[W621 22:02:54.601411024 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3601
+ [rank2]:[W621 22:02:54.611145419 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3602
+ [rank6]:[W621 22:02:54.611238887 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3603
+ [rank4]:[W621 22:02:54.614530675 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3604
+ [rank0]:[W621 22:02:54.768257391 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
3605
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3606
+ warnings.warn(
3607
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3608
+ warnings.warn(
3609
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3610
+ warnings.warn(
3611
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3612
+ warnings.warn(
3613
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3614
+ warnings.warn(
3615
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3616
+ warnings.warn(
3617
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3618
+ warnings.warn(
3619
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
3620
+ warnings.warn(
3621
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3622
+ warnings.warn(
3623
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3624
+ warnings.warn(
3625
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3626
+ warnings.warn(
3627
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3628
+ warnings.warn(
3629
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3630
+ warnings.warn(
3631
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3632
+ warnings.warn(
3633
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3634
+ warnings.warn(
3635
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
3636
+ warnings.warn(
3637
+ [rank6]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__6_0.distcp'
3638
+
3639
+ [rank6]: The above exception was the direct cause of the following exception:
3640
+
3641
+ [rank6]: Traceback (most recent call last):
3642
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3643
+ [rank6]: pretrain(
3644
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3645
+ [rank6]: save_checkpoint(
3646
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3647
+ [rank6]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3648
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3649
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3650
+ [rank6]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3651
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3652
+ [rank6]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3653
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3654
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3655
+ [rank6]: async_calls.maybe_finalize_async_calls(blocking=True)
3656
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3657
+ [rank6]: finalize_fn()
3658
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3659
+ [rank6]: save_state_dict_async_finalize(*save_state_dict_ret)
3660
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3661
+ [rank6]: write_results = storage_writer.retrieve_write_results()
3662
+ [rank6]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3663
+ [rank6]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3664
+ [rank6]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3665
+ [rank6]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__6_0.distcp'
3666
+ [rank7]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__7_0.distcp'
3667
+
3668
+ [rank7]: The above exception was the direct cause of the following exception:
3669
+
3670
+ [rank7]: Traceback (most recent call last):
3671
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3672
+ [rank7]: pretrain(
3673
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3674
+ [rank7]: save_checkpoint(
3675
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3676
+ [rank7]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3677
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3678
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3679
+ [rank7]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3680
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3681
+ [rank7]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3682
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3683
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3684
+ [rank7]: async_calls.maybe_finalize_async_calls(blocking=True)
3685
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3686
+ [rank7]: finalize_fn()
3687
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3688
+ [rank7]: save_state_dict_async_finalize(*save_state_dict_ret)
3689
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3690
+ [rank7]: write_results = storage_writer.retrieve_write_results()
3691
+ [rank7]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3692
+ [rank7]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3693
+ [rank7]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3694
+ [rank7]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__7_0.distcp'
3695
+ [rank1]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__1_0.distcp'
3696
+
3697
+ [rank1]: The above exception was the direct cause of the following exception:
3698
+
3699
+ [rank1]: Traceback (most recent call last):
3700
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3701
+ [rank1]: pretrain(
3702
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3703
+ [rank1]: save_checkpoint(
3704
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3705
+ [rank1]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3706
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3707
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3708
+ [rank1]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3709
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3710
+ [rank1]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3711
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3712
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3713
+ [rank1]: async_calls.maybe_finalize_async_calls(blocking=True)
3714
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3715
+ [rank1]: finalize_fn()
3716
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3717
+ [rank1]: save_state_dict_async_finalize(*save_state_dict_ret)
3718
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3719
+ [rank1]: write_results = storage_writer.retrieve_write_results()
3720
+ [rank1]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3721
+ [rank1]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3722
+ [rank1]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3723
+ [rank1]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__1_0.distcp'
3724
+ [rank5]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__5_0.distcp'
3725
+
3726
+ [rank5]: The above exception was the direct cause of the following exception:
3727
+
3728
+ [rank5]: Traceback (most recent call last):
3729
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3730
+ [rank5]: pretrain(
3731
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3732
+ [rank5]: save_checkpoint(
3733
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3734
+ [rank5]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3735
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3736
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3737
+ [rank5]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3738
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3739
+ [rank5]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3740
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3741
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3742
+ [rank5]: async_calls.maybe_finalize_async_calls(blocking=True)
3743
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3744
+ [rank5]: finalize_fn()
3745
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3746
+ [rank5]: save_state_dict_async_finalize(*save_state_dict_ret)
3747
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3748
+ [rank5]: write_results = storage_writer.retrieve_write_results()
3749
+ [rank5]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3750
+ [rank5]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3751
+ [rank5]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3752
+ [rank5]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__5_0.distcp'
3753
+ [rank3]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__3_0.distcp'
3754
+
3755
+ [rank3]: The above exception was the direct cause of the following exception:
3756
+
3757
+ [rank3]: Traceback (most recent call last):
3758
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3759
+ [rank3]: pretrain(
3760
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3761
+ [rank3]: save_checkpoint(
3762
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3763
+ [rank3]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3764
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3765
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3766
+ [rank3]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3767
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3768
+ [rank3]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3769
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3770
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3771
+ [rank3]: async_calls.maybe_finalize_async_calls(blocking=True)
3772
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3773
+ [rank3]: finalize_fn()
3774
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3775
+ [rank3]: save_state_dict_async_finalize(*save_state_dict_ret)
3776
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3777
+ [rank3]: write_results = storage_writer.retrieve_write_results()
3778
+ [rank3]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3779
+ [rank3]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3780
+ [rank3]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3781
+ [rank3]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__3_0.distcp'
3782
+ [rank2]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__2_0.distcp'
3783
+
3784
+ [rank2]: The above exception was the direct cause of the following exception:
3785
+
3786
+ [rank2]: Traceback (most recent call last):
3787
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3788
+ [rank2]: pretrain(
3789
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3790
+ [rank2]: save_checkpoint(
3791
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3792
+ [rank2]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3793
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3794
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3795
+ [rank2]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3796
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3797
+ [rank2]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3798
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3799
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3800
+ [rank2]: async_calls.maybe_finalize_async_calls(blocking=True)
3801
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3802
+ [rank2]: finalize_fn()
3803
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3804
+ [rank2]: save_state_dict_async_finalize(*save_state_dict_ret)
3805
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3806
+ [rank2]: write_results = storage_writer.retrieve_write_results()
3807
+ [rank2]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3808
+ [rank2]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3809
+ [rank2]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3810
+ [rank2]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__2_0.distcp'
3811
+ [rank4]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__4_0.distcp'
3812
+
3813
+ [rank4]: The above exception was the direct cause of the following exception:
3814
+
3815
+ [rank4]: Traceback (most recent call last):
3816
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3817
+ [rank4]: pretrain(
3818
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3819
+ [rank4]: save_checkpoint(
3820
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3821
+ [rank4]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3822
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3823
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3824
+ [rank4]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3825
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3826
+ [rank4]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3827
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3828
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3829
+ [rank4]: async_calls.maybe_finalize_async_calls(blocking=True)
3830
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3831
+ [rank4]: finalize_fn()
3832
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3833
+ [rank4]: save_state_dict_async_finalize(*save_state_dict_ret)
3834
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3835
+ [rank4]: write_results = storage_writer.retrieve_write_results()
3836
+ [rank4]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3837
+ [rank4]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3838
+ [rank4]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3839
+ [rank4]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__4_0.distcp'
3840
+ [rank0]: FileNotFoundError: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__0_0.distcp'
3841
+
3842
+ [rank0]: The above exception was the direct cause of the following exception:
3843
+
3844
+ [rank0]: Traceback (most recent call last):
3845
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
3846
+ [rank0]: pretrain(
3847
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
3848
+ [rank0]: save_checkpoint(
3849
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
3850
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
3851
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3852
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 404, in save
3853
+ [rank0]: sharded_strategy.save(sharded_state_dict, checkpoint_dir)
3854
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/fully_parallel.py", line 95, in save
3855
+ [rank0]: return self.base_strategy.save(sharded_state_dict, checkpoint_dir)
3856
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3857
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/base.py", line 228, in save
3858
+ [rank0]: async_calls.maybe_finalize_async_calls(blocking=True)
3859
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/async_utils.py", line 545, in maybe_finalize_async_calls
3860
+ [rank0]: finalize_fn()
3861
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/torch.py", line 800, in finalize_fn
3862
+ [rank0]: save_state_dict_async_finalize(*save_state_dict_ret)
3863
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/state_dict_saver.py", line 229, in save_state_dict_async_finalize
3864
+ [rank0]: write_results = storage_writer.retrieve_write_results()
3865
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3866
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/filesystem_async.py", line 436, in retrieve_write_results
3867
+ [rank0]: raise RuntimeError(f'Worker failure: {write_results_or_exc}') from write_results_or_exc
3868
+ [rank0]: RuntimeError: Worker failure: [Errno 2] No such file or directory: 'gpt-checkpoint/iter_0000010/__0_0.distcp'
3869
+ [rank5]:[W621 22:06:47.885164319 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
3870
+ [rank1]:[W621 22:06:47.900529072 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
3871
+ [rank7]:[W621 22:06:48.379264793 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
3872
+ [rank3]:[W621 22:06:48.540156179 ProcessGroupNCCL.cpp:1476] Warning: WARNING: destroy_process_group() was not called before program exit, which can leak resources. For more info, please see https://pytorch.org/docs/stable/distributed.html#shutdown (function operator())
3873
+ W0621 22:06:50.322000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 459186 closing signal SIGTERM
3874
+ W0621 22:06:50.331000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 459187 closing signal SIGTERM
3875
+ W0621 22:06:50.332000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 459188 closing signal SIGTERM
3876
+ W0621 22:06:50.334000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 459189 closing signal SIGTERM
3877
+ W0621 22:06:50.335000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 459190 closing signal SIGTERM
3878
+ W0621 22:06:50.339000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 459192 closing signal SIGTERM
3879
+ W0621 22:06:50.374000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:900] Sending process 459193 closing signal SIGTERM
3880
+ E0621 22:07:10.031000 459115 site-packages/torch/distributed/elastic/multiprocessing/api.py:874] failed (exitcode: 1) local_rank: 5 (pid: 459191) of binary: /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
3881
+ Traceback (most recent call last):
3882
+ File "<frozen runpy>", line 198, in _run_module_as_main
3883
+ File "<frozen runpy>", line 88, in _run_code
3884
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 207, in <module>
3885
+ main()
3886
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/typing_extensions.py", line 3253, in wrapper
3887
+ return arg(*args, **kwargs)
3888
+ ^^^^^^^^^^^^^^^^^^^^
3889
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 203, in main
3890
+ launch(args)
3891
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py", line 188, in launch
3892
+ run(args)
3893
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/run.py", line 883, in run
3894
+ elastic_launch(
3895
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 139, in __call__
3896
+ return launch_agent(self._config, self._entrypoint, list(args))
3897
+ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
3898
+ File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launcher/api.py", line 270, in launch_agent
3899
+ raise ChildFailedError(
3900
+ torch.distributed.elastic.multiprocessing.errors.ChildFailedError:
3901
+ ============================================================
3902
+ ./pretrain_gpt_profile.py FAILED
3903
+ ------------------------------------------------------------
3904
+ Failures:
3905
+ <NO_OTHER_FAILURES>
3906
+ ------------------------------------------------------------
3907
+ Root Cause (first observed failure):
3908
+ [0]:
3909
+ time : 2025-06-21_22:06:50
3910
+ host : fs-mbz-gpu-898
3911
+ rank : 5 (local_rank: 5)
3912
+ exitcode : 1 (pid: 459191)
3913
+ error_file: <N/A>
3914
+ traceback : To enable traceback see: https://pytorch.org/docs/stable/elastic/errors.html
3915
+ ============================================================
3916
+ + set +x
3917
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
3918
+ + export PROF_CTX_LENGTH=65536
3919
+ + PROF_CTX_LENGTH=65536
3920
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L65536*tp2.cp4.bs2.json'
3921
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L65536*tp2.cp4.bs2.json' ']'
3922
+ + echo 'Running ctx_length=65536, TP_SIZE=2, CP_SIZE=4, BATCH_SIZE=2'
3923
+ + srun bash ./attnserver.sh
3924
+ + which python3
3925
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343244 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-898:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 2 --context-parallel-size 4 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 65536 --max-position-embeddings 65536 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
3926
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
3927
+ and will be removed in future. Use torchrun.
3928
+ Note that --use-env is set by default in torchrun.
3929
+ If your script expects `--local-rank` argument to be set, please
3930
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
3931
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
3932
+ further instructions
3933
+
3934
+ main()
3935
+ W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766]
3936
+ W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] *****************************************
3937
+ W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
3938
+ W0621 22:07:13.434000 462698 site-packages/torch/distributed/run.py:766] *****************************************
attnserver.run_attnserver.slurm.sh.343244.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343245.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343245.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343246.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343246.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343247.err.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343247.out.log CHANGED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343248.err.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343248.out.log ADDED
The diff for this file is too large to render. See raw diff
 
attnserver.run_attnserver.slurm.sh.343261.err.log ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ + source /mnt/weka/home/hao.zhang/conda/miniconda/bin/activate
2
+ ++ _CONDA_ROOT=/mnt/weka/home/hao.zhang/conda/miniconda
3
+ ++ . /mnt/weka/home/hao.zhang/conda/miniconda/etc/profile.d/conda.sh
4
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
5
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
6
+ +++ export _CE_M=
7
+ +++ _CE_M=
8
+ +++ export _CE_CONDA=
9
+ +++ _CE_CONDA=
10
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
11
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
12
+ +++ '[' -z x ']'
13
+ ++ conda activate
14
+ ++ local cmd=activate
15
+ ++ case "$cmd" in
16
+ ++ __conda_activate activate
17
+ ++ '[' -n '' ']'
18
+ ++ local ask_conda
19
+ +++ PS1=
20
+ +++ __conda_exe shell.posix activate
21
+ +++ '[' -n '' ']'
22
+ +++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate
23
+ ++ ask_conda='unset _CE_M
24
+ unset _CE_CONDA
25
+ PS1='\''(base) '\''
26
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
27
+ export CONDA_SHLVL='\''1'\''
28
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
29
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
30
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
31
+ ++ eval 'unset _CE_M
32
+ unset _CE_CONDA
33
+ PS1='\''(base) '\''
34
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
35
+ export CONDA_SHLVL='\''1'\''
36
+ export CONDA_PROMPT_MODIFIER='\''(base) '\''
37
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
38
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
39
+ +++ unset _CE_M
40
+ +++ unset _CE_CONDA
41
+ +++ PS1='(base) '
42
+ +++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
43
+ +++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
44
+ +++ export CONDA_SHLVL=1
45
+ +++ CONDA_SHLVL=1
46
+ +++ export 'CONDA_PROMPT_MODIFIER=(base) '
47
+ +++ CONDA_PROMPT_MODIFIER='(base) '
48
+ +++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
49
+ +++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
50
+ +++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
51
+ +++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
52
+ ++ __conda_hashr
53
+ ++ '[' -n '' ']'
54
+ ++ '[' -n '' ']'
55
+ ++ hash -r
56
+ + conda activate junda-attnserver
57
+ + local cmd=activate
58
+ + case "$cmd" in
59
+ + __conda_activate activate junda-attnserver
60
+ + '[' -n '' ']'
61
+ + local ask_conda
62
+ ++ PS1='(base) '
63
+ ++ __conda_exe shell.posix activate junda-attnserver
64
+ ++ '[' -n '' ']'
65
+ ++ /mnt/weka/home/hao.zhang/conda/miniconda/bin/conda shell.posix activate junda-attnserver
66
+ + ask_conda='unset _CE_M
67
+ unset _CE_CONDA
68
+ PS1='\''(junda-attnserver) '\''
69
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
70
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
71
+ export CONDA_SHLVL='\''2'\''
72
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
73
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
74
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
75
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
76
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
77
+ + eval 'unset _CE_M
78
+ unset _CE_CONDA
79
+ PS1='\''(junda-attnserver) '\''
80
+ export PATH='\''/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin'\''
81
+ export CONDA_PREFIX='\''/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver'\''
82
+ export CONDA_SHLVL='\''2'\''
83
+ export CONDA_DEFAULT_ENV='\''junda-attnserver'\''
84
+ export CONDA_PROMPT_MODIFIER='\''(junda-attnserver) '\''
85
+ export CONDA_PREFIX_1='\''/mnt/weka/home/hao.zhang/conda/miniconda'\''
86
+ export CONDA_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda'\''
87
+ export CONDA_PYTHON_EXE='\''/mnt/weka/home/hao.zhang/conda/miniconda/bin/python'\'''
88
+ ++ unset _CE_M
89
+ ++ unset _CE_CONDA
90
+ ++ PS1='(junda-attnserver) '
91
+ ++ export PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
92
+ ++ PATH=/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/.local/bin:/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin:/mnt/weka/home/hao.zhang/conda/miniconda/condabin:/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/usr/games:/usr/local/games:/snap/bin
93
+ ++ export CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
94
+ ++ CONDA_PREFIX=/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver
95
+ ++ export CONDA_SHLVL=2
96
+ ++ CONDA_SHLVL=2
97
+ ++ export CONDA_DEFAULT_ENV=junda-attnserver
98
+ ++ CONDA_DEFAULT_ENV=junda-attnserver
99
+ ++ export 'CONDA_PROMPT_MODIFIER=(junda-attnserver) '
100
+ ++ CONDA_PROMPT_MODIFIER='(junda-attnserver) '
101
+ ++ export CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
102
+ ++ CONDA_PREFIX_1=/mnt/weka/home/hao.zhang/conda/miniconda
103
+ ++ export CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
104
+ ++ CONDA_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/conda
105
+ ++ export CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
106
+ ++ CONDA_PYTHON_EXE=/mnt/weka/home/hao.zhang/conda/miniconda/bin/python
107
+ + __conda_hashr
108
+ + '[' -n '' ']'
109
+ + '[' -n '' ']'
110
+ + hash -r
111
+ + export CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
112
+ + CHROME_TRACE_PREFIX=/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
113
+ + mkdir -p /mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5
114
+ + export PROF_TP_SIZE=1
115
+ + PROF_TP_SIZE=1
116
+ + export PROF_CP_SIZE=8
117
+ + PROF_CP_SIZE=8
118
+ + export PROF_BS=1
119
+ + PROF_BS=1
120
+ + for ctx_length in 1024 2048 4096 8192 12288 16384 24576 32768 40960 49152 65536 81920 98304 131072
121
+ + export PROF_CTX_LENGTH=1024
122
+ + PROF_CTX_LENGTH=1024
123
+ + name='/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp1.cp8.bs1.json'
124
+ + '[' -f '/mnt/sharefs/users/hao.zhang/junda/megatron-prof-data--unstable-v5/mytrace.L1024*tp1.cp8.bs1.json' ']'
125
+ + echo 'Running ctx_length=1024, TP_SIZE=1, CP_SIZE=8, BATCH_SIZE=1'
126
+ + srun bash ./attnserver.sh
127
+ + which python3
128
+ + python3 -m torch.distributed.launch --nproc_per_node 8 --nnodes 1 --node_rank 0 --rdzv_id 343261 --rdzv_backend c10d --rdzv_endpoint fs-mbz-gpu-830:29500 ./pretrain_gpt_profile.py --tensor-model-parallel-size 1 --context-parallel-size 8 --num-layers 2 --hidden-size 4096 --num-attention-heads 64 --group-query-attention --num-query-groups 16 --seq-length 1024 --max-position-embeddings 1024 --micro-batch-size 1 --global-batch-size 1 --lr 0.0005 --train-iters 10 --lr-decay-iters 150000 --lr-decay-style cosine --lr-warmup-iters 2 --weight-decay .1 --adam-beta2 .999 --fp16 --log-interval 1 --save-interval 16 --eval-interval 16 --eval-iters 1 --vocab-file vocab.json --merge-file merges.txt --save gpt-checkpoint --load gpt-checkpoint --logging-level 0 --mock-data --tensorboard-dir tensorboard-logs/
129
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/distributed/launch.py:207: FutureWarning: The module torch.distributed.launch is deprecated
130
+ and will be removed in future. Use torchrun.
131
+ Note that --use-env is set by default in torchrun.
132
+ If your script expects `--local-rank` argument to be set, please
133
+ change it to read from `os.environ['LOCAL_RANK']` instead. See
134
+ https://pytorch.org/docs/stable/distributed.html#launch-utility for
135
+ further instructions
136
+
137
+ main()
138
+ W0621 22:06:13.082000 2070539 site-packages/torch/distributed/run.py:766]
139
+ W0621 22:06:13.082000 2070539 site-packages/torch/distributed/run.py:766] *****************************************
140
+ W0621 22:06:13.082000 2070539 site-packages/torch/distributed/run.py:766] Setting OMP_NUM_THREADS environment variable for each process to be 1 in default, to avoid your system being overloaded, please further tune the variable for optimal performance in your application as needed.
141
+ W0621 22:06:13.082000 2070539 site-packages/torch/distributed/run.py:766] *****************************************
142
+ [rank2]:[W621 22:06:35.957817612 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 2] using GPU 2 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
143
+ [rank5]:[W621 22:06:35.957825745 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 5] using GPU 5 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
144
+ [rank1]:[W621 22:06:35.957834527 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 1] using GPU 1 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
145
+ [rank3]:[W621 22:06:35.958544022 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 3] using GPU 3 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
146
+ [rank4]:[W621 22:06:35.960944235 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 4] using GPU 4 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
147
+ [rank6]:[W621 22:06:35.963661455 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 6] using GPU 6 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
148
+ [rank7]:[W621 22:06:35.963839061 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 7] using GPU 7 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
149
+ [rank0]:[W621 22:06:35.101598532 ProcessGroupNCCL.cpp:4715] [PG ID 0 PG GUID 0 Rank 0] using GPU 0 as device used by this process is currently unknown. This can potentially cause a hang if this rank to GPU mapping is incorrect. You can pecify device_id in init_process_group() to force use of a particular device.
150
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
151
+ warnings.warn(
152
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
153
+ warnings.warn(
154
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
155
+ warnings.warn(
156
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
157
+ warnings.warn(
158
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
159
+ warnings.warn(
160
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
161
+ warnings.warn(
162
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
163
+ warnings.warn(
164
+ /mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/models/gpt/gpt_layer_specs.py:94: UserWarning: The fp8 argument in "get_gpt_layer_with_transformer_engine_spec" has been deprecated and will be removed soon. Please update your code accordingly.
165
+ warnings.warn(
166
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
167
+ warnings.warn(
168
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
169
+ warnings.warn(
170
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
171
+ warnings.warn(
172
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
173
+ warnings.warn(
174
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
175
+ warnings.warn(
176
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
177
+ warnings.warn(
178
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
179
+ warnings.warn(
180
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/transformer_engine/pytorch/cpu_offload.py:595: DeprecationWarning: Offloading weights is deprecated. Using offload_weights=True does not have any effect.
181
+ warnings.warn(
182
+ [rank0]: Traceback (most recent call last):
183
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/./pretrain_gpt_profile.py", line 554, in <module>
184
+ [rank0]: pretrain(
185
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/training.py", line 879, in pretrain
186
+ [rank0]: save_checkpoint(
187
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/training/checkpointing.py", line 469, in save_checkpoint
188
+ [rank0]: async_save_request = dist_checkpointing.save(state_dict, checkpoint_name, save_strategy,
189
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
190
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/serialization.py", line 386, in save
191
+ [rank0]: common_strategy.save_common(state_dict, checkpoint_dir)
192
+ [rank0]: File "/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/dist_checkpointing/strategies/common.py", line 48, in save_common
193
+ [rank0]: torch.save(common_state_dict, path)
194
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 964, in save
195
+ [rank0]: with _open_zipfile_writer(f) as opened_zipfile:
196
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^
197
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 828, in _open_zipfile_writer
198
+ [rank0]: return container(name_or_buffer)
199
+ [rank0]: ^^^^^^^^^^^^^^^^^^^^^^^^^
200
+ [rank0]: File "/mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/lib/python3.12/site-packages/torch/serialization.py", line 792, in __init__
201
+ [rank0]: torch._C.PyTorchFileWriter(
202
+ [rank0]: RuntimeError: Parent directory gpt-checkpoint/iter_0000010 does not exist.
attnserver.run_attnserver.slurm.sh.343261.out.log ADDED
@@ -0,0 +1,1507 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Running ctx_length=1024, TP_SIZE=1, CP_SIZE=8, BATCH_SIZE=1
2
+ Cleaning up checkpoint directory: gpt-checkpoint
3
+ --------------------------------
4
+ CTX_LENGTH: 1024
5
+ TP_SIZE: 1
6
+ CP_SIZE: 8
7
+ CHECKPOINT_PATH: gpt-checkpoint
8
+ PWD: /mnt/weka/home/hao.zhang/junda/attnserver-megatron
9
+ --------------------------------
10
+ /mnt/weka/home/hao.zhang/conda/miniconda/envs/junda-attnserver/bin/python3
11
+ INFO:megatron.training.initialize:Setting logging level to 0
12
+ using world size: 8, data-parallel size: 1, context-parallel size: 8, hierarchical context-parallel sizes: Nonetensor-model-parallel size: 1, encoder-tensor-model-parallel size: 0, pipeline-model-parallel size: 1, encoder-pipeline-model-parallel size: 0
13
+ Number of virtual stages per pipeline stage: None
14
+ WARNING: Setting args.check_for_nan_in_loss_and_grad to False since dynamic loss scaling is being used
15
+ using torch.float16 for parameters ...
16
+ ------------------------ arguments ------------------------
17
+ account_for_embedding_in_pipeline_split ......... False
18
+ account_for_loss_in_pipeline_split .............. False
19
+ accumulate_allreduce_grads_in_fp32 .............. False
20
+ adam_beta1 ...................................... 0.9
21
+ adam_beta2 ...................................... 0.999
22
+ adam_eps ........................................ 1e-08
23
+ add_bias_linear ................................. True
24
+ add_position_embedding .......................... True
25
+ add_qkv_bias .................................... True
26
+ adlr_autoresume ................................. False
27
+ adlr_autoresume_interval ........................ 1000
28
+ align_grad_reduce ............................... True
29
+ align_param_gather .............................. False
30
+ app_tag_run_name ................................ None
31
+ app_tag_run_version ............................. 0.0.0
32
+ apply_layernorm_1p .............................. False
33
+ apply_query_key_layer_scaling ................... False
34
+ apply_residual_connection_post_layernorm ........ False
35
+ apply_rope_fusion ............................... False
36
+ async_save ...................................... None
37
+ async_tensor_model_parallel_allreduce ........... True
38
+ attention_backend ............................... AttnBackend.auto
39
+ attention_dropout ............................... 0.1
40
+ attention_softmax_in_fp32 ....................... False
41
+ auto_detect_ckpt_format ......................... False
42
+ barrier_with_L1_time ............................ True
43
+ bert_binary_head ................................ True
44
+ bert_embedder_type .............................. megatron
45
+ bert_load ....................................... None
46
+ bf16 ............................................ False
47
+ bias_dropout_fusion ............................. True
48
+ bias_gelu_fusion ................................ True
49
+ bias_swiglu_fusion .............................. True
50
+ biencoder_projection_dim ........................ 0
51
+ biencoder_shared_query_context_model ............ False
52
+ block_data_path ................................. None
53
+ calc_ft_timeouts ................................ False
54
+ calculate_per_token_loss ........................ False
55
+ check_for_large_grads ........................... False
56
+ check_for_nan_in_loss_and_grad .................. False
57
+ check_for_spiky_loss ............................ False
58
+ check_weight_hash_across_dp_replicas_interval ... None
59
+ ckpt_assume_constant_structure .................. False
60
+ ckpt_convert_format ............................. None
61
+ ckpt_convert_save ............................... None
62
+ ckpt_convert_update_legacy_dist_opt_format ...... False
63
+ ckpt_format ..................................... torch_dist
64
+ ckpt_fully_parallel_load ........................ False
65
+ ckpt_fully_parallel_save ........................ True
66
+ ckpt_fully_parallel_save_deprecated ............. False
67
+ ckpt_step ....................................... None
68
+ classes_fraction ................................ 1.0
69
+ clip_grad ....................................... 1.0
70
+ clone_scatter_output_in_embedding ............... True
71
+ config_logger_dir ...............................
72
+ consumed_train_samples .......................... 0
73
+ consumed_valid_samples .......................... 0
74
+ context_parallel_size ........................... 8
75
+ cp_comm_type .................................... ['p2p']
76
+ create_attention_mask_in_dataloader ............. True
77
+ cross_entropy_fusion_impl ....................... native
78
+ cross_entropy_loss_fusion ....................... False
79
+ cuda_graph_scope ................................ full
80
+ cuda_graph_warmup_steps ......................... 3
81
+ data_args_path .................................. None
82
+ data_cache_path ................................. None
83
+ data_parallel_random_init ....................... False
84
+ data_parallel_sharding_strategy ................. no_shard
85
+ data_parallel_size .............................. 1
86
+ data_path ....................................... None
87
+ data_per_class_fraction ......................... 1.0
88
+ data_sharding ................................... True
89
+ dataloader_type ................................. single
90
+ ddp_average_in_collective ....................... False
91
+ ddp_bucket_size ................................. None
92
+ ddp_num_buckets ................................. None
93
+ ddp_pad_buckets_for_high_nccl_busbw ............. False
94
+ decoder_first_pipeline_num_layers ............... None
95
+ decoder_last_pipeline_num_layers ................ None
96
+ decoder_num_layers .............................. None
97
+ decoder_seq_length .............................. None
98
+ decoupled_lr .................................... None
99
+ decoupled_min_lr ................................ None
100
+ decrease_batch_size_if_needed ................... False
101
+ defer_embedding_wgrad_compute ................... False
102
+ deprecated_use_mcore_models ..................... False
103
+ deterministic_mode .............................. False
104
+ dino_bottleneck_size ............................ 256
105
+ dino_freeze_last_layer .......................... 1
106
+ dino_head_hidden_size ........................... 2048
107
+ dino_local_crops_number ......................... 10
108
+ dino_local_img_size ............................. 96
109
+ dino_norm_last_layer ............................ False
110
+ dino_teacher_temp ............................... 0.07
111
+ dino_warmup_teacher_temp ........................ 0.04
112
+ dino_warmup_teacher_temp_epochs ................. 30
113
+ disable_bf16_reduced_precision_matmul ........... False
114
+ disable_mamba_mem_eff_path ...................... False
115
+ disable_straggler_on_startup .................... False
116
+ dist_ckpt_format_deprecated ..................... None
117
+ dist_ckpt_strictness ............................ assume_ok_unexpected
118
+ distribute_saved_activations .................... False
119
+ distributed_backend ............................. nccl
120
+ distributed_timeout_minutes ..................... 10
121
+ embedding_path .................................. None
122
+ empty_unused_memory_level ....................... 0
123
+ enable_cuda_graph ............................... False
124
+ enable_ft_package ............................... False
125
+ enable_gloo_process_groups ...................... True
126
+ enable_msc ...................................... True
127
+ enable_one_logger ............................... True
128
+ encoder_num_layers .............................. 2
129
+ encoder_pipeline_model_parallel_size ............ 0
130
+ encoder_seq_length .............................. 1024
131
+ encoder_tensor_model_parallel_size .............. 0
132
+ end_weight_decay ................................ 0.1
133
+ eod_mask_loss ................................... False
134
+ error_injection_rate ............................ 0
135
+ error_injection_type ............................ transient_error
136
+ eval_interval ................................... 16
137
+ eval_iters ...................................... 1
138
+ evidence_data_path .............................. None
139
+ exit_duration_in_mins ........................... None
140
+ exit_interval ................................... None
141
+ exit_on_missing_checkpoint ...................... False
142
+ exit_signal_handler ............................. False
143
+ exp_avg_dtype ................................... torch.float32
144
+ exp_avg_sq_dtype ................................ torch.float32
145
+ expert_model_parallel_size ...................... 1
146
+ expert_tensor_parallel_size ..................... 1
147
+ external_cuda_graph ............................. False
148
+ ffn_hidden_size ................................. 16384
149
+ finetune ........................................ False
150
+ first_last_layers_bf16 .......................... False
151
+ flash_decode .................................... False
152
+ fp16 ............................................ True
153
+ fp16_lm_cross_entropy ........................... False
154
+ fp32_residual_connection ........................ False
155
+ fp8 ............................................. None
156
+ fp8_amax_compute_algo ........................... most_recent
157
+ fp8_amax_history_len ............................ 1
158
+ fp8_interval .................................... 1
159
+ fp8_margin ...................................... 0
160
+ fp8_param_gather ................................ False
161
+ fp8_recipe ...................................... delayed
162
+ fp8_wgrad ....................................... True
163
+ fsdp_double_buffer .............................. False
164
+ global_batch_size ............................... 1
165
+ grad_reduce_in_bf16 ............................. False
166
+ gradient_accumulation_fusion .................... True
167
+ gradient_reduce_div_fusion ...................... True
168
+ group_query_attention ........................... True
169
+ head_lr_mult .................................... 1.0
170
+ heterogeneous_layers_config_encoded_json ........ None
171
+ heterogeneous_layers_config_path ................ None
172
+ hidden_dropout .................................. 0.1
173
+ hidden_size ..................................... 4096
174
+ hierarchical_context_parallel_sizes ............. None
175
+ high_priority_stream_groups ..................... []
176
+ hybrid_attention_ratio .......................... 0.0
177
+ hybrid_mlp_ratio ................................ 0.0
178
+ hybrid_override_pattern ......................... None
179
+ hysteresis ...................................... 2
180
+ ict_head_size ................................... None
181
+ ict_load ........................................ None
182
+ img_h ........................................... 224
183
+ img_w ........................................... 224
184
+ indexer_batch_size .............................. 128
185
+ indexer_log_interval ............................ 1000
186
+ inference_batch_times_seqlen_threshold .......... -1
187
+ inference_dynamic_batching ...................... False
188
+ inference_dynamic_batching_buffer_guaranteed_fraction 0.2
189
+ inference_dynamic_batching_buffer_overflow_factor None
190
+ inference_dynamic_batching_buffer_size_gb ....... 40.0
191
+ inference_dynamic_batching_chunk_size ........... 256
192
+ inference_dynamic_batching_max_requests_override None
193
+ inference_dynamic_batching_max_tokens_override .. None
194
+ inference_max_batch_size ........................ 8
195
+ inference_max_seq_length ........................ 2560
196
+ inference_rng_tracker ........................... False
197
+ init_method_std ................................. 0.02
198
+ init_method_xavier_uniform ...................... False
199
+ init_model_with_meta_device ..................... False
200
+ initial_loss_scale .............................. 4294967296
201
+ inprocess_active_world_size ..................... 8
202
+ inprocess_barrier_timeout ....................... 120
203
+ inprocess_completion_timeout .................... 120
204
+ inprocess_empty_cuda_cache ...................... False
205
+ inprocess_granularity ........................... node
206
+ inprocess_hard_timeout .......................... 90
207
+ inprocess_heartbeat_interval .................... 30
208
+ inprocess_heartbeat_timeout ..................... 60
209
+ inprocess_last_call_wait ........................ 1
210
+ inprocess_max_iterations ........................ None
211
+ inprocess_monitor_process_interval .............. 1.0
212
+ inprocess_monitor_thread_interval ............... 1.0
213
+ inprocess_progress_watchdog_interval ............ 1.0
214
+ inprocess_restart ............................... False
215
+ inprocess_soft_timeout .......................... 60
216
+ inprocess_termination_grace_time ................ 1
217
+ is_hybrid_model ................................. False
218
+ iter_per_epoch .................................. 1250
219
+ iterations_to_skip .............................. []
220
+ keep_fp8_transpose_cache_when_using_custom_fsdp . False
221
+ kv_channels ..................................... 64
222
+ kv_lora_rank .................................... 32
223
+ lazy_mpu_init ................................... None
224
+ load ............................................ gpt-checkpoint
225
+ load_model_opt_format ........................... False
226
+ local_rank ...................................... 0
227
+ log_interval .................................... 1
228
+ log_loss_scale_to_tensorboard ................... True
229
+ log_memory_to_tensorboard ....................... False
230
+ log_num_zeros_in_grad ........................... False
231
+ log_params_norm ................................. False
232
+ log_progress .................................... False
233
+ log_straggler ................................... False
234
+ log_throughput .................................. False
235
+ log_timers_to_tensorboard ....................... False
236
+ log_validation_ppl_to_tensorboard ............... False
237
+ log_world_size_to_tensorboard ................... False
238
+ logging_level ................................... 0
239
+ loss_scale ...................................... None
240
+ loss_scale_window ............................... 1000
241
+ lr .............................................. 0.0005
242
+ lr_decay_iters .................................. 150000
243
+ lr_decay_samples ................................ None
244
+ lr_decay_style .................................. cosine
245
+ lr_warmup_fraction .............................. None
246
+ lr_warmup_init .................................. 0.0
247
+ lr_warmup_iters ................................. 2
248
+ lr_warmup_samples ............................... 0
249
+ lr_wsd_decay_iters .............................. None
250
+ lr_wsd_decay_samples ............................ None
251
+ lr_wsd_decay_style .............................. exponential
252
+ main_grads_dtype ................................ torch.float32
253
+ main_params_dtype ............................... torch.float32
254
+ make_vocab_size_divisible_by .................... 128
255
+ mamba_head_dim .................................. 64
256
+ mamba_num_groups ................................ 8
257
+ mamba_num_heads ................................. None
258
+ mamba_state_dim ................................. 128
259
+ manual_gc ....................................... False
260
+ manual_gc_eval .................................. True
261
+ manual_gc_interval .............................. 0
262
+ mask_factor ..................................... 1.0
263
+ mask_prob ....................................... 0.15
264
+ mask_type ....................................... random
265
+ masked_softmax_fusion ........................... True
266
+ max_position_embeddings ......................... 1024
267
+ max_tokens_to_oom ............................... 12000
268
+ memory_snapshot_path ............................ snapshot.pickle
269
+ merge_file ...................................... merges.txt
270
+ micro_batch_size ................................ 1
271
+ microbatch_group_size_per_vp_stage .............. None
272
+ mid_level_dataset_surplus ....................... 0.005
273
+ min_loss_scale .................................. 1.0
274
+ min_lr .......................................... 0.0
275
+ mlp_chunks_for_prefill .......................... 1
276
+ mmap_bin_files .................................. True
277
+ mock_data ....................................... True
278
+ moe_apply_probs_on_input ........................ False
279
+ moe_aux_loss_coeff .............................. 0.0
280
+ moe_enable_deepep ............................... False
281
+ moe_expert_capacity_factor ...................... None
282
+ moe_extended_tp ................................. False
283
+ moe_ffn_hidden_size ............................. None
284
+ moe_grouped_gemm ................................ False
285
+ moe_input_jitter_eps ............................ None
286
+ moe_layer_freq .................................. 1
287
+ moe_layer_recompute ............................. False
288
+ moe_pad_expert_input_to_capacity ................ False
289
+ moe_per_layer_logging ........................... False
290
+ moe_permute_fusion .............................. False
291
+ moe_router_bias_update_rate ..................... 0.001
292
+ moe_router_dtype ................................ None
293
+ moe_router_enable_expert_bias ................... False
294
+ moe_router_force_load_balancing ................. False
295
+ moe_router_group_topk ........................... None
296
+ moe_router_load_balancing_type .................. aux_loss
297
+ moe_router_num_groups ........................... None
298
+ moe_router_padding_for_fp8 ...................... False
299
+ moe_router_pre_softmax .......................... False
300
+ moe_router_score_function ....................... softmax
301
+ moe_router_topk ................................. 2
302
+ moe_router_topk_scaling_factor .................. None
303
+ moe_shared_expert_intermediate_size ............. None
304
+ moe_shared_expert_overlap ....................... False
305
+ moe_token_dispatcher_type ....................... allgather
306
+ moe_token_drop_policy ........................... probs
307
+ moe_use_legacy_grouped_gemm ..................... False
308
+ moe_use_upcycling ............................... False
309
+ moe_z_loss_coeff ................................ None
310
+ mrope_section ................................... None
311
+ mscale .......................................... 1.0
312
+ mscale_all_dim .................................. 1.0
313
+ mtp_loss_scaling_factor ......................... 0.1
314
+ mtp_num_layers .................................. None
315
+ multi_latent_attention .......................... False
316
+ nccl_all_reduce_for_prefill ..................... False
317
+ nccl_communicator_config_path ................... None
318
+ nccl_ub ......................................... False
319
+ no_load_optim ................................... None
320
+ no_load_rng ..................................... None
321
+ no_persist_layer_norm ........................... False
322
+ no_rope_freq .................................... None
323
+ no_save_optim ................................... None
324
+ no_save_rng ..................................... None
325
+ non_persistent_ckpt_type ........................ None
326
+ non_persistent_global_ckpt_dir .................. None
327
+ non_persistent_local_ckpt_algo .................. fully_parallel
328
+ non_persistent_local_ckpt_dir ................... None
329
+ non_persistent_save_interval .................... None
330
+ norm_epsilon .................................... 1e-05
331
+ normalization ................................... LayerNorm
332
+ num_attention_heads ............................. 64
333
+ num_channels .................................... 3
334
+ num_classes ..................................... 1000
335
+ num_dataset_builder_threads ..................... 1
336
+ num_distributed_optimizer_instances ............. 1
337
+ num_experts ..................................... None
338
+ num_layers ...................................... 2
339
+ num_layers_at_end_in_bf16 ....................... 1
340
+ num_layers_at_start_in_bf16 ..................... 1
341
+ num_layers_per_virtual_pipeline_stage ........... None
342
+ num_query_groups ................................ 16
343
+ num_virtual_stages_per_pipeline_rank ............ None
344
+ num_workers ..................................... 2
345
+ object_storage_cache_path ....................... None
346
+ one_logger_async ................................ False
347
+ one_logger_project .............................. megatron-lm
348
+ one_logger_run_name ............................. None
349
+ onnx_safe ....................................... None
350
+ openai_gelu ..................................... False
351
+ optimizer ....................................... adam
352
+ optimizer_cpu_offload ........................... False
353
+ optimizer_offload_fraction ...................... 1.0
354
+ output_bert_embeddings .......................... False
355
+ overlap_cpu_optimizer_d2h_h2d ................... False
356
+ overlap_grad_reduce ............................. False
357
+ overlap_p2p_comm ................................ False
358
+ overlap_p2p_comm_warmup_flush ................... False
359
+ overlap_param_gather ............................ False
360
+ overlap_param_gather_with_optimizer_step ........ False
361
+ override_opt_param_scheduler .................... False
362
+ params_dtype .................................... torch.float16
363
+ patch_dim ....................................... 16
364
+ per_split_data_args_path ........................ None
365
+ perform_initialization .......................... True
366
+ pin_cpu_grads ................................... True
367
+ pin_cpu_params .................................. True
368
+ pipeline_model_parallel_comm_backend ............ None
369
+ pipeline_model_parallel_size .................... 1
370
+ pipeline_model_parallel_split_rank .............. None
371
+ position_embedding_type ......................... learned_absolute
372
+ pretrained_checkpoint ........................... None
373
+ profile ......................................... False
374
+ profile_ranks ................................... [0]
375
+ profile_step_end ................................ 12
376
+ profile_step_start .............................. 10
377
+ q_lora_rank ..................................... None
378
+ qk_head_dim ..................................... 128
379
+ qk_l2_norm ...................................... False
380
+ qk_layernorm .................................... False
381
+ qk_pos_emb_head_dim ............................. 64
382
+ query_in_block_prob ............................. 0.1
383
+ rampup_batch_size ............................... None
384
+ rank ............................................ 0
385
+ recompute_granularity ........................... None
386
+ recompute_method ................................ None
387
+ recompute_modules ............................... None
388
+ recompute_num_layers ............................ None
389
+ record_memory_history ........................... False
390
+ relative_attention_max_distance ................. 128
391
+ relative_attention_num_buckets .................. 32
392
+ replication ..................................... False
393
+ replication_factor .............................. 2
394
+ replication_jump ................................ None
395
+ rerun_mode ...................................... disabled
396
+ reset_attention_mask ............................ False
397
+ reset_position_ids .............................. False
398
+ result_rejected_tracker_filename ................ None
399
+ retriever_report_topk_accuracies ................ []
400
+ retriever_score_scaling ......................... False
401
+ retriever_seq_length ............................ 256
402
+ retro_add_retriever ............................. False
403
+ retro_attention_gate ............................ 1
404
+ retro_cyclic_train_iters ........................ None
405
+ retro_encoder_attention_dropout ................. 0.1
406
+ retro_encoder_hidden_dropout .................... 0.1
407
+ retro_encoder_layers ............................ 2
408
+ retro_num_neighbors ............................. 2
409
+ retro_num_retrieved_chunks ...................... 2
410
+ retro_project_dir ............................... None
411
+ retro_verify_neighbor_count ..................... True
412
+ rope_scaling_factor ............................. 8.0
413
+ rotary_base ..................................... 10000
414
+ rotary_interleaved .............................. False
415
+ rotary_percent .................................. 1.0
416
+ rotary_scaling_factor ........................... 1.0
417
+ rotary_seq_len_interpolation_factor ............. None
418
+ run_workload_inspector_server ................... False
419
+ sample_rate ..................................... 1.0
420
+ save ............................................ gpt-checkpoint
421
+ save_interval ................................... 16
422
+ scatter_gather_tensors_in_pipeline .............. True
423
+ seed ............................................ 1234
424
+ seq_length ...................................... 1024
425
+ sequence_parallel ............................... False
426
+ sgd_momentum .................................... 0.9
427
+ short_seq_prob .................................. 0.1
428
+ skip_train ...................................... False
429
+ skipped_train_samples ........................... 0
430
+ spec ............................................ None
431
+ split ........................................... None
432
+ squared_relu .................................... False
433
+ start_weight_decay .............................. 0.1
434
+ straggler_ctrlr_port ............................ 65535
435
+ straggler_minmax_count .......................... 1
436
+ suggested_communication_unit_size ............... None
437
+ swiglu .......................................... False
438
+ swin_backbone_type .............................. tiny
439
+ symmetric_ar_type ............................... None
440
+ te_rng_tracker .................................. False
441
+ tensor_model_parallel_size ...................... 1
442
+ tensorboard_dir ................................. tensorboard-logs/
443
+ tensorboard_log_interval ........................ 1
444
+ tensorboard_queue_size .......................... 1000
445
+ test_data_path .................................. None
446
+ test_mode ....................................... False
447
+ tiktoken_num_special_tokens ..................... 1000
448
+ tiktoken_pattern ................................ None
449
+ tiktoken_special_tokens ......................... None
450
+ timing_log_level ................................ 0
451
+ timing_log_option ............................... minmax
452
+ titles_data_path ................................ None
453
+ tokenizer_model ................................. None
454
+ tokenizer_type .................................. GPT2BPETokenizer
455
+ torch_fsdp2_reshard_after_forward ............... True
456
+ tp_comm_bootstrap_backend ....................... nccl
457
+ tp_comm_bulk_dgrad .............................. True
458
+ tp_comm_bulk_wgrad .............................. True
459
+ tp_comm_overlap ................................. False
460
+ tp_comm_overlap_ag .............................. True
461
+ tp_comm_overlap_cfg ............................. None
462
+ tp_comm_overlap_rs .............................. True
463
+ tp_comm_overlap_rs_dgrad ........................ False
464
+ tp_comm_split_ag ................................ True
465
+ tp_comm_split_rs ................................ True
466
+ train_data_path ................................. None
467
+ train_iters ..................................... 10
468
+ train_samples ................................... None
469
+ train_sync_interval ............................. None
470
+ transformer_impl ................................ transformer_engine
471
+ transformer_pipeline_model_parallel_size ........ 1
472
+ untie_embeddings_and_output_weights ............. False
473
+ use_checkpoint_args ............................. False
474
+ use_checkpoint_opt_param_scheduler .............. False
475
+ use_cpu_initialization .......................... None
476
+ use_custom_fsdp ................................. False
477
+ use_dist_ckpt ................................... True
478
+ use_dist_ckpt_deprecated ........................ False
479
+ use_distributed_optimizer ....................... False
480
+ use_flash_attn .................................. False
481
+ use_legacy_models ............................... False
482
+ use_mp_args_from_checkpoint_args ................ False
483
+ use_one_sent_docs ............................... False
484
+ use_persistent_ckpt_worker ...................... False
485
+ use_precision_aware_optimizer ................... False
486
+ use_pytorch_profiler ............................ False
487
+ use_ring_exchange_p2p ........................... False
488
+ use_rope_scaling ................................ False
489
+ use_rotary_position_embeddings .................. False
490
+ use_sharp ....................................... False
491
+ use_tokenizer_model_from_checkpoint_args ........ True
492
+ use_torch_fsdp2 ................................. False
493
+ use_torch_optimizer_for_cpu_offload ............. False
494
+ use_tp_pp_dp_mapping ............................ False
495
+ v_head_dim ...................................... 128
496
+ valid_data_path ................................. None
497
+ variable_seq_lengths ............................ False
498
+ virtual_pipeline_model_parallel_size ............ None
499
+ vision_backbone_type ............................ vit
500
+ vision_pretraining .............................. False
501
+ vision_pretraining_type ......................... classify
502
+ vocab_extra_ids ................................. 0
503
+ vocab_file ...................................... vocab.json
504
+ vocab_size ...................................... None
505
+ wandb_exp_name ..................................
506
+ wandb_project ...................................
507
+ wandb_save_dir ..................................
508
+ weight_decay .................................... 0.1
509
+ weight_decay_incr_style ......................... constant
510
+ wgrad_deferral_limit ............................ 0
511
+ world_size ...................................... 8
512
+ yaml_cfg ........................................ None
513
+ -------------------- end of arguments ---------------------
514
+ INFO:megatron.core.num_microbatches_calculator:setting number of microbatches to constant 1
515
+ > building GPT2BPETokenizer tokenizer ...
516
+ > padded vocab (size: 50257) with 47 dummy tokens (new size: 50304)
517
+ INFO:megatron.training.initialize:Setting logging level to 0
518
+ WARNING:megatron.core.rerun_state_machine:RerunStateMachine initialized in mode RerunMode.DISABLED
519
+ > initializing torch distributed ...
520
+ WARNING: TensorBoard writing requested but is not available (are you using PyTorch 1.1.0 or later?), no TensorBoard logs will be written.
521
+ WARNING: one_logger package is required to enable e2e metrics tracking. please go to https://confluence.nvidia.com/display/MLWFO/Package+Repositories for details to install it
522
+ INFO:megatron.training.initialize:Setting logging level to 0
523
+ INFO:megatron.training.initialize:Setting logging level to 0
524
+ INFO:megatron.training.initialize:Setting logging level to 0
525
+ INFO:megatron.training.initialize:Setting logging level to 0
526
+ INFO:megatron.training.initialize:Setting logging level to 0
527
+ INFO:megatron.training.initialize:Setting logging level to 0
528
+ > initialized tensor model parallel with size 1
529
+ > initialized pipeline model parallel with size 1
530
+ > setting random seeds to 1234 ...
531
+ > compiling dataset index builder ...
532
+ make: Entering directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
533
+ make: Nothing to be done for 'default'.
534
+ make: Leaving directory '/mnt/weka/home/hao.zhang/junda/attnserver-megatron/megatron/core/datasets'
535
+ >>> done with dataset index builder. Compilation time: 0.059 seconds
536
+ > compiling and loading fused kernels ...
537
+ >>> done with compiling and loading fused kernels. Compilation time: 2.515 seconds
538
+ time to initialize megatron (seconds): 7.924
539
+ [after megatron is initialized] datetime: 2025-06-21 22:06:42
540
+ building GPT model ...
541
+ >>> embedding
542
+ >>> decoder
543
+ >>> output_layer
544
+ >>> embedding
545
+ >>> decoder
546
+ >>> output_layer
547
+ >>> embedding
548
+ >>> decoder
549
+ >>> output_layer
550
+ >>> embedding
551
+ >>> decoder
552
+ >>> output_layer
553
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
554
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
555
+ >>> embedding
556
+ >>> decoder
557
+ >>> output_layer
558
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
559
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
560
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
561
+ >>> embedding
562
+ >>> decoder
563
+ >>> output_layer
564
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
565
+ >>> embedding
566
+ >>> decoder
567
+ >>> output_layer
568
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
569
+ >>> embedding
570
+ >>> decoder
571
+ >>> output_layer
572
+ > number of parameters on (tensor, pipeline) model parallel rank (0, 0): 562663424
573
+ INFO:megatron.core.distributed.distributed_data_parallel:Setting up DistributedDataParallel with config DistributedDataParallelConfig(grad_reduce_in_fp32=False, overlap_grad_reduce=False, overlap_param_gather=False, align_param_gather=False, use_distributed_optimizer=False, num_distributed_optimizer_instances=1, check_for_nan_in_grad=False, check_for_large_grads=False, bucket_size=None, pad_buckets_for_high_nccl_busbw=False, average_in_collective=False, fp8_param_gather=False, use_custom_fsdp=False, data_parallel_sharding_strategy='no_shard', gradient_reduce_div_fusion=True, suggested_communication_unit_size=None, preserve_fp32_weights=True, keep_fp8_transpose_cache_when_using_custom_fsdp=False, nccl_ub=False, fsdp_double_buffer=False)
574
+ INFO:megatron.core.distributed.param_and_grad_buffer:Number of buckets for gradient all-reduce / reduce-scatter: 1
575
+ Params for bucket 1 (562663424 elements, 562663424 padded size):
576
+ module.decoder.final_layernorm.weight
577
+ module.decoder.layers.1.self_attention.linear_qkv.weight
578
+ module.decoder.layers.1.self_attention.linear_proj.weight
579
+ module.decoder.layers.0.self_attention.linear_qkv.weight
580
+ module.decoder.layers.1.mlp.linear_fc2.weight
581
+ module.decoder.layers.1.self_attention.linear_proj.bias
582
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_bias
583
+ module.decoder.layers.0.mlp.linear_fc2.weight
584
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_bias
585
+ module.decoder.layers.0.self_attention.linear_proj.weight
586
+ module.embedding.word_embeddings.weight
587
+ module.decoder.layers.1.mlp.linear_fc1.layer_norm_weight
588
+ module.decoder.layers.1.self_attention.linear_qkv.bias
589
+ module.decoder.layers.0.mlp.linear_fc2.bias
590
+ module.decoder.layers.0.mlp.linear_fc1.layer_norm_weight
591
+ module.decoder.layers.0.self_attention.linear_qkv.bias
592
+ module.decoder.layers.0.self_attention.linear_proj.bias
593
+ module.decoder.layers.1.mlp.linear_fc1.weight
594
+ module.decoder.layers.0.mlp.linear_fc1.weight
595
+ module.embedding.position_embeddings.weight
596
+ module.decoder.layers.1.mlp.linear_fc2.bias
597
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_weight
598
+ module.decoder.final_layernorm.bias
599
+ module.decoder.layers.1.self_attention.linear_qkv.layer_norm_bias
600
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_bias
601
+ module.decoder.layers.0.self_attention.linear_qkv.layer_norm_weight
602
+ module.decoder.layers.1.mlp.linear_fc1.bias
603
+ module.decoder.layers.0.mlp.linear_fc1.bias
604
+ INFO:megatron.core.optimizer:Setting up optimizer with config OptimizerConfig(optimizer='adam', lr=0.0005, min_lr=0.0, decoupled_lr=None, decoupled_min_lr=None, weight_decay=0.1, fp16=True, bf16=False, params_dtype=torch.float16, use_precision_aware_optimizer=False, store_param_remainders=True, main_grads_dtype=torch.float32, main_params_dtype=torch.float32, exp_avg_dtype=torch.float32, exp_avg_sq_dtype=torch.float32, loss_scale=None, initial_loss_scale=4294967296, min_loss_scale=1.0, loss_scale_window=1000, hysteresis=2, adam_beta1=0.9, adam_beta2=0.999, adam_eps=1e-08, sgd_momentum=0.9, use_distributed_optimizer=False, overlap_param_gather_with_optimizer_step=False, optimizer_cpu_offload=False, optimizer_offload_fraction=1.0, use_torch_optimizer_for_cpu_offload=False, overlap_cpu_optimizer_d2h_h2d=False, pin_cpu_grads=True, pin_cpu_params=True, clip_grad=1.0, log_num_zeros_in_grad=False, barrier_with_L1_time=True, timers=<megatron.core.timers.Timers object at 0x14972775eea0>, config_logger_dir='')
605
+ INFO:megatron.core.optimizer_param_scheduler:> learning rate decay style: cosine
606
+ WARNING: could not find the metadata file gpt-checkpoint/latest_checkpointed_iteration.txt
607
+ will not load any checkpoints and will start from random
608
+ (min, max) time across ranks (ms):
609
+ load-checkpoint ................................: (3.32, 3.38)
610
+ [after model, optimizer, and learning rate scheduler are built] datetime: 2025-06-21 22:06:42
611
+ > building train, validation, and test datasets ...
612
+ > datasets target sizes (minimum size):
613
+ train: 10
614
+ validation: 1
615
+ test: 1
616
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let mock = True, as both blend and blend_per_split are None
617
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split = 1,1,1, an arbitrarily even split, as mock is True
618
+ INFO:megatron.core.datasets.blended_megatron_dataset_config:Let split_matrix = [(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)]
619
+ > building train, validation, and test datasets for GPT ...
620
+ INFO:megatron.core.datasets.blended_megatron_dataset_builder:Building MockGPTDataset splits with sizes=(10, 1, 1) and config=GPTDatasetConfig(random_seed=1234, sequence_length=1024, blend=None, blend_per_split=None, split='1,1,1', split_matrix=[(0, 0.3333333333333333), (0.3333333333333333, 0.6666666666666666), (0.6666666666666666, 1.0)], num_dataset_builder_threads=1, path_to_cache=None, mmap_bin_files=True, mock=True, tokenizer=<megatron.training.tokenizer.tokenizer._GPT2BPETokenizer object at 0x14972781f770>, mid_level_dataset_surplus=0.005, reset_position_ids=False, reset_attention_mask=False, eod_mask_loss=False, create_attention_mask=True, drop_last_partial_validation_sequence=True, add_extra_token_to_sequence=True, object_storage_cache_path=None)
621
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset train indices
622
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
623
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
624
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.005874 seconds
625
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 66592
626
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
627
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset valid indices
628
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
629
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
630
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.003374 seconds
631
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 66562
632
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
633
+ INFO:megatron.core.datasets.gpt_dataset:Build and save the MockGPTDataset test indices
634
+ DEBUG:megatron.core.datasets.gpt_dataset:> separate_final_epoch: False
635
+ WARNING:megatron.core.datasets.gpt_dataset:Unable to save MockGPTDataset indexes because path_to_cache is None
636
+ DEBUG:megatron.core.datasets.gpt_dataset: > time elapsed: 0.003366 seconds
637
+ INFO:megatron.core.datasets.gpt_dataset:> total number of samples: 66686
638
+ INFO:megatron.core.datasets.gpt_dataset:> total number of epochs: 1
639
+ > finished creating GPT datasets ...
640
+ [after dataloaders are built] datetime: 2025-06-21 22:06:42
641
+ done with setup ...
642
+ training ...(min, max) time across ranks (ms):
643
+ model-and-optimizer-setup ......................: (271.13, 289.44)
644
+ train/valid/test-data-iterators-setup ..........: (168.82, 202.81)
645
+
646
+ Setting rerun_state_machine.current_iteration to 0...
647
+ [before the start of training step] datetime: 2025-06-21 22:06:43
648
+ batch tensor: tokens torch.Size([1, 1024])
649
+ batch tensor: labels torch.Size([1, 1024])
650
+ batch tensor: loss_mask torch.Size([1, 1024])
651
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
652
+ batch tensor: position_ids torch.Size([1, 1024])
653
+ batch tensor: tokens torch.Size([1, 1024])
654
+ batch tensor:batch tensor: labels torch.Size([1, 1024])tokens
655
+ batch tensor: loss_mask torch.Size([1, 1024])
656
+ batch tensor: attention_masktorch.Size([1, 1024]) torch.Size([1, 1, 1024, 1024])
657
+
658
+ batch tensor: position_ids batch tensor:torch.Size([1, 1024])
659
+ labels torch.Size([1, 1024])
660
+ batch tensor: loss_mask torch.Size([1, 1024])
661
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
662
+ batch tensor: position_ids torch.Size([1, 1024])
663
+ batch tensor: tokens torch.Size([1, 1024])
664
+ batch tensor: labels torch.Size([1, 1024])
665
+ batch tensor: loss_mask torch.Size([1, 1024])
666
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
667
+ batch tensor: position_ids torch.Size([1, 1024])
668
+ batch tensor: tokens torch.Size([1, 1024])
669
+ batch tensor: labels torch.Size([1, 1024])
670
+ batch tensor: loss_mask torch.Size([1, 1024])
671
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
672
+ batch tensor: position_ids torch.Size([1, 1024])
673
+ batch tensor: tokens torch.Size([1, 1024])
674
+ batch tensor: labels torch.Size([1, 1024])
675
+ batch tensor: loss_mask torch.Size([1, 1024])
676
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
677
+ batch tensor: position_ids torch.Size([1, 1024])
678
+ batch tensor: tokens torch.Size([1, 1024])
679
+ batch tensor: labels torch.Size([1, 1024])
680
+ batch tensor: loss_mask torch.Size([1, 1024])
681
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
682
+ batch tensor: position_ids torch.Size([1, 1024])
683
+ batch tensor: tokens torch.Size([1, 1024])
684
+ batch tensor: labels torch.Size([1, 1024])
685
+ batch tensor: loss_mask torch.Size([1, 1024])
686
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
687
+ batch tensor: position_ids torch.Size([1, 1024])
688
+ batch tensor after cp: tokens torch.Size([1, 128])
689
+ batch tensor after cp: labels torch.Size([1, 128])
690
+ batch tensor after cp: loss_mask torch.Size([1, 128])
691
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
692
+ batch tensor after cp: position_ids torch.Size([1, 128])
693
+ batch tensor after cp: tokens torch.Size([1, 128])
694
+ batch tensor after cp: labels torch.Size([1, 128])
695
+ batch tensor after cp: loss_mask torch.Size([1, 128])
696
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
697
+ batch tensor after cp: position_ids torch.Size([1, 128])
698
+ batch tensor after cp: tokens torch.Size([1, 128])
699
+ batch tensor after cp: labels torch.Size([1, 128])
700
+ batch tensor after cp: loss_mask torch.Size([1, 128])
701
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
702
+ batch tensor after cp: position_ids torch.Size([1, 128])
703
+ batch tensor after cp: tokens torch.Size([1, 128])
704
+ batch tensor after cp: labels torch.Size([1, 128])
705
+ batch tensor after cp: loss_mask torch.Size([1, 128])
706
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
707
+ batch tensor after cp: position_ids torch.Size([1, 128])
708
+ batch tensor after cp: tokens torch.Size([1, 128])
709
+ batch tensor after cp: labels torch.Size([1, 128])
710
+ batch tensor after cp: loss_mask torch.Size([1, 128])
711
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
712
+ batch tensor after cp: position_ids torch.Size([1, 128])
713
+ batch tensor after cp: tokens torch.Size([1, 128])
714
+ batch tensor after cp: labels torch.Size([1, 128])
715
+ batch tensor after cp: loss_mask torch.Size([1, 128])
716
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
717
+ batch tensor after cp: position_ids torch.Size([1, 128])
718
+ batch tensor after cp: tokens torch.Size([1, 128])
719
+ batch tensor after cp: labels torch.Size([1, 128])
720
+ batch tensor after cp: loss_mask torch.Size([1, 128])
721
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
722
+ batch tensor after cp: position_ids torch.Size([1, 128])
723
+ batch tensor after cp: tokens torch.Size([1, 128])
724
+ batch tensor after cp: labels torch.Size([1, 128])
725
+ batch tensor after cp: loss_mask torch.Size([1, 128])
726
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
727
+ batch tensor after cp: position_ids torch.Size([1, 128])
728
+ Start exporting trace 0
729
+ Done exporting trace 0
730
+ Number of parameters in transformer block in billions: 0.35
731
+ [2025-06-21 22:06:58] iteration 1/ 10 | consumed samples: 1 | elapsed time per iteration (ms): 15326.1 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 4294967296.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
732
+ Number of parameters in embedding layers in billions: 0.21
733
+ Total number of parameters in billions: 0.56
734
+ Number of parameters in most loaded shard in billions: 0.5584
735
+ Theoretical memory footprints: weight and optimizer=9585.70 MB
736
+ [Rank 2] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7222.0 | max reserved: 7222.0
737
+ [Rank 5] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7224.0 | max reserved: 7224.0
738
+ [Rank 4] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7222.0 | max reserved: 7222.0[Rank 0] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7222.0 | max reserved: 7222.0[Rank 1] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7222.0 | max reserved: 7222.0
739
+
740
+
741
+ [Rank 3] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7222.0 | max reserved: 7222.0[Rank 7] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7224.0 | max reserved: 7224.0
742
+
743
+ [Rank 6] (after 1 iterations) memory (MB) | allocated: 6874.138671875 | max allocated: 6874.1396484375 | reserved: 7222.0 | max reserved: 7222.0
744
+ batch tensor: tokens batch tensor: tokenstorch.Size([1, 1024])
745
+ batch tensor: labels torch.Size([1, 1024])torch.Size([1, 1024])
746
+
747
+ batch tensor: loss_maskbatch tensor: torch.Size([1, 1024])labels
748
+ torch.Size([1, 1024])
749
+ batch tensor: batch tensor:attention_mask loss_masktorch.Size([1, 1, 1024, 1024])
750
+ torch.Size([1, 1024])
751
+ batch tensor: batch tensor:position_ids attention_masktorch.Size([1, 1024])
752
+ torch.Size([1, 1, 1024, 1024])
753
+ batch tensor: position_ids torch.Size([1, 1024])
754
+ batch tensor: tokens torch.Size([1, 1024])
755
+ batch tensor: labels torch.Size([1, 1024])
756
+ batch tensor: loss_mask torch.Size([1, 1024])
757
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
758
+ batch tensor:batch tensor: position_ids torch.Size([1, 1024])tokens
759
+ torch.Size([1, 1024])
760
+ batch tensor: labels torch.Size([1, 1024])
761
+ batch tensor: loss_mask torch.Size([1, 1024])
762
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
763
+ batch tensor: position_ids torch.Size([1, 1024])
764
+ batch tensor: tokens torch.Size([1, 1024])
765
+ batch tensor: labels torch.Size([1, 1024])
766
+ batch tensor: loss_mask torch.Size([1, 1024])
767
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
768
+ batch tensor: position_ids torch.Size([1, 1024])
769
+ batch tensor: tokens torch.Size([1, 1024])batch tensor:
770
+ batch tensor:tokens labels torch.Size([1, 1024])
771
+ batch tensor: loss_mask torch.Size([1, 1024])
772
+ torch.Size([1, 1024])batch tensor:
773
+ attention_mask batch tensor:torch.Size([1, 1, 1024, 1024])
774
+ labels batch tensor:torch.Size([1, 1024])
775
+ position_ids batch tensor:torch.Size([1, 1024])
776
+ loss_mask torch.Size([1, 1024])
777
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
778
+ batch tensor: position_ids torch.Size([1, 1024])
779
+ batch tensor after cp: tokens torch.Size([1, 128])
780
+ batch tensor after cp: labels torch.Size([1, 128])
781
+ batch tensor after cp: batch tensor after cp:loss_mask tokenstorch.Size([1, 128])
782
+ batch tensor after cp:torch.Size([1, 128])
783
+ attention_mask batch tensor after cp: torch.Size([1, 1, 128, 1024])labels
784
+ batch tensor after cp:torch.Size([1, 128])
785
+ position_idsbatch tensor after cp: torch.Size([1, 128])loss_mask
786
+ torch.Size([1, 128])
787
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
788
+ batch tensor after cp: position_ids torch.Size([1, 128])
789
+ batch tensor after cp:batch tensor after cp: tokenstokens torch.Size([1, 128])
790
+ batch tensor after cp:torch.Size([1, 128])
791
+ labels batch tensor after cp:torch.Size([1, 128])
792
+ labelsbatch tensor after cp: torch.Size([1, 128])loss_mask
793
+ batch tensor after cp:torch.Size([1, 128])
794
+ loss_maskbatch tensor after cp: torch.Size([1, 128])attention_mask
795
+ batch tensor after cp:torch.Size([1, 1, 128, 1024])
796
+ attention_mask batch tensor after cp: torch.Size([1, 1, 128, 1024])position_ids
797
+ batch tensor after cp:torch.Size([1, 128])
798
+ position_ids torch.Size([1, 128])
799
+ batch tensor after cp: tokens torch.Size([1, 128])
800
+ batch tensor after cp: labels torch.Size([1, 128])
801
+ batch tensor after cp: loss_mask torch.Size([1, 128])
802
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
803
+ batch tensor after cp: position_ids torch.Size([1, 128])
804
+ batch tensor after cp: tokens torch.Size([1, 128])
805
+ batch tensor after cp: labels torch.Size([1, 128])
806
+ batch tensor after cp: loss_mask torch.Size([1, 128])
807
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
808
+ batch tensor after cp: position_ids torch.Size([1, 128])
809
+ batch tensor after cp: tokens torch.Size([1, 128])
810
+ batch tensor after cp: labels torch.Size([1, 128])
811
+ batch tensor after cp: loss_mask torch.Size([1, 128])
812
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
813
+ batch tensor after cp: position_ids torch.Size([1, 128])
814
+ batch tensor: tokens torch.Size([1, 1024])
815
+ batch tensor: labels torch.Size([1, 1024])
816
+ batch tensor: loss_mask torch.Size([1, 1024])
817
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
818
+ batch tensor: position_ids torch.Size([1, 1024])
819
+ batch tensor after cp: tokens torch.Size([1, 128])
820
+ batch tensor after cp: labels torch.Size([1, 128])
821
+ batch tensor after cp: loss_mask torch.Size([1, 128])
822
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
823
+ batch tensor after cp: position_ids torch.Size([1, 128])
824
+ Start exporting trace 1
825
+ Done exporting trace 1
826
+ [2025-06-21 22:06:58] iteration 2/ 10 | consumed samples: 2 | elapsed time per iteration (ms): 75.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 2147483648.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
827
+ batch tensor: tokens torch.Size([1, 1024])
828
+ batch tensor: labels torch.Size([1, 1024])
829
+ batch tensor: loss_mask torch.Size([1, 1024])
830
+ batch tensor: batch tensor:attention_maskbatch tensor: batch tensor: torch.Size([1, 1, 1024, 1024]) tokens
831
+ tokensbatch tensor:tokens position_idstorch.Size([1, 1024])
832
+ torch.Size([1, 1024])torch.Size([1, 1024])batch tensor:torch.Size([1, 1024])
833
+
834
+ batch tensor:
835
+ batch tensor: tokens labelsbatch tensor: labels torch.Size([1, 1024])torch.Size([1, 1024])labels
836
+
837
+ torch.Size([1, 1024])batch tensor: batch tensor:
838
+ loss_masktorch.Size([1, 1024]) batch tensor:loss_mask
839
+ torch.Size([1, 1024]) labels batch tensor:batch tensor:
840
+ torch.Size([1, 1024])torch.Size([1, 1024]) loss_mask
841
+
842
+ batch tensor:tokens batch tensor:batch tensor: torch.Size([1, 1024]) attention_maskloss_mask torch.Size([1, 1024])
843
+ attention_masktorch.Size([1, 1, 1024, 1024])batch tensor:
844
+
845
+ torch.Size([1, 1024]) batch tensor:attention_mask
846
+ batch tensor:batch tensor:batch tensor:torch.Size([1, 1, 1024, 1024])
847
+ attention_mask batch tensor:tokens position_idstorch.Size([1, 1, 1024, 1024]) position_ids
848
+ batch tensor: batch tensor:labels torch.Size([1, 1, 1024, 1024])torch.Size([1, 1024])
849
+ torch.Size([1, 1024])position_idstokens torch.Size([1, 1024])
850
+ batch tensor:
851
+ torch.Size([1, 1024])torch.Size([1, 1024])batch tensor:
852
+
853
+
854
+ torch.Size([1, 1024]) position_idslabelsbatch tensor:
855
+ torch.Size([1, 1024])loss_masktorch.Size([1, 1024])batch tensor:
856
+
857
+ batch tensor:torch.Size([1, 1024])labels
858
+ loss_maskbatch tensor:torch.Size([1, 1024])
859
+ attention_masktorch.Size([1, 1024])batch tensor:
860
+ loss_masktorch.Size([1, 1, 1024, 1024]) batch tensor:
861
+ torch.Size([1, 1024]) batch tensor:
862
+ attention_mask batch tensor: position_ids torch.Size([1, 1, 1024, 1024]) attention_mask
863
+ batch tensor:torch.Size([1, 1024]) position_ids
864
+ torch.Size([1, 1, 1024, 1024])
865
+ torch.Size([1, 1024])batch tensor:
866
+ position_ids torch.Size([1, 1024])
867
+ batch tensor after cp: tokens torch.Size([1, 128])
868
+ batch tensor after cp: labels torch.Size([1, 128])
869
+ batch tensor after cp: loss_mask torch.Size([1, 128])
870
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
871
+ batch tensor after cp: position_ids torch.Size([1, 128])
872
+ batch tensor after cp:batch tensor after cp:batch tensor after cp: batch tensor after cp:tokenstokenstokens tokens torch.Size([1, 128]) torch.Size([1, 128])
873
+ torch.Size([1, 128])
874
+ torch.Size([1, 128])batch tensor after cp:
875
+
876
+ batch tensor after cp: batch tensor after cp:batch tensor after cp:labelslabels labelstorch.Size([1, 128])labels
877
+ torch.Size([1, 128]) batch tensor after cp:
878
+ torch.Size([1, 128]) batch tensor after cp:
879
+ loss_masktorch.Size([1, 128])batch tensor after cp:
880
+ loss_mask torch.Size([1, 128])batch tensor after cp: loss_mask
881
+ torch.Size([1, 128]) batch tensor after cp:
882
+ loss_masktorch.Size([1, 128])batch tensor after cp: batch tensor after cp:
883
+ torch.Size([1, 128])
884
+ batch tensor after cp:batch tensor after cp:attention_mask tokens attention_mask torch.Size([1, 1, 128, 1024])batch tensor after cp:torch.Size([1, 128])attention_mask tokens
885
+
886
+ batch tensor after cp:torch.Size([1, 1, 128, 1024])batch tensor after cp:attention_mask torch.Size([1, 1, 128, 1024])batch tensor after cp:
887
+ tokens
888
+ torch.Size([1, 128]) batch tensor after cp:torch.Size([1, 1, 128, 1024])
889
+ batch tensor after cp:position_idslabels
890
+ batch tensor after cp: torch.Size([1, 128]) position_idsbatch tensor after cp: position_ids
891
+ torch.Size([1, 128])torch.Size([1, 128])
892
+ labelstorch.Size([1, 128])batch tensor after cp:
893
+ position_idstorch.Size([1, 128])batch tensor after cp:
894
+
895
+ torch.Size([1, 128])loss_masklabelstorch.Size([1, 128])
896
+
897
+ batch tensor after cp: torch.Size([1, 128]) torch.Size([1, 128])
898
+ loss_mask
899
+ batch tensor after cp: batch tensor after cp:torch.Size([1, 128]) attention_mask
900
+ loss_maskbatch tensor after cp:torch.Size([1, 1, 128, 1024])
901
+ torch.Size([1, 128])attention_mask
902
+ batch tensor after cp: batch tensor after cp: torch.Size([1, 1, 128, 1024])position_idsattention_mask
903
+ batch tensor after cp:torch.Size([1, 128])torch.Size([1, 1, 128, 1024])
904
+
905
+ position_idsbatch tensor after cp: torch.Size([1, 128])position_ids
906
+ torch.Size([1, 128])
907
+ Start exporting trace 2
908
+ Done exporting trace 2
909
+ [2025-06-21 22:06:58] iteration 3/ 10 | consumed samples: 3 | elapsed time per iteration (ms): 48.6 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 1073741824.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
910
+ batch tensor: tokens torch.Size([1, 1024])
911
+ batch tensor: labels torch.Size([1, 1024])
912
+ batch tensor: loss_mask torch.Size([1, 1024])
913
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
914
+ batch tensor: position_ids torch.Size([1, 1024])
915
+ batch tensor: tokens torch.Size([1, 1024])
916
+ batch tensor: labels torch.Size([1, 1024])
917
+ batch tensor: loss_mask torch.Size([1, 1024])
918
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
919
+ batch tensor: position_ids torch.Size([1, 1024])
920
+ batch tensor: tokens torch.Size([1, 1024])
921
+ batch tensor: labels torch.Size([1, 1024])
922
+ batch tensor: loss_mask torch.Size([1, 1024])
923
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
924
+ batch tensor: position_ids torch.Size([1, 1024])
925
+ batch tensor after cp: tokens torch.Size([1, 128])
926
+ batch tensor after cp: labels torch.Size([1, 128])
927
+ batch tensor after cp: loss_mask torch.Size([1, 128])
928
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
929
+ batch tensor after cp: position_ids torch.Size([1, 128])
930
+ batch tensor after cp: tokens torch.Size([1, 128])
931
+ batch tensor after cp: labels torch.Size([1, 128])
932
+ batch tensor after cp: loss_mask torch.Size([1, 128])
933
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
934
+ batch tensor after cp: position_ids torch.Size([1, 128])
935
+ batch tensor after cp: tokens torch.Size([1, 128])
936
+ batch tensor after cp: labels torch.Size([1, 128])
937
+ batch tensor after cp: loss_mask torch.Size([1, 128])
938
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
939
+ batch tensor after cp: position_ids torch.Size([1, 128])
940
+ batch tensor: tokens torch.Size([1, 1024])
941
+ batch tensor: labels torch.Size([1, 1024])
942
+ batch tensor: loss_mask torch.Size([1, 1024])
943
+ batch tensor: attention_mask batch tensor:torch.Size([1, 1, 1024, 1024])
944
+ batch tensor: tokensposition_ids torch.Size([1, 1024])
945
+ torch.Size([1, 1024])
946
+ batch tensor: labels torch.Size([1, 1024])
947
+ batch tensor: loss_mask torch.Size([1, 1024])
948
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
949
+ batch tensor: position_ids torch.Size([1, 1024])
950
+ batch tensor: tokens torch.Size([1, 1024])
951
+ batch tensor: labels batch tensor after cp:torch.Size([1, 1024])
952
+ tokensbatch tensor: loss_mask torch.Size([1, 128])
953
+ torch.Size([1, 1024])batch tensor after cp:batch tensor after cp:
954
+ batch tensor:tokens labels attention_mask torch.Size([1, 128]) torch.Size([1, 128])torch.Size([1, 1, 1024, 1024])
955
+
956
+
957
+ batch tensor after cp:batch tensor after cp:batch tensor:batch tensor: loss_mask labelstorch.Size([1, 128])
958
+ position_idstokens torch.Size([1, 128])
959
+ batch tensor after cp: torch.Size([1, 1024])batch tensor after cp:
960
+ torch.Size([1, 1024]) attention_mask
961
+ loss_mask batch tensor:torch.Size([1, 1, 128, 1024])torch.Size([1, 128])
962
+
963
+ batch tensor after cp:labelsbatch tensor after cp: position_idstorch.Size([1, 1024]) attention_mask
964
+ torch.Size([1, 128])batch tensor:torch.Size([1, 1, 128, 1024])
965
+
966
+ loss_mask batch tensor after cp: torch.Size([1, 1024])position_ids
967
+ torch.Size([1, 128])batch tensor:
968
+ attention_mask torch.Size([1, 1, 1024, 1024])
969
+ batch tensor: position_ids torch.Size([1, 1024])
970
+ batch tensor: tokens torch.Size([1, 1024])
971
+ batch tensor: labels torch.Size([1, 1024])
972
+ batch tensor: loss_mask torch.Size([1, 1024])
973
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
974
+ batch tensor: position_ids torch.Size([1, 1024])
975
+ batch tensor after cp: tokens torch.Size([1, 128])
976
+ batch tensor after cp: labels torch.Size([1, 128])
977
+ batch tensor after cp: loss_mask torch.Size([1, 128])
978
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
979
+ batch tensor after cp: position_ids torch.Size([1, 128])
980
+ batch tensor after cp: tokens torch.Size([1, 128])
981
+ batch tensor after cp: labels torch.Size([1, 128])
982
+ batch tensor after cp: loss_mask torch.Size([1, 128])
983
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
984
+ batch tensor after cp: position_ids torch.Size([1, 128])
985
+ batch tensor after cp: tokens torch.Size([1, 128])
986
+ batch tensor after cp: labels torch.Size([1, 128])
987
+ batch tensor after cp: loss_mask torch.Size([1, 128])
988
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
989
+ batch tensor after cp: position_ids torch.Size([1, 128])
990
+ Start exporting trace 3
991
+ Done exporting trace 3
992
+ [2025-06-21 22:06:58] iteration 4/ 10 | consumed samples: 4 | elapsed time per iteration (ms): 45.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 536870912.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
993
+ batch tensor: tokens torch.Size([1, 1024])
994
+ batch tensor: labels torch.Size([1, 1024])
995
+ batch tensor: batch tensor:loss_mask torch.Size([1, 1024])
996
+ tokensbatch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
997
+ batch tensor: torch.Size([1, 1024])position_ids
998
+ torch.Size([1, 1024])
999
+ batch tensor: labels torch.Size([1, 1024])
1000
+ batch tensor: loss_mask torch.Size([1, 1024])
1001
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1002
+ batch tensor: position_ids torch.Size([1, 1024])
1003
+ batch tensor: tokens batch tensor:torch.Size([1, 1024])
1004
+ tokensbatch tensor: labels torch.Size([1, 1024])
1005
+ batch tensor: torch.Size([1, 1024])loss_mask
1006
+ torch.Size([1, 1024])
1007
+ batch tensor:batch tensor: labelsattention_mask torch.Size([1, 1024])torch.Size([1, 1, 1024, 1024])
1008
+
1009
+ batch tensor: batch tensor:loss_mask position_idstorch.Size([1, 1024])
1010
+ torch.Size([1, 1024])
1011
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1012
+ batch tensor: position_ids torch.Size([1, 1024])
1013
+ batch tensor after cp: tokens torch.Size([1, 128])
1014
+ batch tensor after cp: labels torch.Size([1, 128])
1015
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1016
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1017
+ batch tensor after cp: position_ids torch.Size([1, 128])
1018
+ batch tensor after cp: tokens torch.Size([1, 128])
1019
+ batch tensor after cp: labels torch.Size([1, 128])
1020
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1021
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1022
+ batch tensor after cp: position_ids torch.Size([1, 128])
1023
+ batch tensor after cp: tokens torch.Size([1, 128])
1024
+ batch tensor after cp: labels torch.Size([1, 128])
1025
+ batch tensor after cp:batch tensor after cp: loss_masktokens torch.Size([1, 128])
1026
+ torch.Size([1, 128])batch tensor after cp:
1027
+ attention_maskbatch tensor after cp: torch.Size([1, 1, 128, 1024])labels
1028
+ batch tensor after cp:torch.Size([1, 128])
1029
+ position_idsbatch tensor after cp: torch.Size([1, 128])
1030
+ loss_mask torch.Size([1, 128])
1031
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1032
+ batch tensor after cp: position_ids torch.Size([1, 128])
1033
+ batch tensor:batch tensor: batch tensor: tokens tokens tokenstorch.Size([1, 1024])
1034
+ torch.Size([1, 1024])batch tensor:
1035
+ torch.Size([1, 1024])labelsbatch tensor:
1036
+ torch.Size([1, 1024])labels
1037
+ batch tensor: batch tensor:torch.Size([1, 1024])
1038
+ labelsloss_maskbatch tensor: torch.Size([1, 1024])loss_masktorch.Size([1, 1024])
1039
+
1040
+ batch tensor:torch.Size([1, 1024])batch tensor:
1041
+ attention_maskbatch tensor:loss_mask attention_mask torch.Size([1, 1, 1024, 1024])torch.Size([1, 1024])
1042
+ torch.Size([1, 1, 1024, 1024])
1043
+ batch tensor:
1044
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1045
+ batch tensor: position_ids position_ids torch.Size([1, 1024])
1046
+ batch tensor:torch.Size([1, 1024])
1047
+ position_ids torch.Size([1, 1024])
1048
+ batch tensor after cp: tokens torch.Size([1, 128])
1049
+ batch tensor after cp: labels torch.Size([1, 128])
1050
+ batch tensor after cp: loss_mask batch tensor after cp:torch.Size([1, 128])batch tensor after cp:
1051
+ tokens batch tensor after cp:tokens torch.Size([1, 128])attention_masktorch.Size([1, 128])
1052
+
1053
+ torch.Size([1, 1, 128, 1024])batch tensor after cp:batch tensor after cp:
1054
+ batch tensor after cp:labels labels position_ids torch.Size([1, 128])
1055
+ torch.Size([1, 128])torch.Size([1, 128])batch tensor after cp:
1056
+
1057
+ loss_maskbatch tensor after cp: torch.Size([1, 128])loss_mask
1058
+ torch.Size([1, 128])batch tensor after cp:
1059
+ batch tensor after cp:attention_mask attention_mask torch.Size([1, 1, 128, 1024])
1060
+ torch.Size([1, 1, 128, 1024])batch tensor after cp:
1061
+ batch tensor after cp:position_ids position_idstorch.Size([1, 128])
1062
+ torch.Size([1, 128])
1063
+ batch tensor: tokens torch.Size([1, 1024])
1064
+ batch tensor: labels torch.Size([1, 1024])
1065
+ batch tensor: loss_mask torch.Size([1, 1024])
1066
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1067
+ batch tensor: position_ids torch.Size([1, 1024])
1068
+ batch tensor after cp: tokens torch.Size([1, 128])
1069
+ batch tensor after cp: labels torch.Size([1, 128])
1070
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1071
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1072
+ batch tensor after cp: position_ids torch.Size([1, 128])
1073
+ Start exporting trace 4
1074
+ Done exporting trace 4
1075
+ [2025-06-21 22:06:58] iteration 5/ 10 | consumed samples: 5 | elapsed time per iteration (ms): 44.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 268435456.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
1076
+ batch tensor: tokens torch.Size([1, 1024])
1077
+ batch tensor: labels torch.Size([1, 1024])
1078
+ batch tensor: loss_mask torch.Size([1, 1024])
1079
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1080
+ batch tensor: batch tensor:position_ids torch.Size([1, 1024])
1081
+ tokens torch.Size([1, 1024])
1082
+ batch tensor: labels torch.Size([1, 1024])
1083
+ batch tensor: loss_mask torch.Size([1, 1024])
1084
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1085
+ batch tensor: position_ids torch.Size([1, 1024])
1086
+ batch tensor: tokens torch.Size([1, 1024])
1087
+ batch tensor: labels torch.Size([1, 1024])
1088
+ batch tensor: loss_mask torch.Size([1, 1024])
1089
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1090
+ batch tensor: position_ids torch.Size([1, 1024])
1091
+ batch tensor after cp: tokens torch.Size([1, 128])
1092
+ batch tensor after cp: labels torch.Size([1, 128])
1093
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1094
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1095
+ batch tensor after cp: position_ids torch.Size([1, 128])
1096
+ batch tensor: batch tensor after cp:tokens tokens torch.Size([1, 128])
1097
+ torch.Size([1, 1024])batch tensor after cp:
1098
+ labels batch tensor:torch.Size([1, 128])
1099
+ labelsbatch tensor after cp: torch.Size([1, 1024])
1100
+ loss_maskbatch tensor: torch.Size([1, 128])loss_mask
1101
+ batch tensor after cp:torch.Size([1, 1024])
1102
+ attention_mask batch tensor:torch.Size([1, 1, 128, 1024])
1103
+ attention_maskbatch tensor after cp: position_idstorch.Size([1, 1, 1024, 1024]) torch.Size([1, 128])
1104
+
1105
+ batch tensor: position_ids torch.Size([1, 1024])
1106
+ batch tensor after cp: tokens torch.Size([1, 128])
1107
+ batch tensor after cp: labels torch.Size([1, 128])
1108
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1109
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1110
+ batch tensor after cp: position_ids torch.Size([1, 128])
1111
+ batch tensor: tokens torch.Size([1, 1024])
1112
+ batch tensor: labels torch.Size([1, 1024])
1113
+ batch tensor: loss_mask torch.Size([1, 1024])
1114
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1115
+ batch tensor: position_ids torch.Size([1, 1024])
1116
+ batch tensor after cp: tokens torch.Size([1, 128])
1117
+ batch tensor after cp: labels torch.Size([1, 128])
1118
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1119
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1120
+ batch tensor after cp: position_ids torch.Size([1, 128])
1121
+ batch tensor:batch tensor: tokens tokens torch.Size([1, 1024])
1122
+ torch.Size([1, 1024])
1123
+ batch tensor: labelsbatch tensor: labelstorch.Size([1, 1024])
1124
+ torch.Size([1, 1024])batch tensor:
1125
+ batch tensor:loss_mask loss_masktorch.Size([1, 1024])
1126
+ torch.Size([1, 1024])
1127
+ batch tensor: batch tensor:attention_mask attention_masktorch.Size([1, 1, 1024, 1024])
1128
+ torch.Size([1, 1, 1024, 1024])batch tensor:
1129
+ position_idsbatch tensor: position_idstorch.Size([1, 1024])
1130
+ torch.Size([1, 1024])
1131
+ batch tensor: tokens torch.Size([1, 1024])
1132
+ batch tensor after cp: batch tensor:tokens labels torch.Size([1, 128])torch.Size([1, 1024])
1133
+
1134
+ batch tensor after cp:batch tensor: labelsloss_mask torch.Size([1, 128])torch.Size([1, 1024])
1135
+
1136
+ batch tensor after cp:batch tensor: loss_maskattention_mask torch.Size([1, 128])torch.Size([1, 1, 1024, 1024])
1137
+
1138
+ batch tensor after cp:batch tensor: attention_maskposition_ids torch.Size([1, 1, 128, 1024])torch.Size([1, 1024])
1139
+
1140
+ batch tensor after cp: position_ids torch.Size([1, 128])
1141
+ batch tensor after cp: tokens batch tensor after cp:torch.Size([1, 128])
1142
+ tokensbatch tensor after cp: torch.Size([1, 128])labels
1143
+ torch.Size([1, 128])batch tensor after cp:
1144
+ batch tensor after cp:labels loss_masktorch.Size([1, 128])
1145
+ torch.Size([1, 128])batch tensor after cp:
1146
+ loss_maskbatch tensor after cp: torch.Size([1, 128])attention_mask
1147
+ batch tensor after cp:torch.Size([1, 1, 128, 1024])
1148
+ attention_mask batch tensor after cp:torch.Size([1, 1, 128, 1024])
1149
+ position_ids batch tensor after cp:torch.Size([1, 128])
1150
+ position_ids torch.Size([1, 128])
1151
+ batch tensor after cp: tokens torch.Size([1, 128])
1152
+ batch tensor after cp: labels torch.Size([1, 128])
1153
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1154
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1155
+ batch tensor after cp: position_ids torch.Size([1, 128])
1156
+ Start exporting trace 5
1157
+ Done exporting trace 5
1158
+ [2025-06-21 22:06:58] iteration 6/ 10 | consumed samples: 6 | elapsed time per iteration (ms): 45.8 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 134217728.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
1159
+ batch tensor:batch tensor: tokenstokens torch.Size([1, 1024])torch.Size([1, 1024])
1160
+
1161
+ batch tensor: labelsbatch tensor: torch.Size([1, 1024])labels
1162
+ batch tensor: loss_masktorch.Size([1, 1024])
1163
+ torch.Size([1, 1024])
1164
+ batch tensor: batch tensor:loss_mask attention_masktorch.Size([1, 1024]) batch tensor:torch.Size([1, 1, 1024, 1024])
1165
+
1166
+ batch tensor:batch tensor: batch tensor:tokensposition_ids attention_mask torch.Size([1, 1024])
1167
+ torch.Size([1, 1, 1024, 1024])tokens
1168
+ torch.Size([1, 1024])batch tensor:
1169
+ position_ids batch tensor:torch.Size([1, 1024])torch.Size([1, 1024])
1170
+
1171
+ labels torch.Size([1, 1024])batch tensor:
1172
+ batch tensor:labels loss_masktorch.Size([1, 1024])
1173
+ torch.Size([1, 1024])batch tensor:
1174
+ loss_maskbatch tensor: torch.Size([1, 1024])attention_mask
1175
+ torch.Size([1, 1, 1024, 1024])batch tensor:
1176
+ attention_maskbatch tensor: position_idstorch.Size([1, 1, 1024, 1024])
1177
+ torch.Size([1, 1024])batch tensor:
1178
+ position_ids torch.Size([1, 1024])
1179
+ batch tensor: tokens torch.Size([1, 1024])
1180
+ batch tensor: labels torch.Size([1, 1024])
1181
+ batch tensor: loss_mask torch.Size([1, 1024])
1182
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1183
+ batch tensor: position_ids torch.Size([1, 1024])
1184
+ batch tensor: tokens torch.Size([1, 1024])
1185
+ batch tensor: labels torch.Size([1, 1024])
1186
+ batch tensor: loss_mask torch.Size([1, 1024])
1187
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1188
+ batch tensor: position_ids torch.Size([1, 1024])
1189
+ batch tensor after cp: tokens torch.Size([1, 128])
1190
+ batch tensor after cp: labels torch.Size([1, 128])
1191
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1192
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1193
+ batch tensor after cp: position_ids torch.Size([1, 128])
1194
+ batch tensor after cp: tokens torch.Size([1, 128])
1195
+ batch tensor after cp:batch tensor after cp: tokenslabels batch tensor after cp:torch.Size([1, 128])torch.Size([1, 128])
1196
+
1197
+ tokensbatch tensor after cp:batch tensor after cp: loss_mask labelstorch.Size([1, 128]) torch.Size([1, 128])
1198
+ torch.Size([1, 128])
1199
+
1200
+ batch tensor after cp:batch tensor after cp:batch tensor after cp: labelsattention_maskloss_mask batch tensor: torch.Size([1, 128])
1201
+ torch.Size([1, 128])torch.Size([1, 1, 128, 1024])
1202
+ batch tensor after cp:
1203
+ batch tensor after cp:tokens batch tensor after cp:attention_mask loss_mask position_ids torch.Size([1, 1, 128, 1024])torch.Size([1, 128])torch.Size([1, 128])
1204
+
1205
+ torch.Size([1, 1024])
1206
+ batch tensor after cp:batch tensor after cp:
1207
+ attention_maskposition_ids batch tensor:torch.Size([1, 1, 128, 1024])torch.Size([1, 128])
1208
+
1209
+ labelsbatch tensor after cp: torch.Size([1, 1024])position_ids
1210
+ torch.Size([1, 128])batch tensor:
1211
+ loss_mask torch.Size([1, 1024])
1212
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1213
+ batch tensor: position_ids torch.Size([1, 1024])
1214
+ batch tensor after cp: tokens torch.Size([1, 128])
1215
+ batch tensor after cp: labels torch.Size([1, 128])
1216
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1217
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1218
+ batch tensor after cp: position_ids torch.Size([1, 128])
1219
+ batch tensor after cp: tokens torch.Size([1, 128])
1220
+ batch tensor after cp: labels torch.Size([1, 128])
1221
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1222
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1223
+ batch tensor after cp: position_ids torch.Size([1, 128])
1224
+ batch tensor after cp: tokens torch.Size([1, 128])
1225
+ batch tensor after cp: labels torch.Size([1, 128])
1226
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1227
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1228
+ batch tensor after cp: position_ids torch.Size([1, 128])
1229
+ batch tensor: tokens torch.Size([1, 1024])
1230
+ batch tensor: labels torch.Size([1, 1024])
1231
+ batch tensor: loss_mask torch.Size([1, 1024])
1232
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1233
+ batch tensor: position_ids torch.Size([1, 1024])
1234
+ batch tensor after cp: tokens torch.Size([1, 128])
1235
+ batch tensor after cp: labels torch.Size([1, 128])
1236
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1237
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1238
+ batch tensor after cp: position_ids torch.Size([1, 128])
1239
+ Start exporting trace 6
1240
+ Done exporting trace 6
1241
+ [2025-06-21 22:06:58] iteration 7/ 10 | consumed samples: 7 | elapsed time per iteration (ms): 43.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 67108864.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
1242
+ batch tensor: tokens torch.Size([1, 1024])
1243
+ batch tensor: labels torch.Size([1, 1024])
1244
+ batch tensor: loss_mask torch.Size([1, 1024])
1245
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1246
+ batch tensor: position_ids torch.Size([1, 1024])
1247
+ batch tensor: tokens torch.Size([1, 1024])
1248
+ batch tensor:batch tensor: labels torch.Size([1, 1024])tokens
1249
+ torch.Size([1, 1024])
1250
+ batch tensor:batch tensor: labels torch.Size([1, 1024])
1251
+ batch tensor: loss_maskbatch tensor: tokens torch.Size([1, 1024]) loss_mask torch.Size([1, 1024])
1252
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024]) torch.Size([1, 1024])
1253
+ batch tensor: attention_mask
1254
+ torch.Size([1, 1, 1024, 1024])
1255
+
1256
+ batch tensor:batch tensor: batch tensor:position_idslabels position_idstorch.Size([1, 1024])torch.Size([1, 1024])
1257
+
1258
+ torch.Size([1, 1024])
1259
+ batch tensor: loss_mask torch.Size([1, 1024])
1260
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1261
+ batch tensor: position_ids torch.Size([1, 1024])
1262
+ batch tensor: tokens torch.Size([1, 1024])
1263
+ batch tensor: labels torch.Size([1, 1024])
1264
+ batch tensor: loss_mask torch.Size([1, 1024])
1265
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1266
+ batch tensor: position_ids torch.Size([1, 1024])
1267
+ batch tensor after cp: tokens torch.Size([1, 128])
1268
+ batch tensor after cp: labels torch.Size([1, 128])
1269
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1270
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1271
+ batch tensor after cp: position_ids torch.Size([1, 128])
1272
+ batch tensor: tokens torch.Size([1, 1024])
1273
+ batch tensor: labels torch.Size([1, 1024])
1274
+ batch tensor: loss_mask torch.Size([1, 1024])
1275
+ batch tensor: attention_mask batch tensor after cp:torch.Size([1, 1, 1024, 1024]) batch tensor after cp:tokens
1276
+ batch tensor:batch tensor after cp: tokens torch.Size([1, 128])position_ids tokens
1277
+ torch.Size([1, 128]) torch.Size([1, 128])batch tensor after cp:
1278
+ torch.Size([1, 1024])batch tensor after cp:
1279
+ labels
1280
+ batch tensor after cp: labels torch.Size([1, 128]) labels
1281
+ torch.Size([1, 128]) batch tensor after cp:
1282
+ torch.Size([1, 128])
1283
+ batch tensor after cp:batch tensor after cp:loss_mask loss_maskloss_mask torch.Size([1, 128]) torch.Size([1, 128])
1284
+ torch.Size([1, 128])
1285
+ batch tensor after cp:
1286
+ batch tensor after cp: batch tensor after cp: attention_mask attention_mask attention_mask torch.Size([1, 1, 128, 1024])torch.Size([1, 1, 128, 1024])torch.Size([1, 1, 128, 1024])
1287
+
1288
+
1289
+ batch tensor after cp:batch tensor after cp: batch tensor after cp:position_ids position_idsposition_ids batch tensor:batch tensor after cp:torch.Size([1, 128]) torch.Size([1, 128])tokenstorch.Size([1, 128])
1290
+
1291
+
1292
+ tokens torch.Size([1, 128])torch.Size([1, 1024])
1293
+
1294
+ batch tensor after cp:batch tensor: labelslabels torch.Size([1, 1024])torch.Size([1, 128])
1295
+
1296
+ batch tensor:batch tensor after cp: loss_maskloss_mask torch.Size([1, 1024])torch.Size([1, 128])
1297
+
1298
+ batch tensor:batch tensor after cp: attention_maskattention_mask torch.Size([1, 1, 1024, 1024])
1299
+ torch.Size([1, 1, 128, 1024])
1300
+ batch tensor: batch tensor after cp: position_idsposition_ids torch.Size([1, 1024])torch.Size([1, 128])
1301
+
1302
+ batch tensor after cp: tokens torch.Size([1, 128])
1303
+ batch tensor after cp: labels torch.Size([1, 128])
1304
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1305
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1306
+ batch tensor after cp: position_ids torch.Size([1, 128])
1307
+ batch tensor after cp: tokens torch.Size([1, 128])
1308
+ batch tensor after cp: labels torch.Size([1, 128])
1309
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1310
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1311
+ batch tensor after cp: position_ids torch.Size([1, 128])
1312
+ batch tensor: tokens torch.Size([1, 1024])
1313
+ batch tensor: labels torch.Size([1, 1024])
1314
+ batch tensor: loss_mask torch.Size([1, 1024])
1315
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1316
+ batch tensor: position_ids torch.Size([1, 1024])
1317
+ batch tensor after cp: tokens torch.Size([1, 128])
1318
+ batch tensor after cp: labels torch.Size([1, 128])
1319
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1320
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1321
+ batch tensor after cp: position_ids torch.Size([1, 128])
1322
+ Start exporting trace 7
1323
+ Done exporting trace 7
1324
+ [2025-06-21 22:06:58] iteration 8/ 10 | consumed samples: 8 | elapsed time per iteration (ms): 43.3 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 33554432.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
1325
+ batch tensor: tokens torch.Size([1, 1024])
1326
+ batch tensor: labels torch.Size([1, 1024])
1327
+ batch tensor: loss_mask torch.Size([1, 1024])
1328
+ batch tensor:batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])tokens
1329
+ batch tensor:batch tensor: position_ids torch.Size([1, 1024])torch.Size([1, 1024])tokens
1330
+
1331
+ batch tensor: labels torch.Size([1, 1024])
1332
+ torch.Size([1, 1024])batch tensor:
1333
+ loss_mask torch.Size([1, 1024])
1334
+ batch tensor:batch tensor: labelsattention_mask torch.Size([1, 1, 1024, 1024])torch.Size([1, 1024])
1335
+
1336
+ batch tensor:batch tensor: position_idsloss_mask torch.Size([1, 1024])torch.Size([1, 1024])
1337
+
1338
+ batch tensor:batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])tokens
1339
+ batch tensor: position_ids torch.Size([1, 1024])torch.Size([1, 1024])
1340
+
1341
+ batch tensor: labels torch.Size([1, 1024])
1342
+ batch tensor: loss_mask torch.Size([1, 1024])
1343
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1344
+ batch tensor: position_ids torch.Size([1, 1024])
1345
+ batch tensor: tokens torch.Size([1, 1024])
1346
+ batch tensor: labels torch.Size([1, 1024])
1347
+ batch tensor:batch tensor: loss_mask torch.Size([1, 1024])tokens
1348
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1349
+ torch.Size([1, 1024])batch tensor:
1350
+ position_ids batch tensor:torch.Size([1, 1024])
1351
+ labels torch.Size([1, 1024])
1352
+ batch tensor: loss_mask torch.Size([1, 1024])
1353
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1354
+ batch tensor: position_ids torch.Size([1, 1024])
1355
+ batch tensor after cp: tokens torch.Size([1, 128])
1356
+ batch tensor after cp: labels torch.Size([1, 128])
1357
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1358
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1359
+ batch tensor after cp: position_ids torch.Size([1, 128])
1360
+ batch tensor after cp: tokens torch.Size([1, 128])
1361
+ batch tensor after cp: labels torch.Size([1, 128])
1362
+ batch tensor after cp: loss_mask torch.Size([1, 128])batch tensor after cp:
1363
+ batch tensor after cp:tokens attention_mask torch.Size([1, 128])torch.Size([1, 1, 128, 1024])
1364
+
1365
+ batch tensor after cp:batch tensor after cp: labelsposition_ids torch.Size([1, 128])torch.Size([1, 128])
1366
+
1367
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1368
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1369
+ batch tensor after cp: position_ids torch.Size([1, 128])
1370
+ batch tensor after cp: tokens torch.Size([1, 128])
1371
+ batch tensor after cp: labels torch.Size([1, 128])
1372
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1373
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1374
+ batch tensor after cp: position_ids torch.Size([1, 128])
1375
+ batch tensor after cp: tokens torch.Size([1, 128])
1376
+ batch tensor after cp: labels torch.Size([1, 128])
1377
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1378
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1379
+ batch tensor after cp:batch tensor after cp: tokensposition_ids torch.Size([1, 128])torch.Size([1, 128])
1380
+
1381
+ batch tensor after cp: labels torch.Size([1, 128])
1382
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1383
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1384
+ batch tensor after cp: position_ids torch.Size([1, 128])
1385
+ batch tensor:batch tensor: tokenstokens torch.Size([1, 1024])torch.Size([1, 1024])
1386
+
1387
+ batch tensor: batch tensor:labels labelstorch.Size([1, 1024])
1388
+ torch.Size([1, 1024])
1389
+ batch tensor: batch tensor:loss_mask loss_masktorch.Size([1, 1024])
1390
+ torch.Size([1, 1024])
1391
+ batch tensor: batch tensor:attention_mask attention_mask torch.Size([1, 1, 1024, 1024])
1392
+ torch.Size([1, 1, 1024, 1024])
1393
+ batch tensor: batch tensor:position_ids position_ids torch.Size([1, 1024])
1394
+ torch.Size([1, 1024])
1395
+ batch tensor after cp: tokens batch tensor after cp:torch.Size([1, 128])
1396
+ tokensbatch tensor after cp: labelstorch.Size([1, 128])
1397
+ torch.Size([1, 128])batch tensor after cp:
1398
+ batch tensor after cp:labels loss_masktorch.Size([1, 128])
1399
+ torch.Size([1, 128])
1400
+ batch tensor after cp: batch tensor after cp:loss_mask attention_masktorch.Size([1, 128])
1401
+ torch.Size([1, 1, 128, 1024])batch tensor after cp:
1402
+ attention_maskbatch tensor after cp: position_idstorch.Size([1, 1, 128, 1024])
1403
+ torch.Size([1, 128])batch tensor after cp:
1404
+ position_ids torch.Size([1, 128])
1405
+ Start exporting trace 8
1406
+ Done exporting trace 8
1407
+ [2025-06-21 22:06:58] iteration 9/ 10 | consumed samples: 9 | elapsed time per iteration (ms): 41.7 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 16777216.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
1408
+ batch tensor: tokens torch.Size([1, 1024])
1409
+ batch tensor: labels torch.Size([1, 1024])
1410
+ batch tensor: loss_mask torch.Size([1, 1024])
1411
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1412
+ batch tensor: position_ids torch.Size([1, 1024])
1413
+ batch tensor: tokens torch.Size([1, 1024])
1414
+ batch tensor: labels torch.Size([1, 1024])
1415
+ batch tensor: loss_mask torch.Size([1, 1024])
1416
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1417
+ batch tensor: position_ids torch.Size([1, 1024])
1418
+ batch tensor:batch tensor: tokens batch tensor:torch.Size([1, 1024])tokens
1419
+ tokensbatch tensor: labels torch.Size([1, 1024])
1420
+ torch.Size([1, 1024])batch tensor:torch.Size([1, 1024])
1421
+
1422
+ loss_mask batch tensor:batch tensor:torch.Size([1, 1024])
1423
+ labelslabelsbatch tensor: torch.Size([1, 1024])torch.Size([1, 1024])attention_mask
1424
+
1425
+ batch tensor:batch tensor:torch.Size([1, 1, 1024, 1024])
1426
+ loss_maskloss_maskbatch tensor: torch.Size([1, 1024])torch.Size([1, 1024])position_ids
1427
+
1428
+ batch tensor:batch tensor:torch.Size([1, 1024])
1429
+ attention_maskattention_mask torch.Size([1, 1, 1024, 1024])torch.Size([1, 1, 1024, 1024])
1430
+
1431
+ batch tensor:batch tensor: batch tensor:position_idsposition_ids torch.Size([1, 1024])torch.Size([1, 1024])tokens
1432
+
1433
+ torch.Size([1, 1024])
1434
+ batch tensor: labels torch.Size([1, 1024])
1435
+ batch tensor: loss_mask torch.Size([1, 1024])
1436
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1437
+ batch tensor: position_ids torch.Size([1, 1024])
1438
+ batch tensor after cp: tokens torch.Size([1, 128])
1439
+ batch tensor after cp: labels torch.Size([1, 128])
1440
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1441
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1442
+ batch tensor after cp: position_ids torch.Size([1, 128])
1443
+ batch tensor after cp: tokens torch.Size([1, 128])
1444
+ batch tensor after cp: labels torch.Size([1, 128])
1445
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1446
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1447
+ batch tensor after cp: position_ids torch.Size([1, 128])
1448
+ batch tensor after cp: tokens torch.Size([1, 128])
1449
+ batch tensor after cp: labels torch.Size([1, 128])
1450
+ batch tensor after cp:batch tensor after cp: loss_masktokens torch.Size([1, 128])
1451
+ torch.Size([1, 128])batch tensor after cp:
1452
+ attention_maskbatch tensor after cp: labelstorch.Size([1, 1, 128, 1024])
1453
+ torch.Size([1, 128])batch tensor after cp:
1454
+ batch tensor after cp:position_ids loss_masktorch.Size([1, 128])
1455
+ torch.Size([1, 128])
1456
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1457
+ batch tensor after cp: batch tensor after cp:position_ids torch.Size([1, 128])tokens
1458
+ batch tensor after cp: torch.Size([1, 128])tokens
1459
+ batch tensor after cp:torch.Size([1, 128])
1460
+ labels batch tensor after cp:torch.Size([1, 128])
1461
+ labelsbatch tensor after cp: torch.Size([1, 128])loss_mask
1462
+ batch tensor after cp:torch.Size([1, 128])
1463
+ loss_mask batch tensor after cp:torch.Size([1, 128])
1464
+ attention_mask batch tensor after cp:torch.Size([1, 1, 128, 1024])
1465
+ attention_maskbatch tensor after cp: position_idstorch.Size([1, 1, 128, 1024])
1466
+ torch.Size([1, 128])batch tensor after cp:
1467
+ position_ids torch.Size([1, 128])
1468
+ batch tensor: tokens torch.Size([1, 1024])
1469
+ batch tensor: labels torch.Size([1, 1024])
1470
+ batch tensor: loss_mask torch.Size([1, 1024])
1471
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1472
+ batch tensor: position_ids torch.Size([1, 1024])
1473
+ batch tensor: tokens torch.Size([1, 1024])
1474
+ batch tensor: labels torch.Size([1, 1024])
1475
+ batch tensor: loss_mask torch.Size([1, 1024])
1476
+ batch tensor: attention_mask torch.Size([1, 1, 1024, 1024])
1477
+ batch tensor: position_ids torch.Size([1, 1024])
1478
+ batch tensor after cp: tokens torch.Size([1, 128])
1479
+ batch tensor after cp: labels torch.Size([1, 128])
1480
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1481
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1482
+ batch tensor after cp: position_ids torch.Size([1, 128])
1483
+ batch tensor after cp: tokens torch.Size([1, 128])
1484
+ batch tensor after cp: labels torch.Size([1, 128])
1485
+ batch tensor after cp: loss_mask torch.Size([1, 128])
1486
+ batch tensor after cp: attention_mask torch.Size([1, 1, 128, 1024])
1487
+ batch tensor after cp: position_ids torch.Size([1, 128])
1488
+ Start exporting trace 9
1489
+ Done exporting trace 9
1490
+ [2025-06-21 22:06:58] iteration 10/ 10 | consumed samples: 10 | elapsed time per iteration (ms): 45.5 | learning rate: 0.000000E+00 | global batch size: 1 | loss scale: 8388608.0 | number of skipped iterations: 1 | number of nan iterations: 0 |
1491
+ [after training is done] datetime: 2025-06-21 22:06:58
1492
+ saving checkpoint at iteration 10 to gpt-checkpoint in torch_dist format
1493
+ DEBUG:megatron.training.checkpointing:rank: 5, takes 0.03761911392211914 to prepare state dict for ckpt
1494
+ DEBUG:megatron.training.checkpointing:rank: 0, takes 0.03771018981933594 to prepare state dict for ckpt
1495
+ DEBUG:megatron.training.checkpointing:rank: 2, takes 0.03774237632751465 to prepare state dict for ckpt
1496
+ DEBUG:megatron.training.checkpointing:rank: 1, takes 0.037798404693603516 to prepare state dict for ckpt
1497
+ DEBUG:megatron.training.checkpointing:rank: 3, takes 0.03775763511657715 to prepare state dict for ckpt
1498
+ DEBUG:megatron.training.checkpointing:rank: 6, takes 0.037831783294677734 to prepare state dict for ckpt
1499
+ DEBUG:megatron.training.checkpointing:rank: 4, takes 0.03794074058532715 to prepare state dict for ckpt
1500
+ DEBUG:megatron.training.checkpointing:rank: 7, takes 0.037969350814819336 to prepare state dict for ckpt
1501
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
1502
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
1503
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
1504
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
1505
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
1506
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization
1507
+ DEBUG:megatron.core.dist_checkpointing.strategies.fully_parallel:Apply save parallelization