Update README.md
Browse files
README.md
CHANGED
@@ -1,3 +1,84 @@
|
|
1 |
-
---
|
2 |
-
license: mit
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
license: mit
|
3 |
+
task_categories:
|
4 |
+
- feature-extraction
|
5 |
+
language:
|
6 |
+
- fr
|
7 |
+
- en
|
8 |
+
---
|
9 |
+
|
10 |
+
This dataset comes from a request on the HAL API (the French national open archive) limited to the UNIV-COTEDAZUR portal instance.
|
11 |
+
The request collects the bibliographic records of the SHS articles with abstract published between 2013 and 2023
|
12 |
+
|
13 |
+
The parameters passed in the url request are :
|
14 |
+
|
15 |
+
https://api.archives-ouvertes.fr/search/UNIV-COTEDAZUR/?q=docType_s:ART&fq=abstract_s:[%22%22%20TO%20*]&fq=domain_s:*shs*&fq=submittedDateY_i:[2020%20TO%202023]&fl=doiId_s,uri_s,title_s,subTitle_s,authFullName_s,producedDate_s,journalTitle_s,journalPublisher_s,abstract_s,domain_s,openAccess_bool
|
16 |
+
|
17 |
+
The embeddings column stores the embeddings of the "combined" column values converted in vectors with the sentence-transformers/all-MiniLM-L6-v2 embeddinsg model.
|
18 |
+
|
19 |
+
## Metadata extraction
|
20 |
+
|
21 |
+
```
|
22 |
+
url = ""https://api.archives-ouvertes.fr/search/UNIV-COTEDAZUR/?q=docType_s:ART&fq=abstract_s:[%22%22%20TO%20*]&fq=domain_s:*shs*&fq=publicationDateY_i:[2013%20TO%202023]&fl=doiId_s,uri_s,title_s,subTitle_s,authFullName_s,producedDate_s,journalTitle_s,journalPublisher_s,abstract_s,domain_s,openAccess_bool"
|
23 |
+
|
24 |
+
# Get the total number of records
|
25 |
+
url_for_total_count = f"{url}&wt=json&rows=0"
|
26 |
+
response = requests.request("GET", url_for_total_count).text
|
27 |
+
data = json.loads(response)
|
28 |
+
total_count = data["response"]["numFound"]
|
29 |
+
print(total_cout)
|
30 |
+
# return 3601
|
31 |
+
|
32 |
+
# Loop over the records and get metadata
|
33 |
+
step = 500
|
34 |
+
appended_data = []
|
35 |
+
for i in range(1, int(total_count), int(step)):
|
36 |
+
url = f"{url}&rows={step}&start={i}&wt=csv"
|
37 |
+
df = pd.read_csv(url, encoding="utf-8")
|
38 |
+
appended_data.append(df)
|
39 |
+
appended_data = pd.concat(appended_data)
|
40 |
+
|
41 |
+
# dedup
|
42 |
+
appended_data = appended_data.drop_duplicates(subset=['uri_s'])
|
43 |
+
|
44 |
+
appended_data.shape
|
45 |
+
# returns 2405
|
46 |
+
```
|
47 |
+
|
48 |
+
## Add embeddings (CPU)
|
49 |
+
|
50 |
+
### Solution 1 : with HF Inference API
|
51 |
+
|
52 |
+
```
|
53 |
+
import requests
|
54 |
+
import json
|
55 |
+
from typing import Optional, List, Dict, Any
|
56 |
+
|
57 |
+
HF_TOKEN = "<hf_token>"
|
58 |
+
model_id = "sentence-transformers/all-MiniLM-L6-v2"
|
59 |
+
|
60 |
+
embeddings_api_url = f"https://api-inference.huggingface.co/pipeline/feature-extraction/{model_id}"
|
61 |
+
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
|
62 |
+
|
63 |
+
def embeddings_query(text:str) -> List:
|
64 |
+
response = requests.post(embeddings_api_url, headers=headers, json={"inputs": text, "options":{"wait_for_model":True}})
|
65 |
+
return response.json()
|
66 |
+
|
67 |
+
df = appended_data.replace(np.nan, '')
|
68 |
+
df['embeddings'] = df.combined.apply(lambda x:embeddings_query(x.strip()))
|
69 |
+
```
|
70 |
+
|
71 |
+
### Solution 2 : with sentence-transformers library
|
72 |
+
|
73 |
+
```
|
74 |
+
from sentence_transformers import SentenceTransformer
|
75 |
+
|
76 |
+
model_id = "sentence-transformers/all-mpnet-base-v2"
|
77 |
+
embedder = SentenceTransformer(model_id)
|
78 |
+
|
79 |
+
def embeddings_query(text:str) -> List:
|
80 |
+
return embedder.encode(text,convert_to_tensor=True)
|
81 |
+
|
82 |
+
df['embeddings'] = df.combined.apply(lambda x:embeddings_query(x.strip().to_list()))
|
83 |
+
|
84 |
+
```
|