|
import Mathlib |
|
|
|
|
|
def solveAdd (a b:Int): Int |
|
:= b-a |
|
|
|
theorem solveAdd_correct (a b: Int): a + (solveAdd a b) =b |
|
:= by simp[solveAdd] |
|
|
|
def solveAdd0(a:Int): Int |
|
:= -a |
|
|
|
theorem solveAdd0_correct(a: Int): a +(solveAdd0 a)=0 |
|
:= by simp[solveAdd0] |
|
|
|
def solveSub(a b:Int): Int |
|
:= a-b |
|
|
|
theorem solveSub_correct(a b:Int): a - (solveSub a b)=b |
|
:= by simp[solveSub] |
|
|
|
def solve1x1(a b: Rat): Option Rat := |
|
if a = 0 then |
|
if b=0 then |
|
some 0 |
|
else |
|
none |
|
else |
|
some (b/a) |
|
|
|
theorem solve1x1_correct(a b:Rat): (∃ x, a*x=b) -> a * (solve1x1 a b).get! =b |
|
:= by |
|
intro hsol |
|
simp[solve1x1] |
|
split_ifs |
|
next hb=>simp[hb] |
|
next ha hb=> simp[ha] at hsol; rw[hsol] at hb; contradiction |
|
next ha=> |
|
simp |
|
simp[Rat.div_def] |
|
simp[Rat.mul_comm b] |
|
simp[← Rat.mul_assoc] |
|
have: a*a.inv=1 :=by{ |
|
have hainv: a⁻¹ = a.inv :=by { |
|
exact rfl |
|
} |
|
rw[← hainv] |
|
rw[Rat.mul_inv_cancel] |
|
assumption |
|
} |
|
simp[this] |
|
|
|
theorem solve1x1_none(a b:Rat): (Not (∃ x, a*x=b)) -> solve1x1 a b=none |
|
:= by |
|
intro h |
|
simp[solve1x1] |
|
split_ifs |
|
next ha hb=> simp[ha] at h;rw[hb] at h; contradiction |
|
next=>rfl |
|
next ha=> |
|
contrapose! h |
|
use b/a |
|
exact mul_div_cancel₀ b ha |
|
|
|
def solveMul(a: Rat): Rat |
|
:= if a=0 then 0 else 1/a |
|
|
|
theorem solveMul_correct(a:Rat): (∃ x, a*x=1)->a * (solveMul a)=1 |
|
:= by |
|
intro h |
|
simp[solveMul] |
|
split |
|
next ha=> |
|
simp[ha] at h |
|
next ha=> |
|
exact Rat.mul_inv_cancel a ha |
|
|
|
theorem solveMul_nosol (a:Rat): (Not (∃ x, a*x=1)) ->solveMul a =0 |
|
:= by |
|
intro h |
|
simp[solveMul] |
|
contrapose! h |
|
use 1/a |
|
exact mul_one_div_cancel h |
|
|
|
def solveDiv(a b:Rat) (ha: a≠ 0)(hb: b≠ 0): Rat |
|
:= a/b |
|
|
|
theorem solveDiv_correct(a b:Rat)(ha:a≠ 0)(hb: b≠ 0): |
|
a / (solveDiv a b ha hb)= b |
|
:= by |
|
simp[solveDiv] |
|
rw[← div_mul] |
|
rw[div_self (by simp[ha])] |
|
simp |
|
|
|
def isPrime(a: Nat): Bool |
|
:= |
|
if a<=1 then false |
|
else |
|
let rec helper (cur: Nat):Bool:= |
|
if cur>=a then true |
|
else if a%cur=0 then false |
|
else helper (cur+1) |
|
termination_by a-cur |
|
decreasing_by{ |
|
simp_wf |
|
have hacur: a>cur:=by omega |
|
exact Nat.sub_succ_lt_self a cur hacur |
|
} |
|
helper 2 |
|
|
|
|
|
theorem isPrime_correct(a: Nat): |
|
(isPrime a) <-> Nat.Prime a := by{ |
|
constructor |
|
· { |
|
unfold isPrime |
|
split |
|
simp |
|
have: ∀ cur:Nat, cur>=2->(∀x:Nat, (x>=2 ∧ x< cur)-> a%x !=0) ->isPrime.helper a cur ->a.Prime:=by { |
|
intro cur |
|
intro hcur2 |
|
induction cur using isPrime.helper.induct |
|
exact a |
|
next ha1 c hcga => |
|
have hhelp: isPrime.helper a c =true:=by { |
|
unfold isPrime.helper |
|
simp[hcga] |
|
} |
|
simp[hhelp] |
|
contrapose! |
|
intro hnp |
|
|
|
apply Nat.exists_dvd_of_not_prime2 at hnp |
|
rcases hnp with ⟨ k, hnp'⟩ |
|
use k |
|
simp[hnp'] |
|
omega |
|
omega |
|
|
|
|
|
next ha c hca hmod => |
|
have hhelp: isPrime.helper a c=false:=by{ |
|
unfold isPrime.helper |
|
simp[hmod,hca] |
|
} |
|
simp[hhelp] |
|
|
|
next ha c hca hmod ih => |
|
unfold isPrime.helper |
|
split |
|
simp |
|
have: c>=a :=by assumption |
|
contradiction |
|
have: c+1>=2 :=by omega |
|
simp[ this] at ih |
|
simp |
|
intro hx |
|
apply ih |
|
intro x |
|
intro hx2 |
|
intro hxlt |
|
cases hc1x: c-x |
|
|
|
have: c=x :=by { |
|
omega |
|
|
|
} |
|
rw[← this] |
|
assumption |
|
have: x<c :=by{ |
|
omega |
|
} |
|
apply hx |
|
assumption |
|
assumption |
|
} |
|
|
|
|
|
apply this |
|
omega |
|
intro x |
|
omega |
|
|
|
} |
|
next=> |
|
contrapose! |
|
unfold isPrime |
|
split |
|
simp |
|
have: a<=1 :=by assumption |
|
have ha2: a ≠ 2 :=by omega |
|
have ha3: a≠ 3 :=by omega |
|
intro hp |
|
have h5p: 5<=a :=by { |
|
exact Nat.Prime.five_le_of_ne_two_of_ne_three hp ha2 ha3 --Prime.five_le_of_ne_two_of_ne_three a hp ha2 ha3 |
|
} |
|
omega |
|
have: ∀cur: Nat, cur>=2 ->isPrime.helper a cur ≠ true ->¬ a.Prime :=by{ |
|
intro cur |
|
intro hcur2 |
|
induction cur using isPrime.helper.induct |
|
exact a |
|
next ha1 x hxa=> |
|
unfold isPrime.helper |
|
simp[hxa] |
|
|
|
|
|
next ha1 x hxa hmod => |
|
unfold isPrime.helper |
|
simp[hxa,hmod] |
|
have :x ∣ a :=by omega |
|
have hxneqa: x≠ a :=by omega |
|
have hxneq1: x≠ 1 :=by omega |
|
exact Nat.not_prime_of_dvd_of_ne this hxneq1 hxneqa |
|
|
|
next ha1 x hxa hmod ih=> |
|
unfold isPrime.helper |
|
simp[hxa,hmod] |
|
simp at ih |
|
apply ih |
|
omega |
|
|
|
} |
|
apply this |
|
omega |
|
|
|
} |
|
|
|
def modInv(a: Nat) (p:Nat)(hp:p.Prime): Option Nat |
|
:= |
|
if a%p=0 then |
|
none |
|
else |
|
let expn:Nat := p-2 |
|
some ( (a^expn) %p) |
|
|
|
theorem modInv_correct(a:Nat) (p:Nat)(hp:p.Prime): |
|
(∃ x:Nat, (a*x)%p=1)->(a*(modInv a p hp).get!)%p=1 :=by{ |
|
intro hexist |
|
have han0: a%p ≠ 0:=by{ |
|
contrapose! hexist |
|
intro x |
|
have: (a*x)%p =(a%p *x)%p:=by{ |
|
simp[Nat.mod_mul_mod] |
|
--exact Eq.symm (Nat.mod_mul_mod a x ↑p) |
|
} |
|
rw[hexist] at this |
|
simp[this] |
|
} |
|
unfold modInv |
|
simp[han0] |
|
--simp[Option.get!] |
|
have hp2:p>=2 :=by{ |
|
exact Nat.Prime.two_le hp |
|
} |
|
have hm:a*a^(p-2)=a^(p-1) :=by{ |
|
calc |
|
a*a^(p-2)= a^1 *a^(p-2):=by {simp} |
|
_=a^(1+(p-2)) :=by{exact Eq.symm (Nat.pow_add a 1 (p - 2))} |
|
_=a^(p-1) :=by{ |
|
have: 1+(p-2)=p-1:=by omega |
|
exact congrArg (HPow.hPow a) this |
|
} |
|
} |
|
simp[hm] |
|
|
|
--Fermat's little theorem |
|
--from Mathlib.FieldTheory.Finite |
|
have hcop: IsCoprime (a:Int) p :=by{ |
|
refine Nat.isCoprime_iff_coprime.mpr ?_ |
|
have: ¬ p ∣ a :=by{omega} |
|
refine Nat.coprime_iff_isRelPrime.mpr ?_ |
|
have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this |
|
exact |
|
IsRelPrime.symm hrp |
|
} |
|
have:= Int.ModEq.pow_card_sub_one_eq_one hp hcop |
|
have pz:((a:Int)^(p-1))%(p:Int)=1%(p:Int):=by{ |
|
exact this |
|
} |
|
--contrapose this |
|
--intro hzmod |
|
have h1mp: 1%(p:Int)=1 :=by{ |
|
refine Int.emod_eq_of_lt ?H1 ?H2 |
|
omega |
|
omega |
|
} |
|
rw[h1mp] at pz |
|
|
|
norm_cast at pz |
|
|
|
} |
|
|
|
theorem modInv_none(a:Nat) (p:Nat)(hp:p.Prime): (Not (∃ x, (a*x)%p=1))-> modInv a p hp=none |
|
:=by |
|
intro h |
|
simp[modInv] |
|
contrapose! h |
|
refine Nat.exists_mul_emod_eq_one_of_coprime ?hkn ?hk |
|
refine Nat.coprime_iff_isRelPrime.mpr ?_ |
|
have: ¬ p ∣ a :=by{omega} |
|
have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this |
|
exact IsRelPrime.symm hrp |
|
exact Nat.Prime.one_lt hp |
|
|
|
def minFacT(a:Nat) (h: a>1) |
|
: {x:Nat//x>1∧ x ∣ a∧ Not (∃ y>1, y∣a ∧ y<x)} |
|
:= |
|
let lst:= List.range (a+1) |
|
let res:=lst.find? (fun x=> x>1 ∧ x∣ a) |
|
have : res.isSome :=by{ |
|
refine (@List.find?_isSome _ lst fun x => decide (x > 1 ∧ x ∣ a)).mpr ?_ |
|
use a |
|
constructor |
|
exact List.self_mem_range_succ a |
|
simp[h] |
|
} |
|
let r:=res.get this |
|
⟨r, by{ |
|
have hf:lst.find? (fun x=> x>1 ∧ x∣ a)=some r:=by{ |
|
exact Eq.symm (Option.some_get this) |
|
} |
|
have lem := @List.find?_range_eq_some (a+1) _ _|>.mp hf |
|
simp at lem |
|
constructor |
|
simp[lem.left] |
|
constructor |
|
simp[lem.left] |
|
have lr:=lem.right |
|
rcases lr with ⟨ _,lr'⟩ |
|
intro hy |
|
rcases hy with ⟨ y , hy'⟩ |
|
have:= lr' y hy'.2.2 |
|
rcases this <;> omega |
|
}⟩ |
|
|
|
def minFac(a:Nat) (h: a>1):Nat |
|
:= minFacT a h |
|
|
|
theorem minFac_isfac(a:Nat)(h: a>1): ( (minFac a h) ∣ a) ∧ (minFac a h>1) |
|
:=by |
|
simp[minFac] |
|
let r:=minFacT a h |
|
simp[r.2] |
|
|
|
theorem minFac_ismin(a:Nat)(h:a>1): Not (∃ y>1,( y ∣ a) ∧ y<minFac a h) |
|
:=by |
|
simp[minFac] |
|
let r:=minFacT a h |
|
have:=r.2.2.2 |
|
intro x h1 hdvd |
|
simp at this |
|
have:=this x h1 hdvd |
|
simp[r,this] |
|
|
|
|
|
def midPoint (x1 y1 x2 y2: Rat):Rat × Rat |
|
:=((x1+x2)/2, (y1+y2)/2) |
|
|
|
def distSq( x1 y1 x2 y2: Rat):Rat:= |
|
(x1-x2)^2 + (y1-y2)^2 |
|
|
|
theorem midPoint_correct (x1 y1 x2 y2: Rat) |
|
: let (xmid,ymid) :=midPoint x1 y1 x2 y2 |
|
distSq xmid ymid x1 y1=distSq xmid ymid x2 y2 |
|
∧ 4*(distSq xmid ymid x1 y1)=distSq x1 y1 x2 y2 |
|
:=by |
|
simp[midPoint,distSq] |
|
constructor <;> ring_nf |
|
|
|
|
|
def GCD (x y: Nat): Nat := |
|
|
|
if y = 0 then |
|
x |
|
else |
|
GCD y (x % y) |
|
termination_by y |
|
decreasing_by { |
|
simp_wf |
|
apply Nat.mod_lt _ |
|
refine Nat.zero_lt_of_ne_zero ?_ |
|
assumption |
|
} |
|
|
|
theorem gcd_is_div (x y: Nat): |
|
(p: x > 0)→ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y) := match y with |
|
| 0 => by { |
|
simp[GCD] |
|
} |
|
| Nat.succ z =>by { |
|
have hyp: z.succ>0 := by { |
|
exact Nat.zero_lt_succ z |
|
} |
|
have ih := gcd_is_div z.succ (x % z.succ) |
|
have ihh := ih hyp |
|
have heq: GCD x z.succ = GCD z.succ (x%z.succ) :=by{ |
|
rw[GCD.eq_def] |
|
tauto |
|
} |
|
intro hx |
|
simp[heq, ihh] |
|
rcases ihh.right with ⟨k, ihh' ⟩ |
|
|
|
have hq: x = (GCD z.succ (x%z.succ))*k +z.succ*(x/z.succ) :=by{ |
|
rw[← ihh'] |
|
exact Eq.symm (Nat.mod_add_div x z.succ) |
|
} |
|
rcases ihh.left with ⟨ m, ihhl'⟩ |
|
use (x/z.succ) * m + k |
|
rw[Nat.mul_add] |
|
rw[Nat.mul_comm, Nat.mul_assoc] |
|
rw[Nat.mul_comm m] |
|
rw[← ihhl'] |
|
rw[Nat.mul_comm] |
|
rw[Nat.add_comm] |
|
have hz: z+1 = z.succ :=by omega |
|
rw[hz] |
|
omega |
|
} |
|
termination_by y |
|
decreasing_by { |
|
simp_wf |
|
apply Nat.mod_lt _ |
|
refine Nat.zero_lt_of_ne_zero ?_ |
|
tauto |
|
} |
|
|
|
theorem gcd_is_greatest (x y: Nat): |
|
(x>0) → Not (∃ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y ) := match y with |
|
| 0 => by { |
|
have hgcd0: GCD x 0 = x :=by { |
|
simp[GCD] |
|
} |
|
intro hx |
|
intro hh |
|
rcases hh with ⟨z0, hh' ⟩ |
|
have hzx: z0 ≤ x :=by{ |
|
have hzdx: z0∣ x:=by {tauto} |
|
rcases hzdx with ⟨k, hzdx'⟩ |
|
have hk: k>0 :=by{ |
|
contrapose hx |
|
have hk0: k=0 := by omega |
|
have hx0: x=0:= by simp[hzdx', hk0] |
|
omega |
|
} |
|
have hkg1: k>=1:=by{omega} |
|
rw[hzdx'] |
|
have hz0: z0=z0*1:=by {omega} |
|
nth_rewrite 1 [hz0] |
|
exact Nat.mul_le_mul_left z0 hk |
|
} |
|
have: z0>GCD x 0:=by{tauto} |
|
rw[hgcd0] at this |
|
omega |
|
} |
|
| Nat.succ yy => by{ |
|
intro hx |
|
intro hh |
|
rcases hh with ⟨z0, hh' ⟩ |
|
have ih:=gcd_is_greatest yy.succ (x%yy.succ) |
|
have hyg0: yy.succ>0 :=by{omega} |
|
have ihh:= ih hyg0 |
|
have hgcd: GCD x yy.succ = GCD yy.succ (x%yy.succ) := by { |
|
rw[GCD.eq_def] |
|
tauto |
|
} |
|
contrapose! ihh |
|
use z0 |
|
have hzg: z0> GCD yy.succ (x%yy.succ):= by { |
|
omega |
|
} |
|
simp[hzg, hh'] |
|
have hzx: z0∣ x:=by tauto |
|
rcases hzx with ⟨ k, hzx'⟩ |
|
have hzy: z0 ∣ yy.succ :=by tauto |
|
rcases hzy with ⟨ m, hzy' ⟩ |
|
have hmod: x%yy.succ + yy.succ * (x/yy.succ) =x :=by{ |
|
exact Nat.mod_add_div x yy.succ |
|
} |
|
refine (Nat.dvd_mod_iff ?h.intro.intro.h).mpr ?h.intro.intro.a |
|
tauto |
|
tauto |
|
} |
|
termination_by y |
|
decreasing_by { |
|
simp_wf |
|
apply Nat.mod_lt _ |
|
refine Nat.zero_lt_of_ne_zero ?_ |
|
tauto |
|
} |
|
|
|
|
|
def solveProg(t:Nat):Nat |
|
:= |
|
let rec loop (i:{i':Nat//¬ ∃ i'' < i',i''*(i''+1)>=t*2}) (acc:{a:Nat//a*2=i.val*(i.val+1)}) |
|
:{x:Nat//x*(x+1)>=t*2∧ ¬ ∃ y<x, y*(y+1)>=t*2}:= |
|
have ih:=acc.2 |
|
have iih:=i.2 |
|
if h:acc>=t then |
|
⟨i, by constructor;omega;exact iih⟩ |
|
else |
|
have hi: Not (i.val*(i.val+1)>=t*2):=by{ |
|
rw[← ih] |
|
simp[h] |
|
} |
|
have: ¬∃ i'' < i.val + 1, i'' * (i'' + 1) ≥ t * 2:=by{ |
|
simp |
|
intro x hx |
|
by_cases x < i.val |
|
next hlt=> simp at iih; exact iih x hlt |
|
next hlt=> |
|
have : x=i:=by omega |
|
rw[this] |
|
simpa using hi |
|
} |
|
loop ⟨i.val+1,this⟩ ⟨acc.val+i.val+1, by ring_nf;rw[ih];ring⟩ |
|
termination_by t-acc |
|
decreasing_by{ |
|
simp_wf |
|
refine Nat.sub_lt_sub_left (by omega) (by omega) |
|
} |
|
loop ⟨ 0, by omega⟩ ⟨ 0, by simp⟩ |
|
|
|
theorem solveProg_isgeq(t:Nat): (solveProg t)*((solveProg t)+1) >= t*2 |
|
:=by |
|
simp[solveProg] |
|
have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2 |
|
omega |
|
|
|
theorem solveProg_ismin(t:Nat): Not (∃ y< (solveProg t), y*(y+1)>=t*2) |
|
:=by |
|
simp[solveProg] |
|
have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2 |
|
simp at ih |
|
exact ih.right |
|
|
|
|
|
def solveGeom(a t:Nat)(h:a>1):Nat |
|
:= |
|
let rec loop (h:a>1)(i:{i':Nat//¬ ∃i'' < i',a^(i''+1)-1>=t*(a-1)})(acc:{acc':Nat//a^(i.val+1)-1=acc'*(a-1)}) |
|
:{x:Nat//a^(x+1)-1>=t*(a-1)∧ ¬∃ y<x,a^(y+1)-1>=t*(a-1)}:= |
|
have ih:=acc.2 |
|
have iih:=i.2 |
|
if hge:acc>=t then |
|
⟨i, by rw [ih];constructor;exact Nat.mul_le_mul_right (a - 1) hge; exact iih⟩ |
|
else |
|
let newacc:=acc+a^(i.val+1) |
|
have : a^(i.val+2)-1=newacc *(a-1):=by{ |
|
ring_nf |
|
rw[← ih] |
|
ring_nf |
|
have : 0< a * a ^ i.val :=by refine Nat.mul_pos (by omega) (by refine Nat.pow_pos (by omega)) |
|
rw[← Nat.add_sub_assoc (by omega) (a * a ^ i.val * (a - 1))] |
|
ring_nf |
|
have: a * a ^ i.val+a * a ^ i.val * (a - 1) =a * a ^ i.val*a:=by{ |
|
have lem:=Nat.mul_one (a * a ^ i.val) |
|
nth_rewrite 1 [← lem] |
|
rw[← Nat.mul_add (a*a^i.val) 1] |
|
have: 1+(a-1)=a:=by omega |
|
rw[this] |
|
} |
|
rw[this] |
|
ring_nf |
|
} |
|
have hopt:¬∃ i'' < i.val + 1, a ^ (i'' + 1) - 1 ≥ t * (a - 1):=by{ |
|
simp |
|
intro x xh |
|
by_cases x < i.val |
|
next hlt=> simp at iih; exact iih x hlt |
|
next hlt=> |
|
have hxi: x=i :=by omega |
|
simp at hge |
|
rw[hxi,ih] |
|
refine Nat.mul_lt_mul_of_pos_right hge (by simp[h]) |
|
} |
|
loop h ⟨i.val+1, hopt⟩ ⟨newacc,this ⟩ |
|
termination_by t-acc |
|
decreasing_by{ |
|
simp_wf |
|
refine Nat.sub_lt_sub_left (by omega) ?_ |
|
have: a^(i.val+1)>0 :=by{ |
|
refine Nat.pow_pos (by omega) |
|
} |
|
omega |
|
} |
|
loop h ⟨0, by simp⟩ ⟨1, by ring_nf⟩ |
|
|
|
theorem solveGeom_isgeq(a t:Nat)(h:a>1): a^((solveGeom a t h)+1)-1 >=t*(a-1) |
|
:=by |
|
simp[solveGeom] |
|
have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2 |
|
simp[this] |
|
|
|
theorem solveGeom_ismin(a t:Nat)(h:a>1): Not (∃ y<solveGeom a t h, a^(y+1)-1>= t*(a-1)) |
|
:=by |
|
simp[solveGeom] |
|
have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2.2 |
|
simp at this |
|
exact this |
|
|
|
|
|
def solveSquare(t:Nat): Nat |
|
:= |
|
let rec loop (i:{i':Nat//¬ ∃ i'' < i', i''*i''>=t}) |
|
:{x:Nat//x*x>=t∧ ¬ ∃ y<x, y*y>=t} := |
|
have iih:=i.2 |
|
if hcomp: i*i>=t then |
|
⟨ i, by simp[hcomp];simp at iih;exact iih⟩ |
|
else |
|
loop ⟨i+1, |
|
by{ |
|
simp |
|
intro x hx |
|
by_cases x < i.val |
|
next hlt=> simp at iih; exact iih x hlt |
|
next hlt=> |
|
have hxi: x=i.val :=by omega |
|
rw[hxi] |
|
omega |
|
}⟩ |
|
termination_by t-i*i |
|
decreasing_by{ |
|
simp_wf |
|
refine Nat.sub_lt_sub_left (by omega) (by ring_nf;omega) |
|
} |
|
loop ⟨0, by simp⟩ |
|
|
|
theorem solveSquare_isgeq(t:Nat): (solveSquare t)*(solveSquare t)>=t |
|
:=by |
|
simp[solveSquare] |
|
have:=(solveSquare.loop t ⟨0, by simp⟩).2 |
|
simp[this] |
|
|
|
theorem solveSquare_ismin(t:Nat): Not (∃ y< (solveSquare t), y*y>=t) |
|
:=by |
|
simp[solveSquare] |
|
have:=(solveSquare.loop t ⟨0, by simp⟩).2.2 |
|
simp at this |
|
exact this |
|
|
|
def f[Monad m] (op: Nat->Nat->(m Nat)) (n: Nat): (m Nat) |
|
:= |
|
match n with |
|
| 0 => pure 1 |
|
| 1 => pure 1 |
|
| n + 2 => |
|
do |
|
let x ← f op (n + 1) |
|
let y ← f op n |
|
op x y |
|
|
|
|
|
theorem f_base (op : Nat → Nat → Id Nat) : |
|
(f op 0 = pure 1) ∧ (f op 1 = pure 1) |
|
:= by constructor <;> rfl |
|
|
|
|
|
theorem f_recursive (op : Nat → Nat → Id Nat) (n : Nat) : f op (n+2) =do {op (← f op (n+1)) (← f op n) } |
|
:= by rfl |
|
|
|
def rev(xs: List Int): List Int |
|
:= match xs with |
|
|[] => [] |
|
|h::t => (rev t) ++ [h] |
|
|
|
theorem reverse_correct(xs:List Int): |
|
xs.length=(rev xs).length ∧ |
|
∀ i<xs.length, xs[i]! =(rev xs)[xs.length-1-i]! |
|
:=by{ |
|
induction xs |
|
next=>simp[rev] |
|
next h t ih=> |
|
constructor |
|
· { |
|
simp[rev,ih] |
|
} |
|
· { |
|
simp[rev] |
|
intro i |
|
have hlen: (rev t).length=t.length:=by{ |
|
simp [ih.left] |
|
} |
|
cases i with |
|
|zero=> |
|
simp |
|
have :t.length<(rev t ++[h]).length :=by{ |
|
exact List.get_of_append_proof rfl hlen |
|
} |
|
have hind:(rev t ++ [h])[t.length]! =(rev t ++ [h])[t.length] :=by{ |
|
exact getElem!_pos (rev t ++ [h]) t.length this |
|
} |
|
simp[hind] |
|
exact Eq.symm (List.getElem_concat_length (rev t) h t.length (id (Eq.symm hlen)) this) |
|
|succ i'=> |
|
simp |
|
have:= ih.right i' |
|
intro hi' |
|
simp[hi'] at this |
|
|
|
have hlind:t.length-1-i'=t.length - (i' + 1) :=by{ |
|
omega |
|
} |
|
have hh: (rev t)[t.length - 1 - i']! =(rev t ++ [h])[t.length - (i' + 1)]! :=by{ |
|
simp[hlind] |
|
have hlt:t.length - (i' + 1)<(rev t).length :=by{ |
|
simp[hlen] |
|
omega |
|
} |
|
have hl':(rev t)[t.length - (i' + 1)]! =(rev t)[t.length - (i' + 1)] :=by{ |
|
exact getElem!_pos (rev t) (t.length - (i' + 1)) hlt |
|
} |
|
have hrlen: (rev t ++ [h]).length>(rev t).length:=by { |
|
exact |
|
List.get_of_append_proof rfl rfl |
|
} |
|
have hrlt: t.length - (i' + 1)<(rev t ++ [h]).length :=by{ |
|
omega |
|
} |
|
have hr': (rev t ++ [h])[t.length - (i' + 1)]! =(rev t ++ [h])[t.length - (i' + 1)] :=by{ |
|
refine getElem!_pos (rev t ++[h]) (t.length - (i' + 1)) ?_ |
|
|
|
} |
|
simp[hr',hl'] |
|
refine Eq.symm (List.getElem_append_left (as:= rev t) (bs:=[h]) ?_) |
|
omega |
|
} |
|
omega |
|
|
|
|
|
} |
|
|
|
} |
|
|
|
|
|
def maxProp(xs:List Int)(x:Int):= |
|
x∈ xs ∧∀ y∈ xs, x≥ y |
|
|
|
def findMaxA (xs: List Int): Option <| Subtype <| maxProp xs := |
|
match hm: xs.attach with |
|
|[]=>none |
|
|h::t=> |
|
|
|
let rec helper (curr: {y//y∈ xs})(rest:List {y//y∈ xs}) |
|
:{y//y∈ xs ∧ ∀ y'∈ curr::rest, y'<=y}:= |
|
match rest with |
|
|[]=> ⟨curr, by simp[maxProp,curr.2]⟩ |
|
|rh::rt=> |
|
let newmax:= if rh.val>curr.val then rh else curr |
|
let r:=helper newmax rt |
|
have ih:=r.2 |
|
have ihr:=ih.right |
|
⟨ r, by { |
|
simp[ih] |
|
|
|
have:=ihr newmax (by simp) |
|
have hgeq: newmax.val>=curr.val∧ newmax.val >=rh.val:=by{ |
|
simp[newmax] |
|
split <;> constructor<;> try simp |
|
next hsplit=> exact le_of_lt hsplit |
|
next hsplit=>simp at hsplit; exact hsplit |
|
} |
|
constructor |
|
omega |
|
constructor |
|
omega |
|
intro a b hab |
|
have:=ihr ⟨ a,b⟩ (by simp[hab]) |
|
simp[this] |
|
}⟩ |
|
|
|
let res:=helper h t |
|
have ih:=res.2 |
|
have ihr:=ih.right |
|
some ⟨ res, by { |
|
simp[maxProp,ih] |
|
intro y yh |
|
let yy:{x//x∈xs}:=⟨ y,yh⟩ |
|
have hin:yy∈ h::t :=by{ |
|
rw[← hm] |
|
exact List.mem_attach xs yy |
|
} |
|
have:= ihr yy hin |
|
simp[this] |
|
}⟩ |
|
|
|
def findMax (xs : List Int) : Option Int |
|
:= match xs with |
|
|[]=>none |
|
|h::t=> findMaxA (h::t) |
|
|
|
|
|
theorem findMax_correct(x: Int) (xs : List Int): |
|
∃ max∈ (x::xs), |
|
And (findMax (x::xs) = some max) (∀ y ∈ (x::xs) , y ≤ max) |
|
:=by |
|
simp only[findMax,pure] |
|
have hsome: findMaxA (x::xs)|>.isSome :=by exact rfl |
|
match hm: findMaxA (x::xs) with |
|
|none=>contradiction |
|
|some y=> |
|
use y |
|
simp |
|
have:=y.2 |
|
simp[maxProp] at this |
|
exact this |
|
|
|
|
|
|
|
theorem findMax_base : findMax [] = none |
|
:=by |
|
unfold findMax |
|
simp only [findMaxA] |
|
|
|
abbrev minSol(xs:List Int):= |
|
{x:Int//x∈xs ∧ ∀ y∈ xs, y>=x} |
|
|
|
def findMinTyped (xs : List Int) |
|
: {r:Option (minSol xs) // r=none ↔ xs=[]} |
|
:=match hm:xs with |
|
|[]=> ⟨ none, by simp⟩ |
|
|h::t=> |
|
let rest:=findMinTyped t |
|
match hr: rest with |
|
|⟨ none, hn⟩ => |
|
let sol:minSol (h::t) :=⟨ h, by simp[hm]; simp at hn; simp[hn] ⟩ |
|
⟨ some sol, by simp ⟩ |
|
|⟨some r,_⟩ => |
|
let newmin:{y:Int//y∈ h::t∧ y≤ h ∧ y≤ r}:=if hcomp:h<r then ⟨h,by simp;omega⟩ else ⟨r,by simp[r.2];omega⟩ |
|
have ih:=r.2 |
|
let sol:minSol (h::t):= |
|
⟨ newmin, |
|
by constructor;exact newmin.2.left;simp[newmin.2];intro a ha;have:=ih.right a ha; omega |
|
⟩ |
|
⟨ some sol, by simp⟩ |
|
|
|
def findMin (xs:List Int):Option Int |
|
:=match xs with |
|
|[]=>none |
|
|h::t=>findMinTyped (h::t) |>.val |
|
|
|
theorem findMin_correct(x: Int) (xs : List Int): |
|
∃ min∈ (x::xs), |
|
And (findMin (x::xs) = some min) (∀ y ∈ (x::xs) , y >= min) |
|
:=by |
|
simp only [findMin,pure] |
|
--have hsome: findMinTyped (x::xs)|>.val.isSome :=by sorry |
|
match hm: findMinTyped (x::xs) with |
|
|⟨ none, hn⟩ =>simp at hn |
|
|⟨ some y,_⟩ => |
|
use y |
|
simp |
|
have :=y.2 |
|
constructor;simpa using this.left;simpa using this.right |
|
|
|
theorem findMin_base : findMin [] = none |
|
:=by exact rfl |
|
|
|
def isIn (x:Int) (xs: List Int):Bool |
|
:= match xs with |
|
|[] => false |
|
|h::t => x==h || isIn x t |
|
|
|
def isIn_correct (x:Int)(xs:List Int): |
|
isIn x xs = true ↔ x∈ xs := by{ |
|
induction xs with |
|
|nil=> simp[isIn] |
|
|cons h t ih=> simp[isIn,ih] |
|
} |
|
|
|
|
|
def countEq (x:Int)(xs:List Int):Nat |
|
:= match xs with |
|
|[]=>0 |
|
|h::t => |
|
let c:= if h=x then 1 else 0 |
|
(countEq x t) + c |
|
|
|
def countEq_correct (x:Int)(xs:List Int): |
|
List.count x xs = countEq x xs |
|
:=by{ |
|
induction xs with |
|
|nil =>rfl |
|
|cons h t ih=> |
|
simp[countEq] |
|
have lem:=List.count_cons x h t |
|
rw[← ih] |
|
rw[lem] |
|
simp |
|
} |
|
|
|
def findIfT(xs:List Int)(p:Int->Bool) |
|
:{oi:Option Int// |
|
if (∃ x∈ xs, p x) then ∃ y∈ xs, oi=some y ∧ p y |
|
else oi=none} |
|
:=match xs with |
|
|[]=>⟨ none, by exact rfl⟩ |
|
|h::t=> |
|
if hp: (p h=true) then |
|
⟨ some h, by simp[hp]⟩ |
|
else |
|
let rest:=findIfT t p |
|
⟨ rest, by simp[hp,rest.2]⟩ |
|
|
|
def findIf(xs:List Int)(p:Int->Bool):Option Int |
|
:=findIfT xs p |
|
|
|
theorem findIf_some(xs:List Int)(p:Int->Bool): |
|
(∃ x∈ xs, p x) -> ∃ y∈ xs, findIf xs p=some y ∧ p y |
|
:=by |
|
simp only [findIf] |
|
have:=(findIfT xs p).2 |
|
intro h |
|
simp[h] at this |
|
exact this |
|
|
|
|
|
theorem findIf_none(xs:List Int)(p:Int->Bool): |
|
(¬ ∃ y∈ xs, p y =true)-> findIf xs p=none |
|
:=by |
|
simp only [findIf] |
|
have:=(findIfT xs p).2 |
|
intro h |
|
simp[h] at this |
|
exact this |
|
|
|
def filterIf(xs:List Int)(p:Int->Bool):List Int |
|
:= |
|
match xs with |
|
|[] => [] |
|
|h::t => |
|
if p h then |
|
h::(filterIf t p) |
|
else |
|
filterIf t p |
|
|
|
|
|
theorem filterIf_correct(xs:List Int)(p:Int->Bool): |
|
filterIf xs p = List.filter p xs |
|
:=by |
|
induction xs with |
|
|nil=> simp[filterIf] |
|
|cons h t ih=> |
|
simp[List.filter_cons] |
|
simp[filterIf] |
|
rw[ih] |
|
|
|
def mapInt(xs:List Int)(f:Int->Int):List Int |
|
:=match xs with |
|
|[]=>[] |
|
|h::t=> (f h) :: (mapInt t f) |
|
|
|
theorem mapInt_correct(xs:List Int)(f:Int->Int) |
|
: (mapInt xs f).length=xs.length |
|
∧ ∀ i:Fin xs.length, (mapInt xs f)[i]! = f xs[i] |
|
:=by |
|
induction xs with |
|
|nil=>simp[mapInt] |
|
|cons h t ih=> |
|
have hsize:(mapInt (h :: t) f).length = (h :: t).length :=by{ |
|
simp[mapInt,ih] |
|
} |
|
constructor |
|
· exact hsize |
|
· { |
|
intro i |
|
have hil:i<(mapInt (h :: t) f).length :=by{ |
|
simp[hsize] |
|
} |
|
have: (mapInt (h :: t) f)[i]! =(mapInt (h :: t) f)[i] :=by{ |
|
exact getElem!_pos (mapInt (h :: t) f) i hil |
|
} |
|
rw[this] |
|
rcases i with ⟨i',hi⟩ |
|
cases i' |
|
next=> |
|
simp[mapInt] |
|
|
|
next n=> |
|
simp[mapInt] |
|
have:=ih.right ⟨ n,by simp at hi;exact hi⟩ |
|
simp at this |
|
rw[← this] |
|
symm |
|
exact getElem!_pos (mapInt t f) n (by simp at hi; omega) |
|
|
|
} |
|
|
|
def isPrefix (p xs:List α):= |
|
List.take p.length xs = p |
|
|
|
/- longest common prefix for a pair of lists-/ |
|
def lcpPair(xs ys:List Int ) |
|
:{zs:List Int//isPrefix zs xs∧ isPrefix zs ys |
|
∧ (∀zz, isPrefix zz xs∧ isPrefix zz ys->zz.length<=zs.length)} |
|
:=match xs,ys with |
|
|[],_=>⟨ [],by simp[isPrefix]⟩ |
|
|_,[]=>⟨ [],by simp[isPrefix]⟩ |
|
|xh::xt, yh::yt=> |
|
if heq: xh=yh then |
|
let rest:=lcpPair xt yt |
|
⟨ xh:: rest, |
|
by{ |
|
have:=rest.2 |
|
constructor |
|
· simpa[isPrefix,rest,heq] using this.1 |
|
· { |
|
constructor |
|
· simpa[isPrefix,rest,heq] using this.2.1 |
|
·{ |
|
intros zz hxy |
|
cases zz |
|
next=> |
|
have: ([]:List Int).length=0:=by exact rfl |
|
rw[this] |
|
omega |
|
next h t=> |
|
simp[isPrefix] at hxy |
|
have ih:=this.2.2 |
|
have ht:isPrefix t xt∧ isPrefix t yt:=by { |
|
simp[isPrefix,hxy] |
|
} |
|
have ihh:=ih _ ht |
|
simp[ihh] |
|
} |
|
} |
|
|
|
} |
|
⟩ |
|
else |
|
⟨ [], |
|
by { |
|
simp[isPrefix] |
|
intros zz hx hy |
|
cases zz |
|
next=>rfl |
|
next h t=> |
|
simp at hx |
|
simp at hy |
|
have : xh=yh :=by simp[hx,hy] |
|
contradiction |
|
} |
|
⟩ |
|
|