CodeProofBenchmark / EasyBenchmark.lean
GasStationManager's picture
Upload 2 files
f9d28cf verified
import Mathlib
def solveAdd (a b:Int): Int
:= b-a
theorem solveAdd_correct (a b: Int): a + (solveAdd a b) =b
:= by simp[solveAdd]
def solveAdd0(a:Int): Int
:= -a
theorem solveAdd0_correct(a: Int): a +(solveAdd0 a)=0
:= by simp[solveAdd0]
def solveSub(a b:Int): Int
:= a-b
theorem solveSub_correct(a b:Int): a - (solveSub a b)=b
:= by simp[solveSub]
def solve1x1(a b: Rat): Option Rat :=
if a = 0 then
if b=0 then
some 0
else
none
else
some (b/a)
theorem solve1x1_correct(a b:Rat): (∃ x, a*x=b) -> a * (solve1x1 a b).get! =b
:= by
intro hsol
simp[solve1x1]
split_ifs
next hb=>simp[hb]
next ha hb=> simp[ha] at hsol; rw[hsol] at hb; contradiction
next ha=>
simp
simp[Rat.div_def]
simp[Rat.mul_comm b]
simp[← Rat.mul_assoc]
have: a*a.inv=1 :=by{
have hainv: a⁻¹ = a.inv :=by {
exact rfl
}
rw[← hainv]
rw[Rat.mul_inv_cancel]
assumption
}
simp[this]
theorem solve1x1_none(a b:Rat): (Not (∃ x, a*x=b)) -> solve1x1 a b=none
:= by
intro h
simp[solve1x1]
split_ifs
next ha hb=> simp[ha] at h;rw[hb] at h; contradiction
next=>rfl
next ha=>
contrapose! h
use b/a
exact mul_div_cancel₀ b ha
def solveMul(a: Rat): Rat
:= if a=0 then 0 else 1/a
theorem solveMul_correct(a:Rat): (∃ x, a*x=1)->a * (solveMul a)=1
:= by
intro h
simp[solveMul]
split
next ha=>
simp[ha] at h
next ha=>
exact Rat.mul_inv_cancel a ha
theorem solveMul_nosol (a:Rat): (Not (∃ x, a*x=1)) ->solveMul a =0
:= by
intro h
simp[solveMul]
contrapose! h
use 1/a
exact mul_one_div_cancel h
def solveDiv(a b:Rat) (ha: a≠ 0)(hb: b≠ 0): Rat
:= a/b
theorem solveDiv_correct(a b:Rat)(ha:a≠ 0)(hb: b≠ 0):
a / (solveDiv a b ha hb)= b
:= by
simp[solveDiv]
rw[← div_mul]
rw[div_self (by simp[ha])]
simp
def isPrime(a: Nat): Bool
:=
if a<=1 then false
else
let rec helper (cur: Nat):Bool:=
if cur>=a then true
else if a%cur=0 then false
else helper (cur+1)
termination_by a-cur
decreasing_by{
simp_wf
have hacur: a>cur:=by omega
exact Nat.sub_succ_lt_self a cur hacur
}
helper 2
theorem isPrime_correct(a: Nat):
(isPrime a) <-> Nat.Prime a := by{
constructor
· {
unfold isPrime
split
simp
have: ∀ cur:Nat, cur>=2->(∀x:Nat, (x>=2 ∧ x< cur)-> a%x !=0) ->isPrime.helper a cur ->a.Prime:=by {
intro cur
intro hcur2
induction cur using isPrime.helper.induct
exact a
next ha1 c hcga =>
have hhelp: isPrime.helper a c =true:=by {
unfold isPrime.helper
simp[hcga]
}
simp[hhelp]
contrapose!
intro hnp
apply Nat.exists_dvd_of_not_prime2 at hnp
rcases hnp with ⟨ k, hnp'⟩
use k
simp[hnp']
omega
omega
next ha c hca hmod =>
have hhelp: isPrime.helper a c=false:=by{
unfold isPrime.helper
simp[hmod,hca]
}
simp[hhelp]
next ha c hca hmod ih =>
unfold isPrime.helper
split
simp
have: c>=a :=by assumption
contradiction
have: c+1>=2 :=by omega
simp[ this] at ih
simp
intro hx
apply ih
intro x
intro hx2
intro hxlt
cases hc1x: c-x
have: c=x :=by {
omega
}
rw[← this]
assumption
have: x<c :=by{
omega
}
apply hx
assumption
assumption
}
apply this
omega
intro x
omega
}
next=>
contrapose!
unfold isPrime
split
simp
have: a<=1 :=by assumption
have ha2: a ≠ 2 :=by omega
have ha3: a≠ 3 :=by omega
intro hp
have h5p: 5<=a :=by {
exact Nat.Prime.five_le_of_ne_two_of_ne_three hp ha2 ha3 --Prime.five_le_of_ne_two_of_ne_three a hp ha2 ha3
}
omega
have: ∀cur: Nat, cur>=2 ->isPrime.helper a cur ≠ true ->¬ a.Prime :=by{
intro cur
intro hcur2
induction cur using isPrime.helper.induct
exact a
next ha1 x hxa=>
unfold isPrime.helper
simp[hxa]
next ha1 x hxa hmod =>
unfold isPrime.helper
simp[hxa,hmod]
have :x ∣ a :=by omega
have hxneqa: x≠ a :=by omega
have hxneq1: x≠ 1 :=by omega
exact Nat.not_prime_of_dvd_of_ne this hxneq1 hxneqa
next ha1 x hxa hmod ih=>
unfold isPrime.helper
simp[hxa,hmod]
simp at ih
apply ih
omega
}
apply this
omega
}
def modInv(a: Nat) (p:Nat)(hp:p.Prime): Option Nat
:=
if a%p=0 then
none
else
let expn:Nat := p-2
some ( (a^expn) %p)
theorem modInv_correct(a:Nat) (p:Nat)(hp:p.Prime):
(∃ x:Nat, (a*x)%p=1)->(a*(modInv a p hp).get!)%p=1 :=by{
intro hexist
have han0: a%p ≠ 0:=by{
contrapose! hexist
intro x
have: (a*x)%p =(a%p *x)%p:=by{
simp[Nat.mod_mul_mod]
--exact Eq.symm (Nat.mod_mul_mod a x ↑p)
}
rw[hexist] at this
simp[this]
}
unfold modInv
simp[han0]
--simp[Option.get!]
have hp2:p>=2 :=by{
exact Nat.Prime.two_le hp
}
have hm:a*a^(p-2)=a^(p-1) :=by{
calc
a*a^(p-2)= a^1 *a^(p-2):=by {simp}
_=a^(1+(p-2)) :=by{exact Eq.symm (Nat.pow_add a 1 (p - 2))}
_=a^(p-1) :=by{
have: 1+(p-2)=p-1:=by omega
exact congrArg (HPow.hPow a) this
}
}
simp[hm]
--Fermat's little theorem
--from Mathlib.FieldTheory.Finite
have hcop: IsCoprime (a:Int) p :=by{
refine Nat.isCoprime_iff_coprime.mpr ?_
have: ¬ p ∣ a :=by{omega}
refine Nat.coprime_iff_isRelPrime.mpr ?_
have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this
exact
IsRelPrime.symm hrp
}
have:= Int.ModEq.pow_card_sub_one_eq_one hp hcop
have pz:((a:Int)^(p-1))%(p:Int)=1%(p:Int):=by{
exact this
}
--contrapose this
--intro hzmod
have h1mp: 1%(p:Int)=1 :=by{
refine Int.emod_eq_of_lt ?H1 ?H2
omega
omega
}
rw[h1mp] at pz
norm_cast at pz
}
theorem modInv_none(a:Nat) (p:Nat)(hp:p.Prime): (Not (∃ x, (a*x)%p=1))-> modInv a p hp=none
:=by
intro h
simp[modInv]
contrapose! h
refine Nat.exists_mul_emod_eq_one_of_coprime ?hkn ?hk
refine Nat.coprime_iff_isRelPrime.mpr ?_
have: ¬ p ∣ a :=by{omega}
have hrp:= (Irreducible.isRelPrime_iff_not_dvd hp).mpr this
exact IsRelPrime.symm hrp
exact Nat.Prime.one_lt hp
def minFacT(a:Nat) (h: a>1)
: {x:Nat//x>1∧ x ∣ a∧ Not (∃ y>1, y∣a ∧ y<x)}
:=
let lst:= List.range (a+1)
let res:=lst.find? (fun x=> x>1 ∧ x∣ a)
have : res.isSome :=by{
refine (@List.find?_isSome _ lst fun x => decide (x > 1 ∧ x ∣ a)).mpr ?_
use a
constructor
exact List.self_mem_range_succ a
simp[h]
}
let r:=res.get this
⟨r, by{
have hf:lst.find? (fun x=> x>1 ∧ x∣ a)=some r:=by{
exact Eq.symm (Option.some_get this)
}
have lem := @List.find?_range_eq_some (a+1) _ _|>.mp hf
simp at lem
constructor
simp[lem.left]
constructor
simp[lem.left]
have lr:=lem.right
rcases lr with ⟨ _,lr'
intro hy
rcases hy with ⟨ y , hy'⟩
have:= lr' y hy'.2.2
rcases this <;> omega
}⟩
def minFac(a:Nat) (h: a>1):Nat
:= minFacT a h
theorem minFac_isfac(a:Nat)(h: a>1): ( (minFac a h) ∣ a) ∧ (minFac a h>1)
:=by
simp[minFac]
let r:=minFacT a h
simp[r.2]
theorem minFac_ismin(a:Nat)(h:a>1): Not (∃ y>1,( y ∣ a) ∧ y<minFac a h)
:=by
simp[minFac]
let r:=minFacT a h
have:=r.2.2.2
intro x h1 hdvd
simp at this
have:=this x h1 hdvd
simp[r,this]
def midPoint (x1 y1 x2 y2: Rat):Rat × Rat
:=((x1+x2)/2, (y1+y2)/2)
def distSq( x1 y1 x2 y2: Rat):Rat:=
(x1-x2)^2 + (y1-y2)^2
theorem midPoint_correct (x1 y1 x2 y2: Rat)
: let (xmid,ymid) :=midPoint x1 y1 x2 y2
distSq xmid ymid x1 y1=distSq xmid ymid x2 y2
∧ 4*(distSq xmid ymid x1 y1)=distSq x1 y1 x2 y2
:=by
simp[midPoint,distSq]
constructor <;> ring_nf
def GCD (x y: Nat): Nat :=
if y = 0 then
x
else
GCD y (x % y)
termination_by y
decreasing_by {
simp_wf
apply Nat.mod_lt _
refine Nat.zero_lt_of_ne_zero ?_
assumption
}
theorem gcd_is_div (x y: Nat):
(p: x > 0)→ ((GCD x y) ∣ x) ∧ ((GCD x y) ∣ y) := match y with
| 0 => by {
simp[GCD]
}
| Nat.succ z =>by {
have hyp: z.succ>0 := by {
exact Nat.zero_lt_succ z
}
have ih := gcd_is_div z.succ (x % z.succ)
have ihh := ih hyp
have heq: GCD x z.succ = GCD z.succ (x%z.succ) :=by{
rw[GCD.eq_def]
tauto
}
intro hx
simp[heq, ihh]
rcases ihh.right with ⟨k, ihh'
have hq: x = (GCD z.succ (x%z.succ))*k +z.succ*(x/z.succ) :=by{
rw[← ihh']
exact Eq.symm (Nat.mod_add_div x z.succ)
}
rcases ihh.left with ⟨ m, ihhl'
use (x/z.succ) * m + k
rw[Nat.mul_add]
rw[Nat.mul_comm, Nat.mul_assoc]
rw[Nat.mul_comm m]
rw[← ihhl']
rw[Nat.mul_comm]
rw[Nat.add_comm]
have hz: z+1 = z.succ :=by omega
rw[hz]
omega
}
termination_by y
decreasing_by {
simp_wf
apply Nat.mod_lt _
refine Nat.zero_lt_of_ne_zero ?_
tauto
}
theorem gcd_is_greatest (x y: Nat):
(x>0) → Not (∃ z: Nat, z∣ x ∧ z∣ y ∧ z> GCD x y ) := match y with
| 0 => by {
have hgcd0: GCD x 0 = x :=by {
simp[GCD]
}
intro hx
intro hh
rcases hh with ⟨z0, hh'
have hzx: z0 ≤ x :=by{
have hzdx: z0∣ x:=by {tauto}
rcases hzdx with ⟨k, hzdx'⟩
have hk: k>0 :=by{
contrapose hx
have hk0: k=0 := by omega
have hx0: x=0:= by simp[hzdx', hk0]
omega
}
have hkg1: k>=1:=by{omega}
rw[hzdx']
have hz0: z0=z0*1:=by {omega}
nth_rewrite 1 [hz0]
exact Nat.mul_le_mul_left z0 hk
}
have: z0>GCD x 0:=by{tauto}
rw[hgcd0] at this
omega
}
| Nat.succ yy => by{
intro hx
intro hh
rcases hh with ⟨z0, hh'
have ih:=gcd_is_greatest yy.succ (x%yy.succ)
have hyg0: yy.succ>0 :=by{omega}
have ihh:= ih hyg0
have hgcd: GCD x yy.succ = GCD yy.succ (x%yy.succ) := by {
rw[GCD.eq_def]
tauto
}
contrapose! ihh
use z0
have hzg: z0> GCD yy.succ (x%yy.succ):= by {
omega
}
simp[hzg, hh']
have hzx: z0∣ x:=by tauto
rcases hzx with ⟨ k, hzx'
have hzy: z0 ∣ yy.succ :=by tauto
rcases hzy with ⟨ m, hzy' ⟩
have hmod: x%yy.succ + yy.succ * (x/yy.succ) =x :=by{
exact Nat.mod_add_div x yy.succ
}
refine (Nat.dvd_mod_iff ?h.intro.intro.h).mpr ?h.intro.intro.a
tauto
tauto
}
termination_by y
decreasing_by {
simp_wf
apply Nat.mod_lt _
refine Nat.zero_lt_of_ne_zero ?_
tauto
}
def solveProg(t:Nat):Nat
:=
let rec loop (i:{i':Nat//¬ ∃ i'' < i',i''*(i''+1)>=t*2}) (acc:{a:Nat//a*2=i.val*(i.val+1)})
:{x:Nat//x*(x+1)>=t*2∧ ¬ ∃ y<x, y*(y+1)>=t*2}:=
have ih:=acc.2
have iih:=i.2
if h:acc>=t then
⟨i, by constructor;omega;exact iih⟩
else
have hi: Not (i.val*(i.val+1)>=t*2):=by{
rw[← ih]
simp[h]
}
have: ¬∃ i'' < i.val + 1, i'' * (i'' + 1) ≥ t * 2:=by{
simp
intro x hx
by_cases x < i.val
next hlt=> simp at iih; exact iih x hlt
next hlt=>
have : x=i:=by omega
rw[this]
simpa using hi
}
loop ⟨i.val+1,this⟩ ⟨acc.val+i.val+1, by ring_nf;rw[ih];ring⟩
termination_by t-acc
decreasing_by{
simp_wf
refine Nat.sub_lt_sub_left (by omega) (by omega)
}
loop ⟨ 0, by omega⟩ ⟨ 0, by simp⟩
theorem solveProg_isgeq(t:Nat): (solveProg t)*((solveProg t)+1) >= t*2
:=by
simp[solveProg]
have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2
omega
theorem solveProg_ismin(t:Nat): Not (∃ y< (solveProg t), y*(y+1)>=t*2)
:=by
simp[solveProg]
have ih:=(solveProg.loop t ⟨ 0,by omega⟩ ⟨0, solveProg.proof_2⟩).2
simp at ih
exact ih.right
def solveGeom(a t:Nat)(h:a>1):Nat
:=
let rec loop (h:a>1)(i:{i':Nat//¬ ∃i'' < i',a^(i''+1)-1>=t*(a-1)})(acc:{acc':Nat//a^(i.val+1)-1=acc'*(a-1)})
:{x:Nat//a^(x+1)-1>=t*(a-1)∧ ¬∃ y<x,a^(y+1)-1>=t*(a-1)}:=
have ih:=acc.2
have iih:=i.2
if hge:acc>=t then
⟨i, by rw [ih];constructor;exact Nat.mul_le_mul_right (a - 1) hge; exact iih⟩
else
let newacc:=acc+a^(i.val+1)
have : a^(i.val+2)-1=newacc *(a-1):=by{
ring_nf
rw[← ih]
ring_nf
have : 0< a * a ^ i.val :=by refine Nat.mul_pos (by omega) (by refine Nat.pow_pos (by omega))
rw[← Nat.add_sub_assoc (by omega) (a * a ^ i.val * (a - 1))]
ring_nf
have: a * a ^ i.val+a * a ^ i.val * (a - 1) =a * a ^ i.val*a:=by{
have lem:=Nat.mul_one (a * a ^ i.val)
nth_rewrite 1 [← lem]
rw[← Nat.mul_add (a*a^i.val) 1]
have: 1+(a-1)=a:=by omega
rw[this]
}
rw[this]
ring_nf
}
have hopt:¬∃ i'' < i.val + 1, a ^ (i'' + 1) - 1 ≥ t * (a - 1):=by{
simp
intro x xh
by_cases x < i.val
next hlt=> simp at iih; exact iih x hlt
next hlt=>
have hxi: x=i :=by omega
simp at hge
rw[hxi,ih]
refine Nat.mul_lt_mul_of_pos_right hge (by simp[h])
}
loop h ⟨i.val+1, hopt⟩ ⟨newacc,this ⟩
termination_by t-acc
decreasing_by{
simp_wf
refine Nat.sub_lt_sub_left (by omega) ?_
have: a^(i.val+1)>0 :=by{
refine Nat.pow_pos (by omega)
}
omega
}
loop h ⟨0, by simp⟩ ⟨1, by ring_nf⟩
theorem solveGeom_isgeq(a t:Nat)(h:a>1): a^((solveGeom a t h)+1)-1 >=t*(a-1)
:=by
simp[solveGeom]
have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2
simp[this]
theorem solveGeom_ismin(a t:Nat)(h:a>1): Not (∃ y<solveGeom a t h, a^(y+1)-1>= t*(a-1))
:=by
simp[solveGeom]
have:=(solveGeom.loop a t h h ⟨0, by simp⟩ ⟨1, by ring_nf⟩).2.2
simp at this
exact this
def solveSquare(t:Nat): Nat
:=
let rec loop (i:{i':Nat//¬ ∃ i'' < i', i''*i''>=t})
:{x:Nat//x*x>=t∧ ¬ ∃ y<x, y*y>=t} :=
have iih:=i.2
if hcomp: i*i>=t then
⟨ i, by simp[hcomp];simp at iih;exact iih⟩
else
loop ⟨i+1,
by{
simp
intro x hx
by_cases x < i.val
next hlt=> simp at iih; exact iih x hlt
next hlt=>
have hxi: x=i.val :=by omega
rw[hxi]
omega
}⟩
termination_by t-i*i
decreasing_by{
simp_wf
refine Nat.sub_lt_sub_left (by omega) (by ring_nf;omega)
}
loop ⟨0, by simp⟩
theorem solveSquare_isgeq(t:Nat): (solveSquare t)*(solveSquare t)>=t
:=by
simp[solveSquare]
have:=(solveSquare.loop t ⟨0, by simp⟩).2
simp[this]
theorem solveSquare_ismin(t:Nat): Not (∃ y< (solveSquare t), y*y>=t)
:=by
simp[solveSquare]
have:=(solveSquare.loop t ⟨0, by simp⟩).2.2
simp at this
exact this
def f[Monad m] (op: Nat->Nat->(m Nat)) (n: Nat): (m Nat)
:=
match n with
| 0 => pure 1
| 1 => pure 1
| n + 2 =>
do
let x ← f op (n + 1)
let y ← f op n
op x y
theorem f_base (op : Nat → Nat → Id Nat) :
(f op 0 = pure 1) ∧ (f op 1 = pure 1)
:= by constructor <;> rfl
theorem f_recursive (op : Nat → Nat → Id Nat) (n : Nat) : f op (n+2) =do {op (← f op (n+1)) (← f op n) }
:= by rfl
def rev(xs: List Int): List Int
:= match xs with
|[] => []
|h::t => (rev t) ++ [h]
theorem reverse_correct(xs:List Int):
xs.length=(rev xs).length ∧
∀ i<xs.length, xs[i]! =(rev xs)[xs.length-1-i]!
:=by{
induction xs
next=>simp[rev]
next h t ih=>
constructor
· {
simp[rev,ih]
}
· {
simp[rev]
intro i
have hlen: (rev t).length=t.length:=by{
simp [ih.left]
}
cases i with
|zero=>
simp
have :t.length<(rev t ++[h]).length :=by{
exact List.get_of_append_proof rfl hlen
}
have hind:(rev t ++ [h])[t.length]! =(rev t ++ [h])[t.length] :=by{
exact getElem!_pos (rev t ++ [h]) t.length this
}
simp[hind]
exact Eq.symm (List.getElem_concat_length (rev t) h t.length (id (Eq.symm hlen)) this)
|succ i'=>
simp
have:= ih.right i'
intro hi'
simp[hi'] at this
have hlind:t.length-1-i'=t.length - (i' + 1) :=by{
omega
}
have hh: (rev t)[t.length - 1 - i']! =(rev t ++ [h])[t.length - (i' + 1)]! :=by{
simp[hlind]
have hlt:t.length - (i' + 1)<(rev t).length :=by{
simp[hlen]
omega
}
have hl':(rev t)[t.length - (i' + 1)]! =(rev t)[t.length - (i' + 1)] :=by{
exact getElem!_pos (rev t) (t.length - (i' + 1)) hlt
}
have hrlen: (rev t ++ [h]).length>(rev t).length:=by {
exact
List.get_of_append_proof rfl rfl
}
have hrlt: t.length - (i' + 1)<(rev t ++ [h]).length :=by{
omega
}
have hr': (rev t ++ [h])[t.length - (i' + 1)]! =(rev t ++ [h])[t.length - (i' + 1)] :=by{
refine getElem!_pos (rev t ++[h]) (t.length - (i' + 1)) ?_
}
simp[hr',hl']
refine Eq.symm (List.getElem_append_left (as:= rev t) (bs:=[h]) ?_)
omega
}
omega
}
}
def maxProp(xs:List Int)(x:Int):=
x∈ xs ∧∀ y∈ xs, x≥ y
def findMaxA (xs: List Int): Option <| Subtype <| maxProp xs :=
match hm: xs.attach with
|[]=>none
|h::t=>
let rec helper (curr: {y//y∈ xs})(rest:List {y//y∈ xs})
:{y//y∈ xs ∧ ∀ y'∈ curr::rest, y'<=y}:=
match rest with
|[]=> ⟨curr, by simp[maxProp,curr.2]⟩
|rh::rt=>
let newmax:= if rh.val>curr.val then rh else curr
let r:=helper newmax rt
have ih:=r.2
have ihr:=ih.right
⟨ r, by {
simp[ih]
have:=ihr newmax (by simp)
have hgeq: newmax.val>=curr.val∧ newmax.val >=rh.val:=by{
simp[newmax]
split <;> constructor<;> try simp
next hsplit=> exact le_of_lt hsplit
next hsplit=>simp at hsplit; exact hsplit
}
constructor
omega
constructor
omega
intro a b hab
have:=ihr ⟨ a,b⟩ (by simp[hab])
simp[this]
}⟩
let res:=helper h t
have ih:=res.2
have ihr:=ih.right
some ⟨ res, by {
simp[maxProp,ih]
intro y yh
let yy:{x//x∈xs}:=⟨ y,yh⟩
have hin:yy∈ h::t :=by{
rw[← hm]
exact List.mem_attach xs yy
}
have:= ihr yy hin
simp[this]
}⟩
def findMax (xs : List Int) : Option Int
:= match xs with
|[]=>none
|h::t=> findMaxA (h::t)
theorem findMax_correct(x: Int) (xs : List Int):
∃ max∈ (x::xs),
And (findMax (x::xs) = some max) (∀ y ∈ (x::xs) , y ≤ max)
:=by
simp only[findMax,pure]
have hsome: findMaxA (x::xs)|>.isSome :=by exact rfl
match hm: findMaxA (x::xs) with
|none=>contradiction
|some y=>
use y
simp
have:=y.2
simp[maxProp] at this
exact this
theorem findMax_base : findMax [] = none
:=by
unfold findMax
simp only [findMaxA]
abbrev minSol(xs:List Int):=
{x:Int//x∈xs ∧ ∀ y∈ xs, y>=x}
def findMinTyped (xs : List Int)
: {r:Option (minSol xs) // r=none ↔ xs=[]}
:=match hm:xs with
|[]=> ⟨ none, by simp⟩
|h::t=>
let rest:=findMinTyped t
match hr: rest with
|⟨ none, hn⟩ =>
let sol:minSol (h::t) :=⟨ h, by simp[hm]; simp at hn; simp[hn] ⟩
⟨ some sol, by simp ⟩
|⟨some r,_⟩ =>
let newmin:{y:Int//y∈ h::t∧ y≤ h ∧ y≤ r}:=if hcomp:h<r then ⟨h,by simp;omega⟩ else ⟨r,by simp[r.2];omega⟩
have ih:=r.2
let sol:minSol (h::t):=
⟨ newmin,
by constructor;exact newmin.2.left;simp[newmin.2];intro a ha;have:=ih.right a ha; omega
⟨ some sol, by simp⟩
def findMin (xs:List Int):Option Int
:=match xs with
|[]=>none
|h::t=>findMinTyped (h::t) |>.val
theorem findMin_correct(x: Int) (xs : List Int):
∃ min∈ (x::xs),
And (findMin (x::xs) = some min) (∀ y ∈ (x::xs) , y >= min)
:=by
simp only [findMin,pure]
--have hsome: findMinTyped (x::xs)|>.val.isSome :=by sorry
match hm: findMinTyped (x::xs) with
|⟨ none, hn⟩ =>simp at hn
|⟨ some y,_⟩ =>
use y
simp
have :=y.2
constructor;simpa using this.left;simpa using this.right
theorem findMin_base : findMin [] = none
:=by exact rfl
def isIn (x:Int) (xs: List Int):Bool
:= match xs with
|[] => false
|h::t => x==h || isIn x t
def isIn_correct (x:Int)(xs:List Int):
isIn x xs = true ↔ x∈ xs := by{
induction xs with
|nil=> simp[isIn]
|cons h t ih=> simp[isIn,ih]
}
def countEq (x:Int)(xs:List Int):Nat
:= match xs with
|[]=>0
|h::t =>
let c:= if h=x then 1 else 0
(countEq x t) + c
def countEq_correct (x:Int)(xs:List Int):
List.count x xs = countEq x xs
:=by{
induction xs with
|nil =>rfl
|cons h t ih=>
simp[countEq]
have lem:=List.count_cons x h t
rw[← ih]
rw[lem]
simp
}
def findIfT(xs:List Int)(p:Int->Bool)
:{oi:Option Int//
if (∃ x∈ xs, p x) then ∃ y∈ xs, oi=some y ∧ p y
else oi=none}
:=match xs with
|[]=>⟨ none, by exact rfl⟩
|h::t=>
if hp: (p h=true) then
⟨ some h, by simp[hp]⟩
else
let rest:=findIfT t p
⟨ rest, by simp[hp,rest.2]⟩
def findIf(xs:List Int)(p:Int->Bool):Option Int
:=findIfT xs p
theorem findIf_some(xs:List Int)(p:Int->Bool):
(∃ x∈ xs, p x) -> ∃ y∈ xs, findIf xs p=some y ∧ p y
:=by
simp only [findIf]
have:=(findIfT xs p).2
intro h
simp[h] at this
exact this
theorem findIf_none(xs:List Int)(p:Int->Bool):
(¬ ∃ y∈ xs, p y =true)-> findIf xs p=none
:=by
simp only [findIf]
have:=(findIfT xs p).2
intro h
simp[h] at this
exact this
def filterIf(xs:List Int)(p:Int->Bool):List Int
:=
match xs with
|[] => []
|h::t =>
if p h then
h::(filterIf t p)
else
filterIf t p
theorem filterIf_correct(xs:List Int)(p:Int->Bool):
filterIf xs p = List.filter p xs
:=by
induction xs with
|nil=> simp[filterIf]
|cons h t ih=>
simp[List.filter_cons]
simp[filterIf]
rw[ih]
def mapInt(xs:List Int)(f:Int->Int):List Int
:=match xs with
|[]=>[]
|h::t=> (f h) :: (mapInt t f)
theorem mapInt_correct(xs:List Int)(f:Int->Int)
: (mapInt xs f).length=xs.length
∧ ∀ i:Fin xs.length, (mapInt xs f)[i]! = f xs[i]
:=by
induction xs with
|nil=>simp[mapInt]
|cons h t ih=>
have hsize:(mapInt (h :: t) f).length = (h :: t).length :=by{
simp[mapInt,ih]
}
constructor
· exact hsize
· {
intro i
have hil:i<(mapInt (h :: t) f).length :=by{
simp[hsize]
}
have: (mapInt (h :: t) f)[i]! =(mapInt (h :: t) f)[i] :=by{
exact getElem!_pos (mapInt (h :: t) f) i hil
}
rw[this]
rcases i with ⟨i',hi⟩
cases i'
next=>
simp[mapInt]
next n=>
simp[mapInt]
have:=ih.right ⟨ n,by simp at hi;exact hi⟩
simp at this
rw[← this]
symm
exact getElem!_pos (mapInt t f) n (by simp at hi; omega)
}
def isPrefix (p xs:List α):=
List.take p.length xs = p
/- longest common prefix for a pair of lists-/
def lcpPair(xs ys:List Int )
:{zs:List Int//isPrefix zs xs∧ isPrefix zs ys
∧ (∀zz, isPrefix zz xs∧ isPrefix zz ys->zz.length<=zs.length)}
:=match xs,ys with
|[],_=>⟨ [],by simp[isPrefix]⟩
|_,[]=>⟨ [],by simp[isPrefix]⟩
|xh::xt, yh::yt=>
if heq: xh=yh then
let rest:=lcpPair xt yt
⟨ xh:: rest,
by{
have:=rest.2
constructor
· simpa[isPrefix,rest,heq] using this.1
· {
constructor
· simpa[isPrefix,rest,heq] using this.2.1
·{
intros zz hxy
cases zz
next=>
have: ([]:List Int).length=0:=by exact rfl
rw[this]
omega
next h t=>
simp[isPrefix] at hxy
have ih:=this.2.2
have ht:isPrefix t xt∧ isPrefix t yt:=by {
simp[isPrefix,hxy]
}
have ihh:=ih _ ht
simp[ihh]
}
}
}
else
⟨ [],
by {
simp[isPrefix]
intros zz hx hy
cases zz
next=>rfl
next h t=>
simp at hx
simp at hy
have : xh=yh :=by simp[hx,hy]
contradiction
}