|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""The French Language Understanding Evaluation (FLUE) benchmark.""" |
|
|
|
from __future__ import absolute_import, division, print_function |
|
|
|
import csv |
|
import os |
|
import re |
|
import textwrap |
|
import unicodedata |
|
from shutil import copyfile |
|
|
|
import six |
|
from lxml import etree |
|
|
|
import datasets |
|
|
|
|
|
_FLUE_CITATION = """\ |
|
@misc{le2019flaubert, |
|
title={FlauBERT: Unsupervised Language Model Pre-training for French}, |
|
author={Hang Le and Loïc Vial and Jibril Frej and Vincent Segonne and Maximin Coavoux and Benjamin Lecouteux and Alexandre Allauzen and Benoît Crabbé and Laurent Besacier and Didier Schwab}, |
|
year={2019}, |
|
eprint={1912.05372}, |
|
archivePrefix={arXiv}, |
|
primaryClass={cs.CL} |
|
} |
|
""" |
|
|
|
_FLUE_DESCRIPTION = """\ |
|
FLUE is an evaluation setup for French NLP systems similar to the popular GLUE benchmark. The goal is to enable further reproducible experiments in the future and to share models and progress on the French language. |
|
""" |
|
|
|
|
|
class FlueConfig(datasets.BuilderConfig): |
|
"""BuilderConfig for FLUE.""" |
|
|
|
def __init__( |
|
self, |
|
text_features, |
|
label_column, |
|
data_url, |
|
data_dir, |
|
citation, |
|
url, |
|
label_classes=None, |
|
process_label=lambda x: x, |
|
**kwargs, |
|
): |
|
"""BuilderConfig for FLUE. |
|
|
|
Args: |
|
text_features: `dict[string, string]`, map from the name of the feature |
|
dict for each text field to the name of the column in the tsv file |
|
label_column: `string`, name of the column in the tsv file corresponding |
|
to the label |
|
data_url: `string`, url to download the zip file from |
|
data_dir: `string`, the path to the folder containing the tsv files in the |
|
downloaded zip |
|
citation: `string`, citation for the data set |
|
url: `string`, url for information about the data set |
|
label_classes: `list[string]`, the list of classes if the label is |
|
categorical. If not provided, then the label will be of type |
|
`datasets.Value('float32')`. |
|
process_label: `Function[string, any]`, function taking in the raw value |
|
of the label and processing it to the form required by the label feature |
|
**kwargs: keyword arguments forwarded to super. |
|
""" |
|
super(FlueConfig, self).__init__(version=datasets.Version("1.0.0", ""), **kwargs) |
|
self.text_features = text_features |
|
self.label_column = label_column |
|
self.label_classes = label_classes |
|
self.data_url = data_url |
|
self.data_dir = data_dir |
|
self.citation = citation |
|
self.url = url |
|
self.process_label = process_label |
|
|
|
|
|
class Flue(datasets.GeneratorBasedBuilder): |
|
"""The French Language Understanding Evaluation (FLUE) benchmark.""" |
|
|
|
BUILDER_CONFIGS = [ |
|
FlueConfig( |
|
name="CLS", |
|
description=textwrap.dedent( |
|
"""\ |
|
This is a binary classification task. It consists in classifying Amazon reviews for three product categories: |
|
books, DVD, and music. Each sample contains a review text and the associated rating from 1 to 5 stars. Reviews |
|
rated above 3 is labeled as positive, and those rated less than 3 is labeled as negative. The train and test sets |
|
are balanced, including around 1k positive and 1k negative reviews for a total of 2k reviews in each dataset. Only |
|
the French portion is taken to create the binary text classification task in FLUE and report the accuracy on the test set.""" |
|
), |
|
text_features={"text": "text"}, |
|
label_classes=["negative", "positive"], |
|
label_column="label", |
|
data_url="https://zenodo.org/record/3251672/files/cls-acl10-unprocessed.tar.gz", |
|
data_dir="", |
|
url="", |
|
citation="", |
|
), |
|
FlueConfig( |
|
name="PAWS-X", |
|
description=textwrap.dedent( |
|
"""\ |
|
This dataset contains 23,659 human translated PAWS evaluation pairs and 296,406 machine translated training |
|
pairs in six typologically distinct languages: French, Spanish, German, Chinese, Japanese, and Korean. All |
|
translated pairs are sourced from examples in PAWS-Wiki. Only the related dataset for French is taken to perform |
|
the paraphrasing task and report the accuracy on the test set.""" |
|
), |
|
text_features={"sentence1": "sentence1", "sentence2": "sentence2"}, |
|
data_url="https://storage.googleapis.com/paws/pawsx/x-final.tar.gz", |
|
label_column="label", |
|
data_dir="", |
|
url="https://github.com/google-research-datasets/paws/tree/master/pawsx", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@InProceedings{pawsx2019emnlp, |
|
title = {{PAWS-X: A Cross-lingual Adversarial Dataset for Paraphrase Identification}}, |
|
author = {Yang, Yinfei and Zhang, Yuan and Tar, Chris and Baldridge, Jason}, |
|
booktitle = {Proc. of EMNLP}, |
|
year = {2019} |
|
}""" |
|
), |
|
), |
|
FlueConfig( |
|
name="XNLI", |
|
description=textwrap.dedent( |
|
""" |
|
The Cross-lingual Natural Language Inference (XNLI) corpus is a crowd-sourced collection of 5,000 test and |
|
2,500 dev pairs for the MultiNLI corpus. The pairs are annotated with textual entailment and translated into |
|
14 languages: French, Spanish, German, Greek, Bulgarian, Russian, Turkish, Arabic, Vietnamese, Thai, Chinese, |
|
Hindi, Swahili and Urdu. This results in 112.5k annotated pairs. Each premise can be associated with the |
|
corresponding hypothesis in the 15 languages, summing up to more than 1.5M combinations. The corpus is made to |
|
evaluate how to perform inference in any language (including low-resources ones like Swahili or Urdu) when only |
|
English NLI data is available at training time. One solution is cross-lingual sentence encoding, for which XNLI |
|
is an evaluation benchmark. Only the related datasets for French is taken to perform the NLI task and report |
|
the accuracy on the test set.""" |
|
), |
|
text_features={"premise": "premise", "hypo": "hypo"}, |
|
data_url={ |
|
"train": "https://dl.fbaipublicfiles.com/XNLI/XNLI-MT-1.0.zip", |
|
"dev_test": "https://dl.fbaipublicfiles.com/XNLI/XNLI-1.0.zip", |
|
}, |
|
label_classes=["contradiction", "entailment", "neutral"], |
|
label_column="label", |
|
data_dir="", |
|
url="https://www.nyu.edu/projects/bowman/xnli/", |
|
citation=textwrap.dedent( |
|
"""\ |
|
@InProceedings{conneau2018xnli, |
|
author = {Conneau, Alexis |
|
and Rinott, Ruty |
|
and Lample, Guillaume |
|
and Williams, Adina |
|
and Bowman, Samuel R. |
|
and Schwenk, Holger |
|
and Stoyanov, Veselin}, |
|
title = {XNLI: Evaluating Cross-lingual Sentence Representations}, |
|
booktitle = {Proceedings of the 2018 Conference on Empirical Methods |
|
in Natural Language Processing}, |
|
year = {2018}, |
|
publisher = {Association for Computational Linguistics}, |
|
location = {Brussels, Belgium}, |
|
}""" |
|
), |
|
), |
|
FlueConfig( |
|
name="WSD-V", |
|
description=textwrap.dedent( |
|
""" |
|
French Verb Sense Disambiguation task.""" |
|
), |
|
text_features={ |
|
"sentence": "sentence", |
|
"pos_tags": "pos_tags", |
|
"lemmas": "lemmas", |
|
"fine_pos_tags": "fine_pos_tags", |
|
}, |
|
data_url="http://www.llf.cnrs.fr/dataset/fse/FSE-1.1-10_12_19.tar.gz", |
|
label_classes=["disambiguate_tokens_ids", "disambiguate_labels"], |
|
label_column="disambiguate_labels", |
|
data_dir="FSE-1.1-191210", |
|
url="http://www.llf.cnrs.fr/dataset/fse/", |
|
citation="", |
|
), |
|
] |
|
|
|
def _info(self): |
|
if self.config.name == "CLS" or self.config.name == "XNLI": |
|
features = { |
|
text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features) |
|
} |
|
features[self.config.label_column] = datasets.features.ClassLabel(names=self.config.label_classes) |
|
features["idx"] = datasets.Value("int32") |
|
elif self.config.name == "WSD-V": |
|
features = { |
|
text_feature: datasets.Sequence(datasets.Value("string")) |
|
for text_feature in six.iterkeys(self.config.text_features) |
|
} |
|
features["fine_pos_tags"] = datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"DET", |
|
"P+D", |
|
"CC", |
|
"VS", |
|
"P", |
|
"CS", |
|
"NC", |
|
"NPP", |
|
"ADJWH", |
|
"VINF", |
|
"VPP", |
|
"ADVWH", |
|
"PRO", |
|
"V", |
|
"CLO", |
|
"PREF", |
|
"VPR", |
|
"PROREL", |
|
"ADV", |
|
"PROWH", |
|
"N", |
|
"DETWH", |
|
"ADJ", |
|
"P+PRO", |
|
"ET", |
|
"VIMP", |
|
"CLS", |
|
"PONCT", |
|
"I", |
|
"CLR", |
|
] |
|
) |
|
) |
|
features["pos_tags"] = datasets.Sequence( |
|
datasets.features.ClassLabel( |
|
names=[ |
|
"V", |
|
"PREF", |
|
"P+D", |
|
"I", |
|
"A", |
|
"P+PRO", |
|
"PRO", |
|
"P", |
|
"anonyme", |
|
"D", |
|
"C", |
|
"CL", |
|
"ET", |
|
"PONCT", |
|
"ADV", |
|
"N", |
|
] |
|
) |
|
) |
|
features["disambiguate_tokens_ids"] = datasets.Sequence(datasets.Value("int32")) |
|
features["disambiguate_labels"] = datasets.Sequence(datasets.Value("string")) |
|
features["idx"] = datasets.Value("string") |
|
else: |
|
features = { |
|
text_feature: datasets.Value("string") for text_feature in six.iterkeys(self.config.text_features) |
|
} |
|
features[self.config.label_column] = datasets.Value("int32") |
|
features["idx"] = datasets.Value("int32") |
|
return datasets.DatasetInfo( |
|
description=_FLUE_DESCRIPTION, |
|
features=datasets.Features(features), |
|
homepage=self.config.url, |
|
citation=self.config.citation + "\n" + _FLUE_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
if self.config.name == "CLS": |
|
data_folder = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder, "cls-acl10-unprocessed", "fr"), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder, "cls-acl10-unprocessed", "fr"), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "PAWS-X": |
|
data_folder = dl_manager.download_and_extract(self.config.data_url) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder, "x-final", "fr", "dev_2k.tsv"), |
|
"split": "", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder, "x-final", "fr", "test_2k.tsv"), |
|
"split": "", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder, "x-final", "fr", "translated_train.tsv"), |
|
"split": "", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "XNLI": |
|
data_folder = dl_manager.download_and_extract(self.config.data_url) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder["dev_test"], "XNLI-1.0", "xnli.dev.tsv"), |
|
"split": "dev", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder["dev_test"], "XNLI-1.0", "xnli.test.tsv"), |
|
"split": "test", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join( |
|
data_folder["train"], "XNLI-MT-1.0", "multinli", "multinli.train.fr.tsv" |
|
), |
|
"split": "train", |
|
}, |
|
), |
|
] |
|
elif self.config.name == "WSD-V": |
|
data_folder = dl_manager.download_and_extract(self.config.data_url) |
|
self._wsdv_prepare_data(os.path.join(data_folder, self.config.data_dir)) |
|
|
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder, self.config.data_dir), |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
gen_kwargs={ |
|
"data_file": os.path.join(data_folder, self.config.data_dir), |
|
"split": "test", |
|
}, |
|
), |
|
] |
|
|
|
def _generate_examples(self, data_file, split): |
|
if self.config.name == "CLS": |
|
for category in ["books", "dvd", "music"]: |
|
file_path = os.path.join(data_file, category, split + ".review") |
|
with open(file_path, "rt", encoding="utf-8") as f: |
|
next(f) |
|
id = 0 |
|
text = f.read() |
|
for id_, line in enumerate(text.split("\n\n")): |
|
if len(line) > 9: |
|
id += 1 |
|
review_text, label = self._cls_extractor(line) |
|
yield id_, {"idx": id, "text": review_text, "label": label} |
|
elif self.config.name == "PAWS-X": |
|
with open(data_file, encoding="utf-8") as f: |
|
data = csv.reader(f, delimiter="\t") |
|
next(data) |
|
id = 0 |
|
for id_, row in enumerate(data): |
|
if len(row) == 4: |
|
id += 1 |
|
yield id_, { |
|
"idx": id, |
|
"sentence1": self._cleaner(row[1]), |
|
"sentence2": self._cleaner(row[2]), |
|
"label": int(row[3].strip()), |
|
} |
|
elif self.config.name == "XNLI": |
|
with open(data_file, encoding="utf-8") as f: |
|
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
next(data) |
|
id = 0 |
|
for id_, row in enumerate(data): |
|
if split == "train": |
|
id += 1 |
|
yield id_, { |
|
"idx": id, |
|
"premise": self._cleaner(row[0]), |
|
"hypo": self._cleaner(row[1]), |
|
"label": row[2].strip().replace("contradictory", "contradiction"), |
|
} |
|
else: |
|
if row[0] == "fr": |
|
id += 1 |
|
yield id_, { |
|
"idx": id, |
|
"premise": self._cleaner(row[6]), |
|
"hypo": self._cleaner(row[7]), |
|
"label": row[1].strip(), |
|
} |
|
elif self.config.name == "WSD-V": |
|
wsd_rdr = WSDDatasetReader() |
|
for inst in wsd_rdr.read_from_data_dirs([os.path.join(data_file, split)]): |
|
yield inst[0], { |
|
"idx": inst[0], |
|
"sentence": inst[1], |
|
"pos_tags": inst[2], |
|
"lemmas": inst[3], |
|
"fine_pos_tags": inst[4], |
|
"disambiguate_tokens_ids": inst[5], |
|
"disambiguate_labels": inst[6], |
|
} |
|
|
|
def _cls_extractor(self, line): |
|
""" |
|
Extract review and label for CLS dataset |
|
from: https://github.com/getalp/Flaubert/blob/master/flue/extract_split_cls.py |
|
""" |
|
m = re.search(r"(?<=<rating>)\d+.\d+(?=<\/rating>)", line) |
|
label = "positive" if int(float(m.group(0))) > 3 else "negative" |
|
category = re.search(r"(?<=<category>)\w+(?=<\/category>)", line) |
|
|
|
if category == "dvd": |
|
m = re.search(r"(?<=\/url><text>)(.|\n|\t|\f)+(?=\<\/title><summary>)", line) |
|
else: |
|
m = re.search(r"(?<=\/url><text>)(.|\n|\t|\f)+(?=\<\/text><title>)", line) |
|
|
|
review_text = m.group(0) |
|
|
|
return self._cleaner(review_text), label |
|
|
|
def _convert_to_unicode(self, text): |
|
""" |
|
Converts `text` to Unicode (if it's not already), assuming UTF-8 input. |
|
from: https://github.com/getalp/Flaubert/blob/master/tools/clean_text.py |
|
""" |
|
|
|
def six_ensure_text(s, encoding="utf-8", errors="strict"): |
|
if isinstance(s, six.binary_type): |
|
return s.decode(encoding, errors) |
|
elif isinstance(s, six.text_type): |
|
return s |
|
else: |
|
raise TypeError("not expecting type '%s'" % type(s)) |
|
|
|
return six_ensure_text(text, encoding="utf-8", errors="ignore") |
|
|
|
def _cleaner(self, text): |
|
""" |
|
Clean up an input text |
|
from: https://github.com/getalp/Flaubert/blob/master/tools/clean_text.py |
|
""" |
|
|
|
text = self._convert_to_unicode(text) |
|
text = unicodedata.normalize("NFC", text) |
|
|
|
|
|
remap = {ord("\f"): " ", ord("\r"): "", ord("\n"): "", ord("\t"): ""} |
|
text = text.translate(remap) |
|
|
|
|
|
pattern = re.compile(r"(?:www|http)\S+|<\S+|\w+\/*>") |
|
text = re.sub(pattern, "", text) |
|
|
|
|
|
pattern = re.compile(r"( ){2,}") |
|
text = re.sub(pattern, r" ", text) |
|
|
|
return text |
|
|
|
def _wsdv_prepare_data(self, dirpath): |
|
""" Get data paths from FSE dir""" |
|
paths = {} |
|
|
|
for f in os.listdir(dirpath): |
|
if f.startswith("FSE"): |
|
data = "test" |
|
else: |
|
data = "train" |
|
|
|
paths["_".join((data, f))] = os.path.join(dirpath, f) |
|
|
|
test_dirpath = os.path.join(dirpath, "test") |
|
os.makedirs(test_dirpath, exist_ok=True) |
|
train_dirpath = os.path.join(dirpath, "train") |
|
os.makedirs(train_dirpath, exist_ok=True) |
|
|
|
for k, v in paths.items(): |
|
data = k.split("_")[0] |
|
filename = k.split("_")[1] |
|
copyfile(v, os.path.join(dirpath, data, filename)) |
|
|
|
|
|
|
|
class WSDDatasetReader: |
|
""" Class to read a WSD data directory. The directory should contain .data.xml and .gold.key.txt files""" |
|
|
|
def get_data_paths(self, indir): |
|
""" Get file paths from WSD dir """ |
|
xml_fpath, gold_fpath = None, None |
|
|
|
for f in os.listdir(indir): |
|
if f.endswith(".data.xml"): |
|
xml_fpath = os.path.join(indir, f) |
|
if f.endswith(".gold.key.txt"): |
|
gold_fpath = os.path.join(indir, f) |
|
return xml_fpath, gold_fpath |
|
|
|
def read_gold(self, infile): |
|
"""Read .gold.key.txt and return data as dict. |
|
:param infile: fpath to .gold.key.txt file |
|
:type infile: str |
|
:return: return data into dict format : {str(instance_id): set(label)} |
|
:rtype: dict |
|
""" |
|
return { |
|
line.split()[0]: tuple(line.rstrip("\n").split()[1:]) |
|
for line in open(infile, encoding="utf-8").readlines() |
|
} |
|
|
|
def read_from_data_dirs(self, data_dirs): |
|
""" Read WSD data and return as WSDDataset """ |
|
for d in data_dirs: |
|
xml_fpath, gold_fpath = self.get_data_paths(d) |
|
|
|
|
|
id2gold = self.read_gold(gold_fpath) |
|
|
|
sentences = self.read_sentences(d) |
|
|
|
|
|
tree = etree.parse(xml_fpath) |
|
corpus = tree.getroot() |
|
|
|
|
|
|
|
for text in corpus: |
|
|
|
for sentence in text: |
|
sent_id = sentence.get("id") |
|
sent = next(sentences) |
|
pos_tags = [] |
|
lemmas = [] |
|
fine_pos_tags = [] |
|
disambiguate_tokens_ids = [] |
|
disambiguate_labels = [] |
|
tok_idx = 0 |
|
|
|
|
|
for tok in sentence: |
|
lemma, pos, fine_pos_tag = tok.get("lemma"), tok.get("pos"), tok.get("fine_pos") |
|
|
|
pos_tags.append(pos) |
|
lemmas.append(lemma) |
|
fine_pos_tags.append(fine_pos_tag) |
|
wf = tok.text |
|
subtokens = wf.split(" ") |
|
|
|
|
|
if tok.tag == "instance": |
|
id = tok.get("id") |
|
|
|
target_labels = id2gold[id] |
|
target_first_label = target_labels[0] |
|
|
|
|
|
if pos == "VERB": |
|
tgt_idx = tok_idx |
|
else: |
|
tgt_idx = ( |
|
tok_idx + len(subtokens) - 1 |
|
) |
|
|
|
disambiguate_tokens_ids.append(tgt_idx) |
|
disambiguate_labels.append(target_first_label) |
|
|
|
tok_idx += 1 |
|
|
|
yield ( |
|
sent_id, |
|
sent, |
|
pos_tags, |
|
lemmas, |
|
fine_pos_tags, |
|
disambiguate_tokens_ids, |
|
disambiguate_labels, |
|
) |
|
|
|
def read_sentences(self, data_dir, keep_mwe=True): |
|
""" Read sentences from WSD data""" |
|
|
|
xml_fpath, _ = self.get_data_paths(data_dir) |
|
return self.read_sentences_from_xml(xml_fpath, keep_mwe=keep_mwe) |
|
|
|
def read_sentences_from_xml(self, infile, keep_mwe=False): |
|
""" Read sentences from xml file """ |
|
|
|
|
|
tree = etree.parse(infile) |
|
corpus = tree.getroot() |
|
|
|
for text in corpus: |
|
for sentence in text: |
|
if keep_mwe: |
|
sent = [tok.text.replace(" ", "_") for tok in sentence] |
|
else: |
|
sent = [subtok for tok in sentence for subtok in tok.text.split(" ")] |
|
yield sent |
|
|
|
def read_target_keys(self, infile): |
|
""" Read target keys """ |
|
return [x.rstrip("\n") for x in open(infile, encoding="utf-8").readlines()] |
|
|