|
{ |
|
"overview": { |
|
"what": { |
|
"dataset": "The XWikis Corpus provides datasets with different language pairs and directions for cross-lingual and multi-lingual abstractive document summarisation. " |
|
}, |
|
"where": { |
|
"has-leaderboard": "no", |
|
"leaderboard-url": "N/A", |
|
"leaderboard-description": "N/A", |
|
"website": "[Github](https://github.com/lauhaide/clads)", |
|
"paper-bibtext": "```\n@InProceedings{clads-emnlp,\n author = \"Laura Perez-Beltrachini and Mirella Lapata\",\n title = \"Models and Datasets for Cross-Lingual Summarisation\",\n booktitle = \"Proceedings of The 2021 Conference on Empirical Methods in Natural Language Processing \",\n year = \"2021\",\n address = \"Punta Cana, Dominican Republic\",\n}\n```", |
|
"paper-url": "https://arxiv.org/abs/2202.09583", |
|
"contact-name": "Laura Perez-Beltrachini", |
|
"contact-email": "lperez@ed.ac.uk" |
|
}, |
|
"languages": { |
|
"is-multilingual": "yes", |
|
"license": "cc-by-sa-4.0: Creative Commons Attribution Share Alike 4.0 International", |
|
"task-other": "N/A", |
|
"language-names": [ |
|
"German", |
|
"English", |
|
"French", |
|
"Czech" |
|
], |
|
"intended-use": "Cross-lingual and Multi-lingual single long input document abstractive summarisation.", |
|
"license-other": "N/A", |
|
"task": "Summarization", |
|
"communicative": "Entity descriptive summarisation, that is, generate a summary that conveys the most salient facts of a document related to a given entity." |
|
}, |
|
"credit": { |
|
"organization-type": [ |
|
"academic" |
|
], |
|
"creators": "Laura Perez-Beltrachini (University of Edinburgh)", |
|
"gem-added-by": "Laura Perez-Beltrachini (University of Edinburgh) and Ronald Cardenas (University of Edinburgh)" |
|
}, |
|
"structure": { |
|
"structure-splits": "For each language pair and direction there exists a train/valid/test split. \nThe test split is a sample of size 7k from the intersection of titles existing in the four languages (cs,fr,en,de).\nTrain/valid are randomly split." |
|
} |
|
}, |
|
"curation": { |
|
"original": { |
|
"is-aggregated": "no", |
|
"aggregated-sources": "N/A" |
|
}, |
|
"language": { |
|
"found": [ |
|
"Single website" |
|
], |
|
"crowdsourced": [], |
|
"created": "N/A", |
|
"machine-generated": "N/A", |
|
"validated": "other", |
|
"is-filtered": "not filtered", |
|
"filtered-criteria": "N/A", |
|
"obtained": [ |
|
"Found" |
|
] |
|
}, |
|
"annotations": { |
|
"origin": "found", |
|
"rater-number": "N/A", |
|
"rater-qualifications": "N/A", |
|
"rater-training-num": "N/A", |
|
"rater-test-num": "N/A", |
|
"rater-annotation-service-bool": "no", |
|
"rater-annotation-service": [], |
|
"values": "The input documents have section structure information.", |
|
"quality-control": "validated by another rater", |
|
"quality-control-details": "Bilingual annotators assessed the content overlap of source document and target summaries." |
|
}, |
|
"consent": { |
|
"has-consent": "no", |
|
"consent-policy": "N/A", |
|
"consent-other": "N/A" |
|
}, |
|
"pii": { |
|
"has-pii": "no PII", |
|
"no-pii-justification": "N/A", |
|
"is-pii-identified": "N/A", |
|
"pii-identified-method": "N/A", |
|
"is-pii-replaced": "N/A", |
|
"pii-replaced-method": "N/A", |
|
"pii-categories": [] |
|
}, |
|
"maintenance": { |
|
"has-maintenance": "no", |
|
"description": "N/A", |
|
"contact": "N/A", |
|
"contestation-mechanism": "N/A", |
|
"contestation-link": "N/A", |
|
"contestation-description": "N/A" |
|
} |
|
}, |
|
"gem": { |
|
"rationale": { |
|
"sole-task-dataset": "no", |
|
"sole-language-task-dataset": "N/A", |
|
"distinction-description": "N/A" |
|
}, |
|
"curation": { |
|
"has-additional-curation": "no", |
|
"modification-types": [], |
|
"modification-description": "N/A", |
|
"has-additional-splits": "no", |
|
"additional-splits-description": "N/A", |
|
"additional-splits-capacicites": "N/A" |
|
}, |
|
"starting": {} |
|
}, |
|
"results": { |
|
"results": { |
|
"other-metrics-definitions": "N/A", |
|
"has-previous-results": "yes", |
|
"current-evaluation": "ROUGE-1/2/L", |
|
"previous-results": "N/A", |
|
"model-abilities": "- identification of entity salient information\n- translation\n- multi-linguality\n- cross-lingual transfer, zero-shot, few-shot", |
|
"metrics": [ |
|
"ROUGE" |
|
] |
|
} |
|
}, |
|
"considerations": { |
|
"pii": {}, |
|
"licenses": { |
|
"dataset-restrictions-other": "N/A", |
|
"data-copyright-other": "N/A", |
|
"dataset-restrictions": [ |
|
"public domain" |
|
], |
|
"data-copyright": [ |
|
"public domain" |
|
] |
|
}, |
|
"limitations": {} |
|
}, |
|
"context": { |
|
"previous": { |
|
"is-deployed": "no", |
|
"described-risks": "N/A", |
|
"changes-from-observation": "N/A" |
|
}, |
|
"underserved": { |
|
"helps-underserved": "no", |
|
"underserved-description": "N/A" |
|
}, |
|
"biases": { |
|
"has-biases": "no", |
|
"bias-analyses": "N/A" |
|
} |
|
} |
|
} |