Datasets:
Tasks:
Table to Text
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
data-to-text
License:
Sebastian Gehrmann
commited on
Commit
·
cbc53cf
1
Parent(s):
46806f7
linearization
Browse files- dataset_infos.json +1 -1
- totto.py +188 -43
dataset_infos.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"totto": {"description": "ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description
|
|
|
1 |
+
{"totto": {"description": "ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.\n", "citation": "\\@inproceedings{parikh2020totto,\ntitle={{ToTTo}: A Controlled Table-To-Text Generation Dataset},\nauthor={Parikh, Ankur P and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan},\nbooktitle={Proceedings of EMNLP},\nyear={2020}\n}\n", "homepage": "", "license": "", "features": {"gem_id": {"dtype": "string", "id": null, "_type": "Value"}, "gem_parent_id": {"dtype": "string", "id": null, "_type": "Value"}, "totto_id": {"dtype": "int32", "id": null, "_type": "Value"}, "table_page_title": {"dtype": "string", "id": null, "_type": "Value"}, "table_webpage_url": {"dtype": "string", "id": null, "_type": "Value"}, "table_section_title": {"dtype": "string", "id": null, "_type": "Value"}, "table_section_text": {"dtype": "string", "id": null, "_type": "Value"}, "table": [[{"column_span": {"dtype": "int32", "id": null, "_type": "Value"}, "is_header": {"dtype": "bool", "id": null, "_type": "Value"}, "row_span": {"dtype": "int32", "id": null, "_type": "Value"}, "value": {"dtype": "string", "id": null, "_type": "Value"}}]], "highlighted_cells": [[{"dtype": "int32", "id": null, "_type": "Value"}]], "example_id": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_annotations": [{"original_sentence": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_after_deletion": {"dtype": "string", "id": null, "_type": "Value"}, "sentence_after_ambiguity": {"dtype": "string", "id": null, "_type": "Value"}, "final_sentence": {"dtype": "string", "id": null, "_type": "Value"}}], "overlap_subset": {"dtype": "string", "id": null, "_type": "Value"}, "target": {"dtype": "string", "id": null, "_type": "Value"}, "references": [{"dtype": "string", "id": null, "_type": "Value"}], "linearized_input": {"dtype": "string", "id": null, "_type": "Value"}}, "post_processed": null, "supervised_keys": null, "task_templates": null, "builder_name": "totto", "config_name": "totto", "version": {"version_str": "1.0.0", "description": null, "major": 1, "minor": 0, "patch": 0}, "splits": {"train": {"name": "train", "num_bytes": 747884464, "num_examples": 121153, "dataset_name": "totto"}, "validation": {"name": "validation", "num_bytes": 54580701, "num_examples": 7700, "dataset_name": "totto"}, "test": {"name": "test", "num_bytes": 45476943, "num_examples": 7700, "dataset_name": "totto"}, "challenge_train_sample": {"name": "challenge_train_sample", "num_bytes": 2521208, "num_examples": 500, "dataset_name": "totto"}, "challenge_validation_sample": {"name": "challenge_validation_sample", "num_bytes": 3693554, "num_examples": 500, "dataset_name": "totto"}}, "download_checksums": {"https://storage.googleapis.com/totto-public/totto_data.zip": {"num_bytes": 187724372, "checksum": "0aab72597057394514fd9659745fd2b318d1a64bf0b2ca1b2c339abe0692fdf2"}, "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/totto.zip": {"num_bytes": 1810237, "checksum": "86bcec978edc44caa7a313944cecaaeb52e4685ee05f7be073911a15665d5ac3"}}, "download_size": 189534609, "post_processing_size": null, "dataset_size": 854156870, "size_in_bytes": 1043691479}}
|
totto.py
CHANGED
@@ -1,3 +1,4 @@
|
|
|
|
1 |
import json
|
2 |
import os
|
3 |
|
@@ -12,7 +13,7 @@ year={2020}
|
|
12 |
"""
|
13 |
|
14 |
_DESCRIPTION = """\
|
15 |
-
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.
|
16 |
"""
|
17 |
|
18 |
_URLs = {
|
@@ -23,7 +24,132 @@ _URLs = {
|
|
23 |
}
|
24 |
|
25 |
|
26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
BUILDER_CONFIGS = [
|
29 |
datasets.BuilderConfig(
|
@@ -36,7 +162,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
36 |
def _info(self):
|
37 |
return datasets.DatasetInfo(
|
38 |
description=_DESCRIPTION,
|
39 |
-
features
|
40 |
{
|
41 |
"gem_id": datasets.Value("string"),
|
42 |
"gem_parent_id": datasets.Value("string"),
|
@@ -68,6 +194,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
68 |
"overlap_subset": datasets.Value("string"),
|
69 |
"target": datasets.Value("string"), # single target for train
|
70 |
"references": [datasets.Value("string")],
|
|
|
71 |
},
|
72 |
),
|
73 |
supervised_keys=None,
|
@@ -79,43 +206,51 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
79 |
"""Returns SplitGenerators."""
|
80 |
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
|
81 |
challenge_sets = [
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
|
87 |
return [
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
"
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
119 |
|
120 |
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
|
121 |
"""Yields examples."""
|
@@ -129,6 +264,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
129 |
continue
|
130 |
exple["gem_parent_id"] = exple["gem_id"]
|
131 |
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
|
|
132 |
yield id_, exple
|
133 |
else:
|
134 |
with open(filepath, "r", encoding="utf-8") as json_file:
|
@@ -137,6 +273,7 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
137 |
i = -1
|
138 |
for json_str in json_list:
|
139 |
result = json.loads(json_str)
|
|
|
140 |
if split == "train":
|
141 |
i += 1
|
142 |
for sentence in result["sentence_annotations"]:
|
@@ -154,8 +291,9 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
154 |
"example_id": str(result["example_id"]),
|
155 |
"overlap_subset": "none",
|
156 |
"sentence_annotations": [sentence],
|
157 |
-
"references": [],
|
158 |
"target": sentence["final_sentence"],
|
|
|
159 |
}
|
160 |
yield id_, response
|
161 |
else:
|
@@ -172,11 +310,18 @@ class Mlsum(datasets.GeneratorBasedBuilder):
|
|
172 |
"highlighted_cells": result["highlighted_cells"],
|
173 |
"example_id": str(result["example_id"]),
|
174 |
"overlap_subset": str(result["overlap_subset"]),
|
|
|
175 |
}
|
176 |
-
response["sentence_annotations"] =
|
|
|
|
|
177 |
response["references"] = [
|
178 |
-
sentence["final_sentence"]
|
|
|
179 |
]
|
180 |
-
response["target"] =
|
|
|
|
|
|
|
|
|
181 |
yield id_, response
|
182 |
-
|
|
|
1 |
+
import copy
|
2 |
import json
|
3 |
import os
|
4 |
|
|
|
13 |
"""
|
14 |
|
15 |
_DESCRIPTION = """\
|
16 |
+
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description.
|
17 |
"""
|
18 |
|
19 |
_URLs = {
|
|
|
24 |
}
|
25 |
|
26 |
|
27 |
+
def _add_adjusted_col_offsets(table):
|
28 |
+
"""Add adjusted column offsets to take into account multi-column cells."""
|
29 |
+
adjusted_table = []
|
30 |
+
for row in table:
|
31 |
+
real_col_index = 0
|
32 |
+
adjusted_row = []
|
33 |
+
for cell in row:
|
34 |
+
adjusted_cell = copy.deepcopy(cell)
|
35 |
+
adjusted_cell["adjusted_col_start"] = real_col_index
|
36 |
+
adjusted_cell["adjusted_col_end"] = (
|
37 |
+
adjusted_cell["adjusted_col_start"] + adjusted_cell["column_span"]
|
38 |
+
)
|
39 |
+
real_col_index += adjusted_cell["column_span"]
|
40 |
+
adjusted_row.append(adjusted_cell)
|
41 |
+
adjusted_table.append(adjusted_row)
|
42 |
+
return adjusted_table
|
43 |
+
|
44 |
+
|
45 |
+
def _get_heuristic_row_headers(adjusted_table, row_index, col_index):
|
46 |
+
"""Heuristic to find row headers."""
|
47 |
+
row_headers = []
|
48 |
+
row = adjusted_table[row_index]
|
49 |
+
for i in range(0, col_index):
|
50 |
+
if row[i]["is_header"]:
|
51 |
+
row_headers.append(row[i])
|
52 |
+
return row_headers
|
53 |
+
|
54 |
+
|
55 |
+
def _get_heuristic_col_headers(adjusted_table, row_index, col_index):
|
56 |
+
"""Heuristic to find column headers."""
|
57 |
+
adjusted_cell = adjusted_table[row_index][col_index]
|
58 |
+
adjusted_col_start = adjusted_cell["adjusted_col_start"]
|
59 |
+
adjusted_col_end = adjusted_cell["adjusted_col_end"]
|
60 |
+
col_headers = []
|
61 |
+
for r in range(0, row_index):
|
62 |
+
row = adjusted_table[r]
|
63 |
+
for cell in row:
|
64 |
+
if (
|
65 |
+
cell["adjusted_col_start"] < adjusted_col_end
|
66 |
+
and cell["adjusted_col_end"] > adjusted_col_start
|
67 |
+
):
|
68 |
+
if cell["is_header"]:
|
69 |
+
col_headers.append(cell)
|
70 |
+
|
71 |
+
return col_headers
|
72 |
+
|
73 |
+
|
74 |
+
def get_highlighted_subtable(table, cell_indices, with_heuristic_headers=False):
|
75 |
+
"""Extract out the highlighted part of a table."""
|
76 |
+
highlighted_table = []
|
77 |
+
|
78 |
+
adjusted_table = _add_adjusted_col_offsets(table)
|
79 |
+
|
80 |
+
for (row_index, col_index) in cell_indices:
|
81 |
+
cell = table[row_index][col_index]
|
82 |
+
if with_heuristic_headers:
|
83 |
+
row_headers = _get_heuristic_row_headers(
|
84 |
+
adjusted_table, row_index, col_index
|
85 |
+
)
|
86 |
+
col_headers = _get_heuristic_col_headers(
|
87 |
+
adjusted_table, row_index, col_index
|
88 |
+
)
|
89 |
+
else:
|
90 |
+
row_headers = []
|
91 |
+
col_headers = []
|
92 |
+
|
93 |
+
highlighted_cell = {
|
94 |
+
"cell": cell,
|
95 |
+
"row_headers": row_headers,
|
96 |
+
"col_headers": col_headers,
|
97 |
+
}
|
98 |
+
highlighted_table.append(highlighted_cell)
|
99 |
+
|
100 |
+
return highlighted_table
|
101 |
+
|
102 |
+
|
103 |
+
def linearize_subtable(subtable, table_page_title, table_section_title):
|
104 |
+
"""Linearize the highlighted subtable and return a string of its contents."""
|
105 |
+
table_str = ""
|
106 |
+
if table_page_title:
|
107 |
+
table_str += "<page_title> " + table_page_title + " </page_title> "
|
108 |
+
if table_section_title:
|
109 |
+
table_str += "<section_title> " + table_section_title + " </section_title> "
|
110 |
+
table_str += "<table> "
|
111 |
+
|
112 |
+
for item in subtable:
|
113 |
+
cell = item["cell"]
|
114 |
+
row_headers = item["row_headers"]
|
115 |
+
col_headers = item["col_headers"]
|
116 |
+
|
117 |
+
# The value of the cell.
|
118 |
+
item_str = "<cell> " + cell["value"] + " "
|
119 |
+
|
120 |
+
# All the column headers associated with this cell.
|
121 |
+
for col_header in col_headers:
|
122 |
+
item_str += "<col_header> " + col_header["value"] + " </col_header> "
|
123 |
+
|
124 |
+
# All the row headers associated with this cell.
|
125 |
+
for row_header in row_headers:
|
126 |
+
item_str += "<row_header> " + row_header["value"] + " </row_header> "
|
127 |
+
|
128 |
+
item_str += "</cell> "
|
129 |
+
table_str += item_str
|
130 |
+
|
131 |
+
table_str += "</table>"
|
132 |
+
return table_str
|
133 |
+
|
134 |
+
|
135 |
+
def linearize(example):
|
136 |
+
table = example["table"]
|
137 |
+
table_page_title = example["table_page_title"]
|
138 |
+
table_section_title = example["table_section_title"]
|
139 |
+
cell_indices = example["highlighted_cells"]
|
140 |
+
subtable = get_highlighted_subtable(
|
141 |
+
table=table, cell_indices=cell_indices, with_heuristic_headers=True
|
142 |
+
)
|
143 |
+
|
144 |
+
subtable_metadata_str = linearize_subtable(
|
145 |
+
subtable=subtable,
|
146 |
+
table_page_title=table_page_title,
|
147 |
+
table_section_title=table_section_title,
|
148 |
+
)
|
149 |
+
return subtable_metadata_str
|
150 |
+
|
151 |
+
|
152 |
+
class Totto(datasets.GeneratorBasedBuilder):
|
153 |
|
154 |
BUILDER_CONFIGS = [
|
155 |
datasets.BuilderConfig(
|
|
|
162 |
def _info(self):
|
163 |
return datasets.DatasetInfo(
|
164 |
description=_DESCRIPTION,
|
165 |
+
features=datasets.Features(
|
166 |
{
|
167 |
"gem_id": datasets.Value("string"),
|
168 |
"gem_parent_id": datasets.Value("string"),
|
|
|
194 |
"overlap_subset": datasets.Value("string"),
|
195 |
"target": datasets.Value("string"), # single target for train
|
196 |
"references": [datasets.Value("string")],
|
197 |
+
"linearized_input": datasets.Value("string"),
|
198 |
},
|
199 |
),
|
200 |
supervised_keys=None,
|
|
|
206 |
"""Returns SplitGenerators."""
|
207 |
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name])
|
208 |
challenge_sets = [
|
209 |
+
("challenge_train_sample", "train_totto_RandomSample500.json"),
|
210 |
+
("challenge_validation_sample", "validation_totto_RandomSample500.json"),
|
211 |
+
# ("challenge_test_scramble", "test_totto_ScrambleInputStructure500.json"),
|
212 |
+
]
|
213 |
|
214 |
return [
|
215 |
+
datasets.SplitGenerator(
|
216 |
+
name=datasets.Split.TRAIN,
|
217 |
+
gen_kwargs={
|
218 |
+
"filepath": os.path.join(
|
219 |
+
dl_dir["data"], "totto_data/totto_train_data.jsonl"
|
220 |
+
),
|
221 |
+
"split": "train",
|
222 |
+
},
|
223 |
+
),
|
224 |
+
datasets.SplitGenerator(
|
225 |
+
name=datasets.Split.VALIDATION,
|
226 |
+
gen_kwargs={
|
227 |
+
"filepath": os.path.join(
|
228 |
+
dl_dir["data"], "totto_data/totto_dev_data.jsonl"
|
229 |
+
),
|
230 |
+
"split": "validation",
|
231 |
+
},
|
232 |
+
),
|
233 |
+
datasets.SplitGenerator(
|
234 |
+
name=datasets.Split.TEST,
|
235 |
+
gen_kwargs={
|
236 |
+
"filepath": os.path.join(
|
237 |
+
dl_dir["data"], "totto_data/unlabeled_totto_test_data.jsonl"
|
238 |
+
),
|
239 |
+
"split": "test",
|
240 |
+
},
|
241 |
+
),
|
242 |
+
] + [
|
243 |
+
datasets.SplitGenerator(
|
244 |
+
name=challenge_split,
|
245 |
+
gen_kwargs={
|
246 |
+
"filepath": os.path.join(
|
247 |
+
dl_dir["challenge_set"], self.config.name, filename
|
248 |
+
),
|
249 |
+
"split": challenge_split,
|
250 |
+
},
|
251 |
+
)
|
252 |
+
for challenge_split, filename in challenge_sets
|
253 |
+
]
|
254 |
|
255 |
def _generate_examples(self, filepath, split, filepaths=None, lang=None):
|
256 |
"""Yields examples."""
|
|
|
264 |
continue
|
265 |
exple["gem_parent_id"] = exple["gem_id"]
|
266 |
exple["gem_id"] = f"{self.config.name}-{split}-{id_}"
|
267 |
+
exple["linearized_input"] = linearize(exple)
|
268 |
yield id_, exple
|
269 |
else:
|
270 |
with open(filepath, "r", encoding="utf-8") as json_file:
|
|
|
273 |
i = -1
|
274 |
for json_str in json_list:
|
275 |
result = json.loads(json_str)
|
276 |
+
linearized_input = linearize(result)
|
277 |
if split == "train":
|
278 |
i += 1
|
279 |
for sentence in result["sentence_annotations"]:
|
|
|
291 |
"example_id": str(result["example_id"]),
|
292 |
"overlap_subset": "none",
|
293 |
"sentence_annotations": [sentence],
|
294 |
+
"references": [sentence["final_sentence"]],
|
295 |
"target": sentence["final_sentence"],
|
296 |
+
"linearized_input": linearized_input,
|
297 |
}
|
298 |
yield id_, response
|
299 |
else:
|
|
|
310 |
"highlighted_cells": result["highlighted_cells"],
|
311 |
"example_id": str(result["example_id"]),
|
312 |
"overlap_subset": str(result["overlap_subset"]),
|
313 |
+
"linearized_input": linearized_input,
|
314 |
}
|
315 |
+
response["sentence_annotations"] = (
|
316 |
+
[] if split == "test" else result["sentence_annotations"]
|
317 |
+
)
|
318 |
response["references"] = [
|
319 |
+
sentence["final_sentence"]
|
320 |
+
for sentence in response["sentence_annotations"]
|
321 |
]
|
322 |
+
response["target"] = (
|
323 |
+
response["references"][0]
|
324 |
+
if len(response["references"]) > 0
|
325 |
+
else ""
|
326 |
+
)
|
327 |
yield id_, response
|
|