Datasets:
Tasks:
Table to Text
Modalities:
Text
Languages:
English
Size:
100K - 1M
ArXiv:
Tags:
data-to-text
License:
import json | |
import os | |
import datasets | |
_CITATION = """\@inproceedings{parikh2020totto, | |
title={{ToTTo}: A Controlled Table-To-Text Generation Dataset}, | |
author={Parikh, Ankur P and Wang, Xuezhi and Gehrmann, Sebastian and Faruqui, Manaal and Dhingra, Bhuwan and Yang, Diyi and Das, Dipanjan}, | |
booktitle={Proceedings of EMNLP}, | |
year={2020} | |
} | |
""" | |
_DESCRIPTION = """\ | |
ToTTo is an open-domain English table-to-text dataset with over 120,000 training examples that proposes a controlled generation task: given a Wikipedia table and a set of highlighted table cells, produce a one-sentence description. | |
""" | |
_URLs = { | |
"totto": { | |
"data": "https://storage.googleapis.com/totto-public/totto_data.zip", | |
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/totto.zip", | |
}, | |
} | |
class Mlsum(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="totto", | |
version=datasets.Version("1.0.0"), | |
description=f"GEM benchmark: struct2text task", | |
) | |
] | |
def _info(self): | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features = datasets.Features( | |
{ | |
"gem_id": datasets.Value("string"), | |
"gem_parent_id": datasets.Value("string"), | |
"totto_id": datasets.Value("int32"), | |
"table_page_title": datasets.Value("string"), | |
"table_webpage_url": datasets.Value("string"), | |
"table_section_title": datasets.Value("string"), | |
"table_section_text": datasets.Value("string"), | |
"table": [ | |
[ | |
{ | |
"column_span": datasets.Value("int32"), | |
"is_header": datasets.Value("bool"), | |
"row_span": datasets.Value("int32"), | |
"value": datasets.Value("string"), | |
} | |
] | |
], | |
"highlighted_cells": [[datasets.Value("int32")]], | |
"example_id": datasets.Value("string"), | |
"sentence_annotations": [ | |
{ | |
"original_sentence": datasets.Value("string"), | |
"sentence_after_deletion": datasets.Value("string"), | |
"sentence_after_ambiguity": datasets.Value("string"), | |
"final_sentence": datasets.Value("string"), | |
} | |
], | |
"overlap_subset": datasets.Value("string"), | |
"target": datasets.Value("string"), # single target for train | |
"references": [datasets.Value("string")], | |
}, | |
), | |
supervised_keys=None, | |
homepage="", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_dir = dl_manager.download_and_extract(_URLs[self.config.name]) | |
challenge_sets = [ | |
("challenge_train_sample", "train_totto_RandomSample500.json"), | |
("challenge_validation_sample", "validation_totto_RandomSample500.json"), | |
("challenge_test_scramble", "test_totto_ScrambleInputStructure500.json"), | |
] | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TRAIN, | |
gen_kwargs={ | |
"filepath": os.path.join(dl_dir["data"], "totto_data/totto_train_data.jsonl"), | |
"split": "train", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.VALIDATION, | |
gen_kwargs={ | |
"filepath": os.path.join(dl_dir["data"], "totto_data/totto_dev_data.jsonl"), | |
"split": "validation", | |
}, | |
), | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": os.path.join(dl_dir["data"], "totto_data/unlabeled_totto_test_data.jsonl"), | |
"split": "test", | |
}, | |
), | |
] + [ | |
datasets.SplitGenerator( | |
name=challenge_split, | |
gen_kwargs={ | |
"filepath": os.path.join(dl_dir["challenge_set"], self.config.name, filename), | |
"split": challenge_split, | |
}, | |
) | |
for challenge_split, filename in challenge_sets | |
] | |
def _generate_examples(self, filepath, split, filepaths=None, lang=None): | |
"""Yields examples.""" | |
if "challenge" in split: | |
exples = json.load(open(filepath, encoding="utf-8")) | |
if isinstance(exples, dict): | |
assert len(exples) == 1, "multiple entries found" | |
exples = list(exples.values())[0] | |
for id_, exple in enumerate(exples): | |
if len(exple) == 0: | |
continue | |
exple["gem_parent_id"] = exple["gem_id"] | |
exple["gem_id"] = f"{self.config.name}-{split}-{id_}" | |
yield id_, exple | |
else: | |
with open(filepath, "r", encoding="utf-8") as json_file: | |
json_list = list(json_file) | |
id_ = -1 | |
i = -1 | |
for json_str in json_list: | |
result = json.loads(json_str) | |
if split == "train": | |
i += 1 | |
for sentence in result["sentence_annotations"]: | |
id_ += 1 | |
response = { | |
"gem_id": f"{self.config.name}-{split}-{id_}", | |
"gem_parent_id": f"{self.config.name}-{split}-{id_}", | |
"totto_id": i, | |
"table_page_title": result["table_page_title"], | |
"table_webpage_url": result["table_webpage_url"], | |
"table_section_title": result["table_section_title"], | |
"table_section_text": result["table_section_text"], | |
"table": result["table"], | |
"highlighted_cells": result["highlighted_cells"], | |
"example_id": str(result["example_id"]), | |
"overlap_subset": "none", | |
"sentence_annotations": [sentence], | |
"references": [], | |
"target": sentence["final_sentence"], | |
} | |
yield id_, response | |
else: | |
id_ += 1 | |
response = { | |
"gem_id": f"{self.config.name}-{split}-{id_}", | |
"gem_parent_id": f"{self.config.name}-{split}-{id_}", | |
"totto_id": id_, | |
"table_page_title": result["table_page_title"], | |
"table_webpage_url": result["table_webpage_url"], | |
"table_section_title": result["table_section_title"], | |
"table_section_text": result["table_section_text"], | |
"table": result["table"], | |
"highlighted_cells": result["highlighted_cells"], | |
"example_id": str(result["example_id"]), | |
"overlap_subset": str(result["overlap_subset"]), | |
} | |
response["sentence_annotations"] = [] if split == "test" else result["sentence_annotations"] | |
response["references"] = [ | |
sentence["final_sentence"] for sentence in response["sentence_annotations"] | |
] | |
response["target"] = response["references"][0] if len(response["references"]) > 0 else "" | |
yield id_, response | |