|
import json |
|
import os |
|
import datasets |
|
|
|
_CITATION = """\ |
|
@inproceedings{rastogi2020towards, |
|
title={Towards scalable multi-domain conversational agents: The schema-guided dialogue dataset}, |
|
author={Rastogi, Abhinav and Zang, Xiaoxue and Sunkara, Srinivas and Gupta, Raghav and Khaitan, Pranav}, |
|
booktitle={Proceedings of the AAAI Conference on Artificial Intelligence}, |
|
volume={34}, |
|
number={05}, |
|
pages={8689--8696}, |
|
year={2020} |
|
} |
|
""" |
|
|
|
_DESCRIPTION = """\ |
|
The Schema-Guided Dialogue (SGD) dataset contains 18K multi-domain task-oriented |
|
dialogues between a human and a virtual assistant, which covers 17 domains |
|
ranging from banks and events to media, calendar, travel, and weather. The |
|
language presents in the datset is only English. The SGD dataset provides a |
|
challenging testbed for a number of tasks in task-oriented dialogue, including |
|
language understanding, slot filling, dialogue state tracking and response |
|
generation. For the creation of the SGD dataset, they developed a multi-domain |
|
dialogue simulator that generates dialogue outlines over an arbitrary combination |
|
of APIs, dialogue states and system actions. Then, they used a crowd-sourcing |
|
procedure to paraphrase these outlines to natural language utterances. This novel |
|
crowd-sourcing procedure preserves all annotations obtained from the simulator and |
|
does not require any extra annotations after dialogue collection. |
|
|
|
""" |
|
|
|
_URLs = { |
|
"data": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_sgd_context.zip", |
|
"challenge_set": "https://storage.googleapis.com/huggingface-nlp/datasets/gem/gem_challenge_sets/schema_guided_dialog.zip", |
|
} |
|
|
|
_SGD_ACTS = [ |
|
"AFFIRM", |
|
"AFFIRM_INTENT", |
|
"CONFIRM", |
|
"GOODBYE", |
|
"INFORM", |
|
"INFORM_COUNT", |
|
"INFORM_INTENT", |
|
"NEGATE", |
|
"NEGATE_INTENT", |
|
"NOTIFY_FAILURE", |
|
"NOTIFY_SUCCESS", |
|
"OFFER", |
|
"OFFER_INTENT", |
|
"REQUEST", |
|
"REQUEST_ALTS", |
|
"REQ_MORE", |
|
"SELECT", |
|
"THANK_YOU", |
|
] |
|
|
|
|
|
class SchemaGuidedDialog(datasets.GeneratorBasedBuilder): |
|
VERSION = datasets.Version("1.0.0") |
|
DEFAULT_CONFIG_NAME = "schema_guided_dialog" |
|
|
|
def _info(self): |
|
features = datasets.Features( |
|
{ |
|
"gem_id": datasets.Value("string"), |
|
"gem_parent_id": datasets.Value("string"), |
|
"dialog_acts": [ |
|
{ |
|
"act": datasets.ClassLabel(names=_SGD_ACTS), |
|
"slot": datasets.Value("string"), |
|
"values": [datasets.Value("string")], |
|
} |
|
], |
|
"context": [datasets.Value("string")], |
|
"dialog_id": datasets.Value("string"), |
|
"service": datasets.Value("string"), |
|
"turn_id": datasets.Value("int32"), |
|
"prompt": datasets.Value("string"), |
|
"target": datasets.Value("string"), |
|
"references": [datasets.Value("string")], |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
description=_DESCRIPTION, |
|
features=features, |
|
supervised_keys=None, |
|
homepage="", |
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
dl_dir = dl_manager.download_and_extract(_URLs) |
|
challenge_sets = [ |
|
( |
|
"challenge_train_sample", |
|
"train_schema_guided_dialog_RandomSample500_reformatted.json", |
|
), |
|
( |
|
"challenge_validation_sample", |
|
"validation_schema_guided_dialog_RandomSample500_reformatted.json", |
|
), |
|
( |
|
"challenge_test_backtranslation", |
|
"test_schema_guided_dialog_BackTranslation500_reformatted.json", |
|
), |
|
( |
|
"challenge_test_bfp02", |
|
"test_schema_guided_dialog_ButterFingersPerturbation_p=0.02_500_reformatted.json", |
|
), |
|
( |
|
"challenge_test_bfp05", |
|
"test_schema_guided_dialog_ButterFingersPerturbation_p=0.05_500_reformatted.json", |
|
), |
|
( |
|
"challenge_test_nopunc", |
|
"test_schema_guided_dialog_WithoutPunctuation500_reformatted.json", |
|
), |
|
( |
|
"challenge_test_scramble", |
|
"test_schema_guided_dialog_ScrambleInputStructure500_reformatted.json", |
|
), |
|
] |
|
return [ |
|
datasets.SplitGenerator( |
|
name=spl, |
|
gen_kwargs={ |
|
"filepath": os.path.join(dl_dir["data"], "gem_sgd.json"), |
|
"split": spl, |
|
}, |
|
) |
|
for spl in ["train", "validation", "test"] |
|
] + [ |
|
datasets.SplitGenerator( |
|
name=challenge_split, |
|
gen_kwargs={ |
|
"filepath": os.path.join( |
|
dl_dir["challenge_set"], "schema_guided_dialog", filename |
|
), |
|
"split": challenge_split, |
|
}, |
|
) |
|
for challenge_split, filename in challenge_sets |
|
] |
|
|
|
def _generate_examples(self, filepath, split, filepaths=None, lang=None): |
|
"""Yields examples.""" |
|
if "challenge" in split: |
|
exples = json.load(open(filepath, encoding="utf-8")) |
|
if isinstance(exples, dict): |
|
assert len(exples) == 1, "multiple entries found" |
|
exples = list(exples.values())[0] |
|
for id_, exple in enumerate(exples): |
|
if len(exple) == 0: |
|
continue |
|
exple["gem_parent_id"] = exple["gem_id"] |
|
exple["gem_id"] = f"schema_guided_dialog-{split}-{id_}" |
|
yield id_, exple |
|
else: |
|
examples = json.load(open(filepath, encoding="utf-8"))[split] |
|
for id_, example in enumerate(examples): |
|
|
|
if not example["target"]: |
|
example["target"] = "Thank you, goodbye." |
|
yield id_, { |
|
"gem_id": f"schema_guided_dialog-{split}-{id_}", |
|
"gem_parent_id": f"schema_guided_dialog-{split}-{id_}", |
|
"dialog_acts": [ |
|
{ |
|
"act": act_id, |
|
"slot": slot, |
|
"values": values, |
|
} |
|
for act_id, slot, values in example["da"] |
|
], |
|
"context": example["context"], |
|
"dialog_id": example["dialog_id"], |
|
"service": example["service"], |
|
"turn_id": example["turn_ix"], |
|
"prompt": example["prompt"], |
|
"target": example["target"], |
|
"references": [] if split == "train" else [example["target"]], |
|
} |
|
|