Sebastian Gehrmann
commited on
Commit
•
9db4fc7
1
Parent(s):
3fb328f
- conversational_weather.json +10 -7
conversational_weather.json
CHANGED
@@ -4,9 +4,9 @@
|
|
4 |
"has-leaderboard": "no",
|
5 |
"leaderboard-url": "N/A",
|
6 |
"leaderboard-description": "N/A",
|
7 |
-
"data-url": "https://github.com/facebookresearch/TreeNLG",
|
8 |
-
"paper-url": "https://aclanthology.org/P19-1080",
|
9 |
-
"paper-bibtext": "@inproceedings{balakrishnan-etal-2019-constrained,\n title = \"Constrained Decoding for Neural {NLG} from Compositional Representations in Task-Oriented Dialogue\",\n author = \"Balakrishnan, Anusha and\n Rao, Jinfeng and\n Upasani, Kartikeya and\n White, Michael and\n Subba, Rajen\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P19-1080\",\n doi = \"10.18653/v1/P19-1080\",\n pages = \"831--844\"\n}",
|
10 |
"contact-name": "Kartikeya Upasani",
|
11 |
"contact-email": "kart@fb.com"
|
12 |
},
|
@@ -32,11 +32,14 @@
|
|
32 |
"gem-added-by": "Vipul Raheja (Grammarly)"
|
33 |
},
|
34 |
"structure": {
|
35 |
-
"data-fields": "
|
36 |
-
"structure-example": "{'gem_id': 'weather-train-11',\n'id': '1108963',\n 'synthetic_user_context': '[__DG_INFORM__ [__ARG_TASK__ get_forecast ] '\n '[__ARG_TEMP__ 37 ] [__ARG_TEMP_UNIT__ fahrenheit ] '\n '[__ARG_CLOUD_COVERAGE__ partly cloudy ] '\n '[__ARG_DATE_TIME__ [__ARG_COLLOQUIAL__ currently ] '\n '] [__ARG_LOCATION__ [__ARG_CITY__ Oakland ] '\n '[__ARG_COUNTRY__ United States ] [__ARG_REGION__ '\n 'California ] ] ] [__DG_INFORM__ [__ARG_TASK__ '\n 'get_forecast ] [__ARG_TEMP_SUMMARY__ mid 40s ] '\n '[__ARG_DATE_TIME_RANGE__ [__ARG_COLLOQUIAL__ This '\n 'afternoon ] ] [__ARG_LOCATION__ [__ARG_CITY__ '\n 'Oakland ] [__ARG_COUNTRY__ United States ] '\n '[__ARG_REGION__ California ] ] ] [__DG_INFORM__ '\n '[__ARG_TASK__ get_forecast ] '\n '[__ARG_CLOUD_COVERAGE__ mostly sunny ] '\n '[__ARG_DATE_TIME_RANGE__ [__ARG_COLLOQUIAL__ This '\n 'afternoon ] ] [__ARG_LOCATION__ [__ARG_CITY__ '\n 'Oakland ] [__ARG_COUNTRY__ United States ] '\n '[__ARG_REGION__ California ] ] ]',\n 'tree_str_mr': \"[__DG_INFORM__ It's [__ARG_DATE_TIME__ [__ARG_COLLOQUIAL__ \"\n 'currently ] ] [__ARG_CLOUD_COVERAGE__ partly cloudy ] and '\n '[__ARG_TEMP__ __ARG_TEMP__ ] [__ARG_TEMP_UNIT__ '\n '__ARG_TEMP_UNIT__ ] [__ARG_LOCATION__ in [__ARG_CITY__ '\n '__ARG_CITY__ ] , [__ARG_REGION__ __ARG_REGION__ ] , '\n '[__ARG_COUNTRY__ __ARG_COUNTRY__ ] ] . ] [__DG_INFORM__ '\n '[__ARG_DATE_TIME_RANGE__ [__ARG_COLLOQUIAL__ This afternoon ] '\n \"] , it'll be [__ARG_CLOUD_COVERAGE__ mostly sunny ] ] \"\n '[__DG_INFORM__ with temperatures in the [__ARG_TEMP_SUMMARY__ '\n 'mid <number> ] ]',\n 'user_query': 'Show weather forecast for Oakland, CA. '}",
|
37 |
-
"structure-splits": "Standard Splits: Train/Validation/Test\
|
38 |
"structure-splits-criteria": "The test set contains 3,121 examples, of which 1.1K (35%) have unique MRs that have never been seen in the training set.",
|
39 |
-
"structure-outlier": "{'gem_id': 'weather-train-13333', 'data_id': '1260610', 'user_query': 'Sundown', 'tree_str_mr': '[__DG_INFORM__ [__ARG_TASK__ get_weather_attribute ] [__ARG_SUNSET_TIME_DATE_TIME__ [__ARG_TIME__ 05:04 PM ] ] ]', 'response': '[__DG_INFORM__ The sun will go down at [__ARG_SUNSET_TIME_DATE_TIME__ [__ARG_TIME__ __ARG_TIME__ ] ] ]'}"
|
|
|
|
|
|
|
40 |
}
|
41 |
},
|
42 |
"curation": {
|
|
|
4 |
"has-leaderboard": "no",
|
5 |
"leaderboard-url": "N/A",
|
6 |
"leaderboard-description": "N/A",
|
7 |
+
"data-url": "[Github](https://github.com/facebookresearch/TreeNLG)",
|
8 |
+
"paper-url": "[ACL Anthology](https://aclanthology.org/P19-1080)",
|
9 |
+
"paper-bibtext": "```\n@inproceedings{balakrishnan-etal-2019-constrained,\n title = \"Constrained Decoding for Neural {NLG} from Compositional Representations in Task-Oriented Dialogue\",\n author = \"Balakrishnan, Anusha and\n Rao, Jinfeng and\n Upasani, Kartikeya and\n White, Michael and\n Subba, Rajen\",\n booktitle = \"Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics\",\n month = jul,\n year = \"2019\",\n address = \"Florence, Italy\",\n publisher = \"Association for Computational Linguistics\",\n url = \"https://www.aclweb.org/anthology/P19-1080\",\n doi = \"10.18653/v1/P19-1080\",\n pages = \"831--844\"\n}\n```",
|
10 |
"contact-name": "Kartikeya Upasani",
|
11 |
"contact-email": "kart@fb.com"
|
12 |
},
|
|
|
32 |
"gem-added-by": "Vipul Raheja (Grammarly)"
|
33 |
},
|
34 |
"structure": {
|
35 |
+
"data-fields": "- `gem_id`: (string): GEM-formatted row id\n- `id`: (string): Row id in the original data\n- `user_query`: (string): Natural language weather query from humans\n- `tree_str_mr`: (string): Synthetically-added user context (datetime and location) in the form of a tree-structured MR\n- `response`: (string): A tree-structured annotation of the response.\n",
|
36 |
+
"structure-example": "```\n{'gem_id': 'weather-train-11',\n'id': '1108963',\n 'synthetic_user_context': '[__DG_INFORM__ [__ARG_TASK__ get_forecast ] '\n '[__ARG_TEMP__ 37 ] [__ARG_TEMP_UNIT__ fahrenheit ] '\n '[__ARG_CLOUD_COVERAGE__ partly cloudy ] '\n '[__ARG_DATE_TIME__ [__ARG_COLLOQUIAL__ currently ] '\n '] [__ARG_LOCATION__ [__ARG_CITY__ Oakland ] '\n '[__ARG_COUNTRY__ United States ] [__ARG_REGION__ '\n 'California ] ] ] [__DG_INFORM__ [__ARG_TASK__ '\n 'get_forecast ] [__ARG_TEMP_SUMMARY__ mid 40s ] '\n '[__ARG_DATE_TIME_RANGE__ [__ARG_COLLOQUIAL__ This '\n 'afternoon ] ] [__ARG_LOCATION__ [__ARG_CITY__ '\n 'Oakland ] [__ARG_COUNTRY__ United States ] '\n '[__ARG_REGION__ California ] ] ] [__DG_INFORM__ '\n '[__ARG_TASK__ get_forecast ] '\n '[__ARG_CLOUD_COVERAGE__ mostly sunny ] '\n '[__ARG_DATE_TIME_RANGE__ [__ARG_COLLOQUIAL__ This '\n 'afternoon ] ] [__ARG_LOCATION__ [__ARG_CITY__ '\n 'Oakland ] [__ARG_COUNTRY__ United States ] '\n '[__ARG_REGION__ California ] ] ]',\n 'tree_str_mr': \"[__DG_INFORM__ It's [__ARG_DATE_TIME__ [__ARG_COLLOQUIAL__ \"\n 'currently ] ] [__ARG_CLOUD_COVERAGE__ partly cloudy ] and '\n '[__ARG_TEMP__ __ARG_TEMP__ ] [__ARG_TEMP_UNIT__ '\n '__ARG_TEMP_UNIT__ ] [__ARG_LOCATION__ in [__ARG_CITY__ '\n '__ARG_CITY__ ] , [__ARG_REGION__ __ARG_REGION__ ] , '\n '[__ARG_COUNTRY__ __ARG_COUNTRY__ ] ] . ] [__DG_INFORM__ '\n '[__ARG_DATE_TIME_RANGE__ [__ARG_COLLOQUIAL__ This afternoon ] '\n \"] , it'll be [__ARG_CLOUD_COVERAGE__ mostly sunny ] ] \"\n '[__DG_INFORM__ with temperatures in the [__ARG_TEMP_SUMMARY__ '\n 'mid <number> ] ]',\n 'user_query': 'Show weather forecast for Oakland, CA. '}\n```",
|
37 |
+
"structure-splits": "- Standard Splits: Train/Validation/Test\n- Additional Split: Disc_Test (a more challenging subset of the test set that contains discourse relations) ",
|
38 |
"structure-splits-criteria": "The test set contains 3,121 examples, of which 1.1K (35%) have unique MRs that have never been seen in the training set.",
|
39 |
+
"structure-outlier": "```\n{'gem_id': 'weather-train-13333', 'data_id': '1260610', 'user_query': 'Sundown', 'tree_str_mr': '[__DG_INFORM__ [__ARG_TASK__ get_weather_attribute ] [__ARG_SUNSET_TIME_DATE_TIME__ [__ARG_TIME__ 05:04 PM ] ] ]', 'response': '[__DG_INFORM__ The sun will go down at [__ARG_SUNSET_TIME_DATE_TIME__ [__ARG_TIME__ __ARG_TIME__ ] ] ]'}\n```"
|
40 |
+
},
|
41 |
+
"what": {
|
42 |
+
"dataset": "The purpose of this dataset is to assess how well a model can learn a template-like structure in a very low data setting. The task here is to produce a response to a weather-related query. The reply is further specified through the data attributes and discourse structure in the input. The output contains both the lexicalized text and discourse markers for attributes (e.g., `_ARG_TEMP_ 34`). "
|
43 |
}
|
44 |
},
|
45 |
"curation": {
|