Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Sub-tasks:
text-simplification
Languages:
English
Size:
1K - 10K
License:
import csv | |
import json | |
import os | |
import datasets | |
_CITATION = """\ | |
@inproceedings{devaraj-etal-2021-paragraph, | |
title = "Paragraph-level Simplification of Medical Texts", | |
author = "Devaraj, Ashwin and | |
Marshall, Iain and | |
Wallace, Byron and | |
Li, Junyi Jessy", | |
booktitle = "Proceedings of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies", | |
month = jun, | |
year = "2021", | |
address = "Online", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2021.naacl-main.395", | |
doi = "10.18653/v1/2021.naacl-main.395", | |
pages = "4972--4984", | |
} | |
""" | |
_DESCRIPTION = """\ | |
This dataset measures the ability for a model to simplify paragraphs of medical text through the omission non-salient information and simplification of medical jargon. | |
""" | |
_URLs = { | |
"train": "train.json", | |
"validation": "validation.json", | |
"test": "test.json", | |
} | |
class Cochrane(datasets.GeneratorBasedBuilder): | |
VERSION = datasets.Version("1.0.0") | |
DEFAULT_CONFIG_NAME = "cochrane-simplification" | |
def _info(self): | |
features = datasets.Features( | |
{ | |
"gem_id": datasets.Value("string"), | |
"gem_parent_id": datasets.Value("string"), | |
"source": datasets.Value("string"), | |
"target": datasets.Value("string"), | |
"doi": datasets.Value("string"), | |
"references": [datasets.Value("string")], | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=datasets.info.SupervisedKeysData( | |
input="source", output="target" | |
), | |
homepage="https://github.com/AshOlogn/Paragraph-level-Simplification-of-Medical-Texts ", | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
dl_dir = dl_manager.download_and_extract(_URLs) | |
return [ | |
datasets.SplitGenerator( | |
name=spl, gen_kwargs={"filepath": dl_dir[spl], "split": spl} | |
) | |
for spl in ["train", "validation", "test"] | |
] | |
def _generate_examples(self, filepath, split): | |
"""Yields examples.""" | |
with open(filepath, encoding="utf-8") as f: | |
reader = json.load(f) | |
for id_, example in enumerate(reader): | |
yield id_, { | |
"gem_id": f"cochrane-simplification-{split}-{id_}", | |
"gem_parent_id": f"cochrane-simplification-{split}-{id_}", | |
"source": example["source"], | |
"target": example["target"], | |
"doi": example["doi"], | |
"references": [example["target"]], | |
} | |