|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""Dataloader for RotoWire English-German dataset.""" |
|
|
|
import json |
|
import os |
|
|
|
import datasets |
|
import re |
|
|
|
|
|
_CITATION = """\ |
|
@article{hayashi2019findings, |
|
title={Findings of the Third Workshop on Neural Generation and Translation}, |
|
author={Hayashi, Hiroaki and Oda, Yusuke and Birch, Alexandra and Konstas, Ioannis and Finch, Andrew and Luong, Minh-Thang and Neubig, Graham and Sudoh, Katsuhito}, |
|
journal={EMNLP-IJCNLP 2019}, |
|
pages={1}, |
|
year={2019} |
|
} |
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
Dataset for the WNGT 2019 DGT shared task on "Document-Level Generation and Translation”. |
|
""" |
|
|
|
_HOMEPAGE = "https://sites.google.com/view/wngt19/dgt-task" |
|
|
|
_LICENSE = "CC-BY 4.0" |
|
|
|
|
|
|
|
_URLs = { |
|
"train": "train.json", |
|
"validation": "validation.json", |
|
"test": "test.json" |
|
} |
|
|
|
NUM_PLAYERS = 13 |
|
player_line = "<PLAYER> %s <TEAM> %s <POS> %s <RANK> %s <MIN> %d <PTS> %d <FG> %d %d %d <FG3> %d %d %d " \ |
|
"<FT> %d %d %d <REB> %d <AST> %d <STL> %s " \ |
|
"<BLK> %d <DREB> %d <OREB> %d <TO> %d" |
|
|
|
team_line = "%s <TEAM> %s <CITY> %s <TEAM-RESULT> %s <TEAM-PTS> %d <WINS-LOSSES> %d %d <QTRS> %d %d %d %d " \ |
|
"<TEAM-AST> %d <3PT> %d <TEAM-FG> %d <TEAM-FT> %d <TEAM-REB> %d <TEAM-TO> %d" |
|
|
|
class RotowireEnglishGerman(datasets.GeneratorBasedBuilder): |
|
"""Dataset for WNGT2019 shared task on Document-level Generation and Translation.""" |
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def _info(self): |
|
|
|
box_score_entry = {str(i): datasets.Value("string") for i in range(26)} |
|
box_score_features = { |
|
"FIRST_NAME": box_score_entry, |
|
"MIN": box_score_entry, |
|
"FGM": box_score_entry, |
|
"REB": box_score_entry, |
|
"FG3A": box_score_entry, |
|
"PLAYER_NAME": box_score_entry, |
|
"AST": box_score_entry, |
|
"FG3M": box_score_entry, |
|
"OREB": box_score_entry, |
|
"TO": box_score_entry, |
|
"START_POSITION": box_score_entry, |
|
"PF": box_score_entry, |
|
"PTS": box_score_entry, |
|
"FGA": box_score_entry, |
|
"STL": box_score_entry, |
|
"FTA": box_score_entry, |
|
"BLK": box_score_entry, |
|
"DREB": box_score_entry, |
|
"FTM": box_score_entry, |
|
"FT_PCT": box_score_entry, |
|
"FG_PCT": box_score_entry, |
|
"FG3_PCT": box_score_entry, |
|
"SECOND_NAME": box_score_entry, |
|
"TEAM_CITY": box_score_entry, |
|
} |
|
line_features = { |
|
"TEAM-PTS_QTR2": datasets.Value("string"), |
|
"TEAM-FT_PCT": datasets.Value("string"), |
|
"TEAM-PTS_QTR1": datasets.Value("string"), |
|
"TEAM-PTS_QTR4": datasets.Value("string"), |
|
"TEAM-PTS_QTR3": datasets.Value("string"), |
|
"TEAM-CITY": datasets.Value("string"), |
|
"TEAM-PTS": datasets.Value("string"), |
|
"TEAM-AST": datasets.Value("string"), |
|
"TEAM-LOSSES": datasets.Value("string"), |
|
"TEAM-NAME": datasets.Value("string"), |
|
"TEAM-WINS": datasets.Value("string"), |
|
"TEAM-REB": datasets.Value("string"), |
|
"TEAM-TOV": datasets.Value("string"), |
|
"TEAM-FG3_PCT": datasets.Value("string"), |
|
"TEAM-FG_PCT": datasets.Value("string") |
|
} |
|
features = datasets.Features( |
|
{ |
|
"id":datasets.Value("string"), |
|
"gem_id":datasets.Value("string"), |
|
"home_name": datasets.Value("string"), |
|
"box_score": box_score_features, |
|
"vis_name": datasets.Value("string"), |
|
"summary": datasets.Sequence(datasets.Value("string")), |
|
"home_line": line_features, |
|
"home_city": datasets.Value("string"), |
|
"vis_line": line_features, |
|
"vis_city": datasets.Value("string"), |
|
"day": datasets.Value("string"), |
|
"detok_summary_org": datasets.Value("string"), |
|
"detok_summary": datasets.Value("string"), |
|
"summary_en": datasets.Sequence(datasets.Value("string")), |
|
"sentence_end_index_en": datasets.Sequence(datasets.Value("int32")), |
|
"summary_de": datasets.Sequence(datasets.Value("string")), |
|
"target": datasets.Value("string"), |
|
"references": [datasets.Value("string")], |
|
"sentence_end_index_de": datasets.Sequence(datasets.Value("int32")), |
|
"linearized_input": datasets.Value("string") |
|
} |
|
) |
|
return datasets.DatasetInfo( |
|
|
|
description=_DESCRIPTION, |
|
|
|
features=features, |
|
|
|
|
|
|
|
supervised_keys=None, |
|
|
|
homepage=_HOMEPAGE, |
|
|
|
license=_LICENSE, |
|
|
|
citation=_CITATION, |
|
) |
|
|
|
def _split_generators(self, dl_manager): |
|
"""Returns SplitGenerators.""" |
|
|
|
|
|
|
|
|
|
|
|
|
|
data_dir = dl_manager.download_and_extract(_URLs) |
|
return [ |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TRAIN, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["train"], |
|
"split": "train", |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.TEST, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["test"], |
|
"split": "test" |
|
}, |
|
), |
|
datasets.SplitGenerator( |
|
name=datasets.Split.VALIDATION, |
|
|
|
gen_kwargs={ |
|
"filepath": data_dir["validation"], |
|
"split": "validation", |
|
}, |
|
), |
|
] |
|
|
|
def handle_na(self, value): |
|
return "0" if value == "N/A" else value |
|
|
|
def tokenize_initials(self, value): |
|
attrib_value = re.sub(r"(\w)\.(\w)\.", r"\g<1>. \g<2>.", value) |
|
return attrib_value |
|
|
|
def sort_points(self, entry): |
|
home_team_map = {} |
|
vis_team_map = {} |
|
bs = entry["box_score"] |
|
nplayers = 0 |
|
for k, v in bs["PTS"].items(): |
|
nplayers += 1 |
|
|
|
num_home, num_vis = 0, 0 |
|
home_pts = [] |
|
vis_pts = [] |
|
for i in range(nplayers): |
|
player_city = entry["box_score"]["TEAM_CITY"][str(i)] |
|
player_name = bs["PLAYER_NAME"][str(i)] |
|
if player_city == entry["home_city"]: |
|
if num_home < NUM_PLAYERS: |
|
home_team_map[player_name] = bs["PTS"][str(i)] |
|
if bs["PTS"][str(i)] != "N/A": |
|
home_pts.append(int(bs["PTS"][str(i)])) |
|
num_home += 1 |
|
else: |
|
if num_vis < NUM_PLAYERS: |
|
vis_team_map[player_name] = bs["PTS"][str(i)] |
|
if bs["PTS"][str(i)] != "N/A": |
|
vis_pts.append(int(bs["PTS"][str(i)])) |
|
num_vis += 1 |
|
if entry["home_city"] == entry["vis_city"] and entry["home_city"] == "Los Angeles": |
|
num_home, num_vis = 0, 0 |
|
for i in range(nplayers): |
|
player_name = bs["PLAYER_NAME"][str(i)] |
|
if num_vis < NUM_PLAYERS: |
|
vis_team_map[player_name] = bs["PTS"][str(i)] |
|
if bs["PTS"][str(i)] != "N/A": |
|
vis_pts.append(int(bs["PTS"][str(i)])) |
|
num_vis += 1 |
|
elif num_home < NUM_PLAYERS: |
|
home_team_map[player_name] = bs["PTS"][str(i)] |
|
if bs["PTS"][str(i)] != "N/A": |
|
home_pts.append(int(bs["PTS"][str(i)])) |
|
num_home += 1 |
|
home_seq = sorted(home_pts, reverse=True) |
|
vis_seq = sorted(vis_pts, reverse=True) |
|
return home_team_map, vis_team_map, home_seq, vis_seq |
|
|
|
def sort_player_and_points(self, entry): |
|
bs = entry["box_score"] |
|
nplayers = 0 |
|
for k, v in bs["PTS"].items(): |
|
nplayers += 1 |
|
|
|
num_home, num_vis = 0, 0 |
|
home_pts = [] |
|
vis_pts = [] |
|
for i in range(nplayers): |
|
player_city = entry["box_score"]["TEAM_CITY"][str(i)] |
|
player_name = bs["PLAYER_NAME"][str(i)] |
|
if player_city == entry["home_city"]: |
|
if num_home < NUM_PLAYERS: |
|
if bs["PTS"][str(i)] != "N/A": |
|
home_pts.append((player_name, int(bs["PTS"][str(i)]))) |
|
else: |
|
home_pts.append((player_name, -1)) |
|
num_home += 1 |
|
else: |
|
if num_vis < NUM_PLAYERS: |
|
if bs["PTS"][str(i)] != "N/A": |
|
vis_pts.append((player_name, int(bs["PTS"][str(i)]))) |
|
else: |
|
vis_pts.append((player_name, -1)) |
|
num_vis += 1 |
|
if entry["home_city"] == entry["vis_city"] and entry["home_city"] == "Los Angeles": |
|
num_home, num_vis = 0, 0 |
|
for i in range(nplayers): |
|
player_name = bs["PLAYER_NAME"][str(i)] |
|
if num_vis < NUM_PLAYERS: |
|
if bs["PTS"][str(i)] != "N/A": |
|
vis_pts.append((player_name, int(bs["PTS"][str(i)]))) |
|
else: |
|
vis_pts.append((player_name, -1)) |
|
num_vis += 1 |
|
elif num_home < NUM_PLAYERS: |
|
if bs["PTS"][str(i)] != "N/A": |
|
home_pts.append((player_name, int(bs["PTS"][str(i)]))) |
|
else: |
|
home_pts.append((player_name, -1)) |
|
num_home += 1 |
|
home_seq = sorted(home_pts, key=lambda x: -x[1]) |
|
vis_seq = sorted(vis_pts, key=lambda x: -x[1]) |
|
return home_seq, vis_seq |
|
|
|
def get_players(self, entry): |
|
player_team_map = {} |
|
bs = entry["box_score"] |
|
nplayers = 0 |
|
home_players, vis_players = [], [] |
|
for k, v in entry["box_score"]["PTS"].items(): |
|
nplayers += 1 |
|
|
|
num_home, num_vis = 0, 0 |
|
for i in range(nplayers): |
|
player_city = entry["box_score"]["TEAM_CITY"][str(i)] |
|
player_name = bs["PLAYER_NAME"][str(i)] |
|
second_name = bs["SECOND_NAME"][str(i)] |
|
first_name = bs["FIRST_NAME"][str(i)] |
|
if player_city == entry["home_city"]: |
|
if len(home_players) < NUM_PLAYERS: |
|
home_players.append((player_name, second_name, |
|
first_name)) |
|
player_team_map[player_name] = " ".join( |
|
[player_city, entry["home_line"]["TEAM-NAME"]]) |
|
num_home += 1 |
|
else: |
|
if len(vis_players) < NUM_PLAYERS: |
|
vis_players.append((player_name, second_name, |
|
first_name)) |
|
player_team_map[player_name] = " ".join( |
|
[player_city, entry["vis_line"]["TEAM-NAME"]]) |
|
num_vis += 1 |
|
|
|
if entry["home_city"] == entry["vis_city"] and entry["home_city"] == "Los Angeles": |
|
home_players, vis_players = [], [] |
|
num_home, num_vis = 0, 0 |
|
for i in range(nplayers): |
|
player_name = bs["PLAYER_NAME"][str(i)] |
|
second_name = bs["SECOND_NAME"][str(i)] |
|
first_name = bs["FIRST_NAME"][str(i)] |
|
if len(vis_players) < NUM_PLAYERS: |
|
vis_players.append((player_name, second_name, |
|
first_name)) |
|
player_team_map[player_name] = " ".join( |
|
["Los Angeles", entry["vis_line"]["TEAM-NAME"]]) |
|
num_vis += 1 |
|
elif len(home_players) < NUM_PLAYERS: |
|
home_players.append((player_name, second_name, |
|
first_name)) |
|
player_team_map[player_name] = " ".join( |
|
["Los Angeles", entry["home_line"]["TEAM-NAME"]]) |
|
num_home += 1 |
|
|
|
players = [] |
|
for ii, player_list in enumerate([home_players, vis_players]): |
|
for j in range(NUM_PLAYERS): |
|
players.append(player_list[j] if j < len(player_list) else ("N/A", "N/A", "N/A")) |
|
return players, player_team_map |
|
|
|
def get_result_player(self, player_name, home_name, vis_name, home_won, player_team_map): |
|
if player_team_map[player_name] == home_name: |
|
result = "won" if home_won else "lost" |
|
elif player_team_map[player_name] == vis_name: |
|
result = "lost" if home_won else "won" |
|
else: |
|
assert False |
|
return result |
|
|
|
def get_box_score(self, entry): |
|
box_score_ = entry["box_score"] |
|
if int(entry["home_line"]["TEAM-PTS"]) > int(entry["vis_line"]["TEAM-PTS"]): |
|
home_won = True |
|
else: |
|
home_won = False |
|
descs = [] |
|
desc = [] |
|
if home_won: |
|
home_line = self.get_team_line(entry["home_line"], "won", "home") |
|
vis_line = self.get_team_line(entry["vis_line"], "lost", "vis") |
|
else: |
|
home_line = self.get_team_line(entry["home_line"], "lost", "home") |
|
vis_line = self.get_team_line(entry["vis_line"], "won", "vis") |
|
descs.append(home_line) |
|
descs.append(vis_line) |
|
players_list, player_team_map = self.get_players(entry) |
|
home_team_map, vis_team_map, home_player_pts, vis_player_pts = self.sort_points(entry) |
|
home_player_seq, vis_player_seq = self.sort_player_and_points(entry) |
|
desc = [] |
|
for player_name, _ in home_player_seq + vis_player_seq: |
|
if player_name == "N/A": |
|
continue |
|
result = self.get_result_player(player_name, entry["home_city"] + " " + entry["home_line"]["TEAM-NAME"], |
|
entry["vis_city"] + " " + entry["vis_line"]["TEAM-NAME"], home_won, |
|
player_team_map) |
|
player_line = self.get_player_line(box_score_, player_name, player_team_map, home_player_pts, |
|
vis_player_pts, home_team_map, vis_team_map, result) |
|
desc.append(player_line) |
|
descs.extend(desc) |
|
return descs |
|
|
|
def get_rank(self, player_name, home_seq, vis_seq, home_team_map, vis_team_map, result): |
|
if player_name in home_team_map: |
|
if home_team_map[player_name] == 'N/A': |
|
rank = 'HOME-DIDNTPLAY' |
|
else: |
|
rank = 'HOME-' + str(home_seq.index(int(home_team_map[player_name]))) |
|
elif player_name in vis_team_map: |
|
if vis_team_map[player_name] == 'N/A': |
|
rank = 'VIS-DIDNTPLAY' |
|
else: |
|
rank = 'VIS-' + str(vis_seq.index(int(vis_team_map[player_name]))) |
|
else: |
|
print("player_name", player_name) |
|
assert False |
|
return rank |
|
|
|
def get_player_line(self, bs, input_player_name, player_team_map, home_player_pts, vis_player_pts, home_team_map, |
|
vis_team_map, result): |
|
rank = self.get_rank(input_player_name, home_player_pts, vis_player_pts, home_team_map, vis_team_map, result) |
|
player_names = list(bs["PLAYER_NAME"].items()) |
|
player_found = False |
|
player_tup = None |
|
for (pid, name) in player_names: |
|
if name == input_player_name: |
|
player_tup = (self.tokenize_initials(name), player_team_map[input_player_name], |
|
bs["START_POSITION"][pid], |
|
rank, |
|
int(self.handle_na(bs["MIN"][pid])), |
|
int(self.handle_na(bs["PTS"][pid])), |
|
int(self.handle_na(bs["FGM"][pid])), |
|
int(self.handle_na(bs["FGA"][pid])), int(self.handle_na(bs["FG_PCT"][pid])), |
|
int(self.handle_na(bs["FG3M"][pid])), int(self.handle_na(bs["FG3A"][pid])), |
|
int(self.handle_na(bs["FG3_PCT"][pid])), |
|
int(self.handle_na(bs["FTM"][pid])), int(self.handle_na(bs["FTA"][pid])), |
|
int(self.handle_na(bs["FT_PCT"][pid])), |
|
int(self.handle_na(bs["REB"][pid])), int(self.handle_na(bs["AST"][pid])), |
|
int(self.handle_na(bs["STL"][pid])), |
|
int(self.handle_na(bs["BLK"][pid])), int(self.handle_na(bs["DREB"][pid])), |
|
int(self.handle_na(bs["OREB"][pid])), int(self.handle_na(bs["TO"][pid]))) |
|
player_found = True |
|
break |
|
assert player_found |
|
return player_line % (player_tup) |
|
|
|
def get_team_line(self, line, result, type): |
|
city = line["TEAM-CITY"] |
|
name = line["TEAM-NAME"] |
|
wins = int(line["TEAM-WINS"]) |
|
losses = int(line["TEAM-LOSSES"]) |
|
pts = int(line["TEAM-PTS"]) |
|
ast = int(line["TEAM-AST"]) |
|
three_pointers_pct = int(line["TEAM-FG3_PCT"]) |
|
field_goals_pct = int(line["TEAM-FG_PCT"]) |
|
free_throws_pct = int(line["TEAM-FT_PCT"]) |
|
pts_qtr1 = int(line["TEAM-PTS_QTR1"]) |
|
pts_qtr2 = int(line["TEAM-PTS_QTR2"]) |
|
pts_qtr3 = int(line["TEAM-PTS_QTR3"]) |
|
pts_qtr4 = int(line["TEAM-PTS_QTR4"]) |
|
reb = int(line["TEAM-REB"]) |
|
tov = int(line["TEAM-TOV"]) |
|
updated_type = "<" + type.upper() + ">" |
|
team_tup = (updated_type, name, city, result, pts, wins, losses, pts_qtr1, pts_qtr2, pts_qtr3, pts_qtr4, ast, |
|
three_pointers_pct, field_goals_pct, free_throws_pct, reb, tov) |
|
return team_line % (team_tup) |
|
|
|
def linearize_input(self, entry): |
|
output = self.get_box_score(entry) |
|
linearized_input = " ".join(output) |
|
linearized_input = linearized_input.replace(" ", " ") |
|
return linearized_input |
|
|
|
def _generate_examples( |
|
self, filepath, split |
|
): |
|
""" Yields examples as (key, example) tuples. """ |
|
|
|
|
|
|
|
with open(filepath, encoding="utf-8") as f: |
|
all_data = json.load(f) |
|
for id_, data in enumerate(all_data): |
|
data['linearized_input'] = self.linearize_input(data) |
|
data['target'] = data['summary_de'][0] |
|
data['references'] = data['summary_de'] |
|
yield id_, data |
|
|