Sebastian Gehrmann commited on
Commit
b1e3133
1 Parent(s): 6c079c9

data card.

Browse files
Files changed (1) hide show
  1. README.md +197 -106
README.md CHANGED
@@ -1,174 +1,265 @@
1
  ---
2
- pretty_name: OrangeSum
3
  annotations_creators:
4
- - found
5
  language_creators:
6
- - found
7
  languages:
8
- - fr
9
- licenses:
10
  - unknown
 
 
11
  multilinguality:
12
- - monolingual
 
13
  size_categories:
14
- - 10K<n<100K
15
  source_datasets:
16
  - original
17
  task_categories:
18
- - conditional-text-generation
19
  task_ids:
20
- - summarization
21
- paperswithcode_id: orangesum
22
  ---
23
 
24
- # Dataset Card for OrangeSum
25
-
26
- ## Table of Contents
27
- - [Dataset Description](#dataset-description)
28
- - [Dataset Summary](#dataset-summary)
29
- - [Supported Tasks and Leaderboards](#supported-tasks-and-leaderboards)
30
- - [Languages](#languages)
31
- - [Dataset Structure](#dataset-structure)
32
- - [Data Instances](#data-instances)
33
- - [Data Fields](#data-fields)
34
- - [Data Splits](#data-splits)
35
- - [Dataset Creation](#dataset-creation)
36
- - [Curation Rationale](#curation-rationale)
37
- - [Source Data](#source-data)
38
- - [Annotations](#annotations)
39
- - [Personal and Sensitive Information](#personal-and-sensitive-information)
40
- - [Considerations for Using the Data](#considerations-for-using-the-data)
41
- - [Social Impact of Dataset](#social-impact-of-dataset)
42
- - [Discussion of Biases](#discussion-of-biases)
43
- - [Other Known Limitations](#other-known-limitations)
44
- - [Additional Information](#additional-information)
45
- - [Dataset Curators](#dataset-curators)
46
- - [Licensing Information](#licensing-information)
47
- - [Citation Information](#citation-information)
48
- - [Contributions](#contributions)
49
 
50
  ## Dataset Description
51
 
52
- - **Repository:** [OrangeSum repository](https://github.com/Tixierae/OrangeSum)
53
- - **Paper:** [BARThez: a Skilled Pretrained French Sequence-to-Sequence Model](https://arxiv.org/abs/2010.12321)
54
- - **Point of Contact:** [Antoine J.-P. Tixier](Antoine.Tixier-1@colorado.edu)
 
 
55
 
56
- ### Dataset Summary
57
 
58
- The OrangeSum dataset was inspired by the XSum dataset. It was created by scraping the "Orange Actu" website: https://actu.orange.fr/. Orange S.A. is a large French multinational telecommunications corporation, with 266M customers worldwide. Scraped pages cover almost a decade from Feb 2011 to Sep 2020. They belong to five main categories: France, world, politics, automotive, and society. The society category is itself divided into 8 subcategories: health, environment, people, culture, media, high-tech, unsual ("insolite" in French), and miscellaneous.
59
 
60
- Each article featured a single-sentence title as well as a very brief abstract, both professionally written by the author of the article. These two fields were extracted from each page, thus creating two summarization tasks: OrangeSum Title and OrangeSum Abstract.
61
 
62
- ### Supported Tasks and Leaderboards
63
 
64
- **Tasks:** OrangeSum Title and OrangeSum Abstract.
 
 
 
 
 
65
 
66
- To this day, there is no Leaderboard for this dataset.
 
67
 
68
- ### Languages
69
 
70
- The text in the dataset is in French.
71
 
72
- ## Dataset Structure
73
 
74
- ### Data Instances
 
 
75
 
76
- A data instance consists of a news article and a summary. The summary can be a short abstract or a title depending on the configuration.
77
 
78
- Example:
 
 
79
 
80
- **Document:** Le temps sera pluvieux sur huit départements de la France ces prochaines heures : outre les trois départements bretons placés en vigilance orange jeudi matin, cinq autres départements du sud du Massif Central ont été à leur tour placés en alerte orange pluie et inondation. Il s'agit de l'Aveyron, du Cantal, du Gard, de la Lozère, et de la Haute-Loire. Sur l'ensemble de l'épisode, les cumuls de pluies attendus en Bretagne sont compris entre 40 et 60 mm en 24 heures et peuvent atteindre localement les 70 mm en 24 heures.Par la suite, la dégradation qui va se mettre en place cette nuit sur le Languedoc et le sud du Massif Central va donner sur l'Aveyron une première salve intense de pluie. Des cumuls entre 70 et 100 mm voir 120 mm localement sont attendus sur une durée de 24 heures. Sur le relief des Cévennes on attend de 150 à 200 mm, voire 250 mm très ponctuellement sur l'ouest du Gard et l'est de la Lozère. Cet épisode va s'estomper dans la soirée avec le décalage des orages vers les régions plus au nord. Un aspect orageux se mêlera à ces précipitations, avec de la grêle possible, des rafales de vent et une forte activité électrique.
81
 
82
- **Abstract:** Outre les trois départements bretons, cinq autres départements du centre de la France ont été placés en vigilance orange pluie-inondation.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
 
84
- **Title:** Pluie-inondations : 8 départements en alerte orange.
85
 
86
- ### Data Fields
 
 
87
 
88
- `text`: the document to be summarized. \
89
- `summary`: the summary of the source document.
90
 
91
- ### Data Splits
92
 
93
- The data is split into a training, validation and test in both configuration.
94
 
95
- | | Tain | Valid | Test |
96
- | ----- | ------ | ----- | ---- |
97
- | Abstract | 21400 | 1500 | 1500 |
98
- | Title | 30658 | 1500 | 1500 |
99
 
100
- ## Dataset Creation
101
 
102
- ### Curation Rationale
 
 
 
103
 
104
- The goal here was to create a French equivalent of the recently introduced [XSum](https://github.com/EdinburghNLP/XSum/tree/master/XSum-Dataset) dataset. Unlike the historical summarization datasets, CNN, DailyMail, and NY Times, which favor extractive strategies, XSum, as well as OrangeSum require the models to display a high degree of abstractivity to perform well. The summaries in OrangeSum are not catchy headlines, but rather capture the gist of the articles.
105
 
106
- ### Source Data
107
 
108
- #### Initial Data Collection and Normalization
109
 
110
- Each article features a single-sentence title as well as a very brief abstract. Extracting these two fields from each news article page, creates two summarization tasks: OrangeSum Title and OrangeSum Abstract. As a post-processing step, all empty articles and those whose summaries were shorter than 5 words were removed. For OrangeSum Abstract, the top 10% articles in terms of proportion of novel unigrams in the abstracts were removed, as it was observed that such abstracts tend to be introductions rather than real abstracts. This corresponded to a threshold of 57% novel unigrams. For both OrangeSum Title and OrangeSum Abstract, 1500 pairs for testing and 1500 for validation are set aside, and all the remaining ones are used for training.
111
 
112
- #### Who are the source language producers?
113
 
114
- The authors of the artiles.
115
 
116
- ### Annotations
117
 
118
- #### Annotation process
119
 
120
- The smmaries are professionally written by the author of the articles.
121
 
122
- #### Who are the annotators?
123
 
124
- The authors of the artiles.
125
 
126
- ### Personal and Sensitive Information
 
 
127
 
128
- [More Information Needed]
129
 
130
- ## Considerations for Using the Data
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
131
 
132
- ### Social Impact of Dataset
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
133
 
134
- [More Information Needed]
135
 
136
  ### Discussion of Biases
137
 
138
- [More Information Needed]
139
 
140
- ### Other Known Limitations
 
 
141
 
142
- [More Information Needed]
143
 
144
- ## Additional Information
 
 
145
 
146
- ### Dataset Curators
147
 
148
- The dataset was initially created by Antoine J.-P. Tixier.
149
 
150
- ### Licensing Information
151
 
152
- [More Information Needed]
153
 
154
- ### Citation Information
155
 
156
- ```
157
- @inproceedings{kamal-eddine-etal-2021-barthez,
158
- title = "{BART}hez: a Skilled Pretrained {F}rench Sequence-to-Sequence Model",
159
- author = "Kamal Eddine, Moussa and
160
- Tixier, Antoine and
161
- Vazirgiannis, Michalis",
162
- booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
163
- month = nov,
164
- year = "2021",
165
- address = "Online and Punta Cana, Dominican Republic",
166
- publisher = "Association for Computational Linguistics",
167
- url = "https://aclanthology.org/2021.emnlp-main.740",
168
- pages = "9369--9390",
169
- }
170
- ```
171
 
172
- ### Contributions
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173
 
174
- Thanks to [@moussaKam](https://github.com/moussaKam) for adding this dataset.
 
1
  ---
 
2
  annotations_creators:
3
+ - unknown
4
  language_creators:
5
+ - unknown
6
  languages:
 
 
7
  - unknown
8
+ licenses:
9
+ - other
10
  multilinguality:
11
+ - unknown
12
+ pretty_name: OrangeSum
13
  size_categories:
14
+ - unknown
15
  source_datasets:
16
  - original
17
  task_categories:
18
+ - unknown
19
  task_ids:
20
+ - unknown
 
21
  ---
22
 
23
+ # Dataset Card for GEM/OrangeSum
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
24
 
25
  ## Dataset Description
26
 
27
+ - **Homepage:** [Needs More Information]
28
+ - **Repository:** https://github.com/Tixierae/OrangeSum
29
+ - **Paper:** https://aclanthology.org/2021.emnlp-main.740
30
+ - **Leaderboard:** N/A
31
+ - **Point of Contact:** [Needs More Information]
32
 
33
+ ### Link to Main Data Card
34
 
35
+ You can find the main data card on the [GEM Website](https://gem-benchmark.com/data_cards/OrangeSum).
36
 
37
+ ### Dataset Summary
38
 
39
+ OrangeSum is a French summarization dataset inspired by XSum. It features two subtasks: abstract generation and title generation. The data was sourced from "Orange Actu" articles between 2011 and 2020.
40
 
41
+ You can load the dataset via:
42
+ ```
43
+ import datasets
44
+ data = datasets.load_dataset('GEM/OrangeSum')
45
+ ```
46
+ The data loader can be found [here](https://huggingface.co/datasets/GEM/OrangeSum).
47
 
48
+ #### paper
49
+ [ACL Anthology](https://aclanthology.org/2021.emnlp-main.740)
50
 
51
+ ## Dataset Overview
52
 
53
+ ### Where to find the Data and its Documentation
54
 
55
+ #### Download
56
 
57
+ <!-- info: What is the link to where the original dataset is hosted? -->
58
+ <!-- scope: telescope -->
59
+ [Github](https://github.com/Tixierae/OrangeSum)
60
 
61
+ #### Paper
62
 
63
+ <!-- info: What is the link to the paper describing the dataset (open access preferred)? -->
64
+ <!-- scope: telescope -->
65
+ [ACL Anthology](https://aclanthology.org/2021.emnlp-main.740)
66
 
67
+ #### BibTex
68
 
69
+ <!-- info: Provide the BibTex-formatted reference for the dataset. Please use the correct published version (ACL anthology, etc.) instead of google scholar created Bibtex. -->
70
+ <!-- scope: microscope -->
71
+ ```
72
+ @inproceedings{kamal-eddine-etal-2021-barthez,
73
+ title = "{BART}hez: a Skilled Pretrained {F}rench Sequence-to-Sequence Model",
74
+ author = "Kamal Eddine, Moussa and
75
+ Tixier, Antoine and
76
+ Vazirgiannis, Michalis",
77
+ booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing",
78
+ month = nov,
79
+ year = "2021",
80
+ address = "Online and Punta Cana, Dominican Republic",
81
+ publisher = "Association for Computational Linguistics",
82
+ url = "https://aclanthology.org/2021.emnlp-main.740",
83
+ doi = "10.18653/v1/2021.emnlp-main.740",
84
+ pages = "9369--9390",
85
+ abstract = "Inductive transfer learning has taken the entire NLP field by storm, with models such as BERT and BART setting new state of the art on countless NLU tasks. However, most of the available models and research have been conducted for English. In this work, we introduce BARThez, the first large-scale pretrained seq2seq model for French. Being based on BART, BARThez is particularly well-suited for generative tasks. We evaluate BARThez on five discriminative tasks from the FLUE benchmark and two generative tasks from a novel summarization dataset, OrangeSum, that we created for this research. We show BARThez to be very competitive with state-of-the-art BERT-based French language models such as CamemBERT and FlauBERT. We also continue the pretraining of a multilingual BART on BARThez{'} corpus, and show our resulting model, mBARThez, to significantly boost BARThez{'} generative performance.",
86
+ }
87
+ ```
88
 
89
+ #### Has a Leaderboard?
90
 
91
+ <!-- info: Does the dataset have an active leaderboard? -->
92
+ <!-- scope: telescope -->
93
+ no
94
 
 
 
95
 
96
+ ### Languages and Intended Use
97
 
98
+ #### Multilingual?
99
 
100
+ <!-- quick -->
101
+ <!-- info: Is the dataset multilingual? -->
102
+ <!-- scope: telescope -->
103
+ no
104
 
105
+ #### License
106
 
107
+ <!-- quick -->
108
+ <!-- info: What is the license of the dataset? -->
109
+ <!-- scope: telescope -->
110
+ other: Other license
111
 
 
112
 
113
+ ### Credit
114
 
 
115
 
 
116
 
117
+ ### Dataset Structure
118
 
 
119
 
 
120
 
 
121
 
122
+ ## Dataset in GEM
123
 
124
+ ### Rationale for Inclusion in GEM
125
 
126
+ #### Similar Datasets
127
 
128
+ <!-- info: Do other datasets for the high level task exist? -->
129
+ <!-- scope: telescope -->
130
+ no
131
 
 
132
 
133
+ ### GEM-Specific Curation
134
+
135
+ #### Modificatied for GEM?
136
+
137
+ <!-- info: Has the GEM version of the dataset been modified in any way (data, processing, splits) from the original curated data? -->
138
+ <!-- scope: telescope -->
139
+ no
140
+
141
+ #### Additional Splits?
142
+
143
+ <!-- info: Does GEM provide additional splits to the dataset? -->
144
+ <!-- scope: telescope -->
145
+ no
146
+
147
+
148
+ ### Getting Started with the Task
149
+
150
+ #### Pointers to Resources
151
+
152
+ <!-- info: Getting started with in-depth research on the task. Add relevant pointers to resources that researchers can consult when they want to get started digging deeper into the task. -->
153
+ <!-- scope: microscope -->
154
+ Papers about abstractive summarization using seq2seq models:
155
+ https://aclanthology.org/K16-1028/
156
+ https://aclanthology.org/P17-1099/
157
+ https://aclanthology.org/2020.acl-main.703
158
+ https://aclanthology.org/2021.emnlp-main.740/
159
+
160
+ Papers about (pretrained) Transformers:
161
+ https://papers.nips.cc/paper/2017/hash/3f5ee243547dee91fbd053c1c4a845aa-Abstract.html
162
+ https://aclanthology.org/N19-1423/
163
+ https://aclanthology.org/2020.acl-main.703
164
+
165
+ #### Technical Terms
166
+
167
+ <!-- info: Technical terms used in this card and the dataset and their definitions -->
168
+ <!-- scope: microscope -->
169
+ No unique technical words in this data card.
170
+
171
+
172
+
173
+ ## Previous Results
174
+
175
+ ### Previous Results
176
 
177
+ #### Measured Model Abilities
178
+
179
+ <!-- info: What aspect of model ability can be measured with this dataset? -->
180
+ <!-- scope: telescope -->
181
+ The ability of the model to generate human like titles and abstracts for given news articles.
182
+
183
+ #### Metrics
184
+
185
+ <!-- info: What metrics are typically used for this task? -->
186
+ <!-- scope: periscope -->
187
+ `ROUGE`, `BERT-Score`
188
+
189
+ #### Proposed Evaluation
190
+
191
+ <!-- info: List and describe the purpose of the metrics and evaluation methodology (including human evaluation) that the dataset creators used when introducing this task. -->
192
+ <!-- scope: microscope -->
193
+ Automatic Evaluation: Rouge-1, Rouge-2, RougeL and BERTScore were used.
194
+
195
+ Human evalutaion: a human evaluation study was conducted with 11 French native speakers. The evaluators were PhD students from the computer science department of the university of the authors, working in NLP and other fields of AI. They volunteered after receiving an email announcement. the best-Worst Scaling (Louviere et al.,2015) was used. Two summaries from two different systems, along with their input document, were presented to a human annotator who had to decide which one was better. The evaluators were asked to base their judgments on accuracy (does the summary contain accurate facts?), informativeness (is important in-formation captured?) and fluency (is the summary written in well-formed French?).
196
+
197
+ #### Previous results available?
198
+
199
+ <!-- info: Are previous results available? -->
200
+ <!-- scope: telescope -->
201
+ no
202
+
203
+
204
+
205
+ ## Broader Social Context
206
+
207
+ ### Previous Work on the Social Impact of the Dataset
208
+
209
+ #### Usage of Models based on the Data
210
+
211
+ <!-- info: Are you aware of cases where models trained on the task featured in this dataset ore related tasks have been used in automated systems? -->
212
+ <!-- scope: telescope -->
213
+ no
214
+
215
+
216
+ ### Impact on Under-Served Communities
217
+
218
+ #### Addresses needs of underserved Communities?
219
+
220
+ <!-- info: Does this dataset address the needs of communities that are traditionally underserved in language technology, and particularly language generation technology? Communities may be underserved for exemple because their language, language variety, or social or geographical context is underepresented in NLP and NLG resources (datasets and models). -->
221
+ <!-- scope: telescope -->
222
+ no
223
 
 
224
 
225
  ### Discussion of Biases
226
 
227
+ #### Any Documented Social Biases?
228
 
229
+ <!-- info: Are there documented social biases in the dataset? Biases in this context are variations in the ways members of different social categories are represented that can have harmful downstream consequences for members of the more disadvantaged group. -->
230
+ <!-- scope: telescope -->
231
+ no
232
 
233
+ #### Are the Language Producers Representative of the Language?
234
 
235
+ <!-- info: Does the distribution of language producers in the dataset accurately represent the full distribution of speakers of the language world-wide? If not, how does it differ? -->
236
+ <!-- scope: periscope -->
237
+ The dataset contains news articles written by professional authors.
238
 
 
239
 
 
240
 
241
+ ## Considerations for Using the Data
242
 
243
+ ### PII Risks and Liability
244
 
 
245
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
246
 
247
+ ### Licenses
248
+
249
+ #### Copyright Restrictions on the Dataset
250
+
251
+ <!-- info: Based on your answers in the Intended Use part of the Data Overview Section, which of the following best describe the copyright and licensing status of the dataset? -->
252
+ <!-- scope: periscope -->
253
+ `open license - commercial use allowed`
254
+
255
+ #### Copyright Restrictions on the Language Data
256
+
257
+ <!-- info: Based on your answers in the Language part of the Data Curation Section, which of the following best describe the copyright and licensing status of the underlying language data? -->
258
+ <!-- scope: periscope -->
259
+ `open license - commercial use allowed`
260
+
261
+
262
+ ### Known Technical Limitations
263
+
264
+
265