FRENKIE-CHIANG commited on
Commit
ecc6b93
·
verified ·
1 Parent(s): adb0833

Upload README.md with huggingface_hub

Browse files
Files changed (1) hide show
  1. README.md +15 -9
README.md CHANGED
@@ -1,14 +1,13 @@
1
  <!-- ---
2
  license: MIT License
3
- task:
 
4
  - understanding
5
- - reasoning
6
  - generation
7
- domain:
8
- - Multimodal
9
- language:
10
- - en
11
- dataset_type: other
12
  --- -->
13
  <p align="center" width="100%">
14
  <a target="_blank"><img src="figs/FysicsWorld-logo.png" alt="" style="width: 50%; min-width: 200px; display: block; margin: auto;"></a>
@@ -19,7 +18,14 @@ dataset_type: other
19
  <h1>FysicsWorld: A Unified Full-Modality Benchmark for Any-to-Any Understanding, Generation, and Reasoning</h1>
20
 
21
 
22
- <font size=3><div align='center' > [[🏠 Project Page](https://github.com/Fysics-AI/FysicsWorld)] [[📖 arXiv Paper](https://arxiv.org/pdf/2512.12756)] [[🤗 Dataset](https://huggingface.co/datasets/Fysics-AI/FysicsWorld)] [[👾 ModelScope](https://www.modelscope.cn/datasets/Fysics-AI/FysicsWorld)] [[🏆 Leaderboard](https://huggingface.co/spaces/Fysics-AI/FysicsWorld-Leaderboard)] </div></font>
 
 
 
 
 
 
 
23
 
24
 
25
  </div>
@@ -38,7 +44,7 @@ We introduce ***FysicsWorld***, the **first** unified full-modality benchmark th
38
 
39
  * **Fusion-Dependent Cross-Modal Reasoning**. We propose a method for omni-modal data construction, which is named **C**ross-**M**odal **C**omplementarity **S**creening (**CMCS**) strategy, which ensures that our tasks maintain strong cross-modal coupling, preventing single-modality shortcuts and enforcing true synergistic perception of omni-modality.
40
 
41
- * **Speech-Driven Cross-Modal Interaction**. To support natural, multimodal communication and interaction, we develop a speech-grounded multimodal data construction pipeline that ensures both linguistic fluency and semantic fidelity in voice-based interactions, including 20+ authentic voices and tones.
42
 
43
  Based on ***FysicsWorld***, we extensively evaluate various advanced models, including Omni-LLMs, MLLMs, modality-specific models, and unified understanding–generation models. By establishing a unified benchmark and highlighting key capability gaps, FysicsWorld provides not only a foundation for evaluating emerging multimodal systems but also a roadmap for the next generation of full-modality architectures capable of genuinely holistic perception, reasoning, and interaction.
44
 
 
1
  <!-- ---
2
  license: MIT License
3
+ tags:
4
+ - physics
5
  - understanding
 
6
  - generation
7
+ - reasoning
8
+ - multimodal
9
+ language:
10
+ - en
 
11
  --- -->
12
  <p align="center" width="100%">
13
  <a target="_blank"><img src="figs/FysicsWorld-logo.png" alt="" style="width: 50%; min-width: 200px; display: block; margin: auto;"></a>
 
18
  <h1>FysicsWorld: A Unified Full-Modality Benchmark for Any-to-Any Understanding, Generation, and Reasoning</h1>
19
 
20
 
21
+ <font size=3><div align='center' >
22
+ [[🏠 Project Page](https://github.com/Fysics-AI/FysicsWorld)]
23
+ [[📖 Paper](https://arxiv.org/pdf/2512.12756)]
24
+ [[🤗 Dataset](https://huggingface.co/datasets/Fysics-AI/FysicsWorld)]
25
+ [[👾 ModelScope](https://www.modelscope.cn/datasets/Fysics-AI/FysicsWorld)]
26
+ [[🏆 Leaderboard](https://huggingface.co/spaces/Fysics-AI/FysicsWorld-Leaderboard)]
27
+ [[🀄 中文版](README_zh.md)]
28
+ </div></font>
29
 
30
 
31
  </div>
 
44
 
45
  * **Fusion-Dependent Cross-Modal Reasoning**. We propose a method for omni-modal data construction, which is named **C**ross-**M**odal **C**omplementarity **S**creening (**CMCS**) strategy, which ensures that our tasks maintain strong cross-modal coupling, preventing single-modality shortcuts and enforcing true synergistic perception of omni-modality.
46
 
47
+ * **Speech-Driven Cross-Modal Interaction**. To support natural, multimodal communication and interaction, we develop a speech-grounded multimodal data construction pipeline that ensures both linguistic fluency and semantic fidelity in voice-based interactions, including 10+ authentic voices and tones.
48
 
49
  Based on ***FysicsWorld***, we extensively evaluate various advanced models, including Omni-LLMs, MLLMs, modality-specific models, and unified understanding–generation models. By establishing a unified benchmark and highlighting key capability gaps, FysicsWorld provides not only a foundation for evaluating emerging multimodal systems but also a roadmap for the next generation of full-modality architectures capable of genuinely holistic perception, reasoning, and interaction.
50