Datasets:
Tasks:
Text2Text Generation
Modalities:
Text
Formats:
parquet
Languages:
English
Size:
< 1K
ArXiv:
Tags:
code-generation
License:
import json | |
import datasets | |
_DESCRIPTION = """\ | |
FudanSELab ClassEval | |
""" | |
_URL = "ClassEval_data.json" | |
_CITATION = """\ | |
@misc{du2023classeval, | |
title={ClassEval: A Manually-Crafted Benchmark for Evaluating LLMs on Class-level Code Generation}, | |
author={Xueying Du and Mingwei Liu and Kaixin Wang and Hanlin Wang and Junwei Liu and Yixuan Chen and Jiayi Feng and Chaofeng Sha and Xin Peng and Yiling Lou}, | |
year={2023}, | |
eprint={2308.01861}, | |
archivePrefix={arXiv}, | |
primaryClass={cs.CL} | |
}""" | |
_HOMEPAGE = "https://github.com/FudanSELab/ClassEval" | |
_LICENSE = "MIT" | |
class ClassEval(datasets.GeneratorBasedBuilder): | |
BUILDER_CONFIGS = [ | |
datasets.BuilderConfig( | |
name="class_eval", | |
version=datasets.Version("1.1.0"), | |
description=_DESCRIPTION, | |
) | |
] | |
def _info(self): | |
method_feature = datasets.Features( | |
{ | |
"method_name": datasets.Value("string"), | |
"method_description": datasets.Value("string"), | |
"test_class": datasets.Value("string"), | |
"test_code": datasets.Value("string"), | |
"solution_code": datasets.Value("string"), | |
"dependencies": { | |
"Standalone": datasets.Value("bool"), | |
"lib_dependencies": datasets.Sequence(datasets.Value("string")), | |
"field_dependencies": datasets.Sequence(datasets.Value("string")), | |
"method_dependencies": datasets.Sequence(datasets.Value("string")), | |
} | |
} | |
) | |
features = datasets.Features( | |
{ | |
"task_id": datasets.Value("string"), | |
"skeleton": datasets.Value("string"), | |
"test": datasets.Value("string"), | |
"solution_code": datasets.Value("string"), | |
"import_statement": datasets.Sequence(datasets.Value("string")), | |
"class_description": datasets.Value("string"), | |
"methods_info": [method_feature], | |
"class_name": datasets.Value("string"), | |
"test_classes": datasets.Sequence(datasets.Value("string")), | |
"class_constructor": datasets.Value("string"), | |
"fields": datasets.Sequence(datasets.Value("string")), | |
} | |
) | |
return datasets.DatasetInfo( | |
description=_DESCRIPTION, | |
features=features, | |
supervised_keys=None, | |
homepage=_HOMEPAGE, | |
license=_LICENSE, | |
citation=_CITATION, | |
) | |
def _split_generators(self, dl_manager): | |
"""Returns SplitGenerators.""" | |
data_dir = dl_manager.download(_URL) | |
return [ | |
datasets.SplitGenerator( | |
name=datasets.Split.TEST, | |
gen_kwargs={ | |
"filepath": data_dir, | |
}, | |
) | |
] | |
def _generate_examples(self, filepath): | |
key = 0 | |
with open(filepath, encoding = 'utf-8') as f: | |
cont = json.load(f) | |
for row in cont: | |
yield key, { | |
"task_id": row["task_id"], | |
"skeleton": row["skeleton"], | |
"test": row["test"], | |
"solution_code": row["solution_code"], | |
"import_statement": row["import_statement"], | |
"class_description": row["class_description"], | |
"methods_info": row["methods_info"], | |
"class_name": row["class_name"], | |
"test_classes": row["test_classes"], | |
"class_constructor": row["class_constructor"], | |
"fields": row["fields"], | |
} | |
key += 1 |