Datasets:

Modalities:
Text
ArXiv:
Libraries:
Datasets
License:
NamCyan commited on
Commit
e337f26
·
1 Parent(s): 854bb4d

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +17 -35
README.md CHANGED
@@ -242,41 +242,23 @@ See [here](https://github.com/FSoft-AI4Code/TheVault/blob/main/data/README.md) f
242
 
243
  ### Data Splits
244
 
245
- In this repo, The Vault is divided into 5 subsets, where three training versions are split based on size of the full training set, and the remains are validation set and test set (approximate 20,000 samples in each). The statistic for languages in each split set is illustrated in the following section.
246
-
247
- Before split, the dataset is deduplicated. There are 3 versions of training set that are small (5%), medium (20%) and large (100%).
248
 
249
  ## Dataset Statistics
250
 
251
- - Compare to other benchmarks
252
-
253
- | Dataset | #Language | #Code-text pair |
254
- |:--------------------------|----------:|-----------------:|
255
- | PyMT5 | 1 | ≈ 7,700,000 |
256
- | CoDesc | 1 | 4,211,516 |
257
- | CodeSearchNet | 6 | 2,326,976 |
258
- | CodeSearchNet (CodeXGLUE) | 6 | 1,005,474 |
259
- | Deepcom | 1 | 424,028 |
260
- | CONCODE | 1 | 2,184,310 |
261
- | Funcom | 1 | 2,149,121 |
262
- | CodeT5 | 8 | 3,158,313 |
263
- | **The Vault** | **10** | **34,098,775** |
264
-
265
- - Statistic for split sets
266
-
267
- | | train/small | train/medium | train/full | validation | test | total |
268
- |:-----------|------------:|-------------:|-----------:|-----------:|-------:|--------------:|
269
- |Python | 370,657 | 1,952,110 | 7,772,647 | 30,992 | 21,652 | 7,825,291 |
270
- |Java | 351,213 | 1,612,366 | 6,629,193 | 22,677 | 15,552 | 6,667,422 |
271
- |JavaScript | 82,931 | 404,729 | 1,640,416 | 22,044 | 21,108 | 1,683,568 |
272
- |PHP | 236,638 | 1,155,476 | 4,656,371 | 21,375 | 19,010 | 4,696,756 |
273
- |C | 105,978 | 381,207 | 1,639,319 | 27,525 | 19,122 | 1,685,966 |
274
- |C# | 141,090 | 783,166 | 3,305,891 | 24,787 | 19,638 | 3,350,316 |
275
- |C++ | 87,420 | 410,907 | 1,671,268 | 20,011 | 18,169 | 1,709,448 |
276
- |Go | 267,535 | 1,319,547 | 5,109,020 | 19,102 | 25,314 | 5,153,436 |
277
- |Ruby | 23,921 | 112,574 | 424,339 | 17,338 | 19,908 | 461,585 |
278
- |Rust | 35,367 | 224,015 | 825,130 | 16,716 | 23,141 | 864,987 |
279
- |TOTAL | 1,702,750 | 8,356,097 |33,673,594 |222,567 |202,614 |**34,098,775** |
280
 
281
  ## Usage
282
  You can load The Vault dataset using datasets library: ```pip install datasets```
@@ -284,14 +266,14 @@ You can load The Vault dataset using datasets library: ```pip install datasets``
284
  ```python
285
  from datasets import load_dataset
286
 
287
- # Load full function level dataset (34M samples)
288
  dataset = load_dataset("Fsoft-AIC/the-vault-class")
289
 
290
  # specific language (e.g. Python)
291
- dataset = load_dataset("Fsoft-AIC/the-vault-class", split_set=["train"], languages=['Python'])
292
 
293
  # dataset streaming
294
- data = load_dataset("Fsoft-AIC/the-vault-class", split_set= ["train"], streaming= True)
295
  for sample in iter(data['train']):
296
  print(sample)
297
  ```
 
242
 
243
  ### Data Splits
244
 
245
+ In this repo, the class level data is not split, and contained in only train set.
 
 
246
 
247
  ## Dataset Statistics
248
 
249
+ |Language | Number of samples |
250
+ |:-----------|------------------------:|
251
+ |Python | 353,859 |
252
+ |Java | 4,069,174 |
253
+ |JavaScript | 236,525 |
254
+ |PHP | 969,667 |
255
+ |C# | 1,138,603 |
256
+ |C++ | 150,530 |
257
+ |Ruby | 62,464 |
258
+ |Rust | 301,893 |
259
+ |C | - |
260
+ |Go | - |
261
+ |TOTAL | **7,282,715** |
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
262
 
263
  ## Usage
264
  You can load The Vault dataset using datasets library: ```pip install datasets```
 
266
  ```python
267
  from datasets import load_dataset
268
 
269
+ # Load full class level dataset
270
  dataset = load_dataset("Fsoft-AIC/the-vault-class")
271
 
272
  # specific language (e.g. Python)
273
+ dataset = load_dataset("Fsoft-AIC/the-vault-class", languages=['Python'])
274
 
275
  # dataset streaming
276
+ data = load_dataset("Fsoft-AIC/the-vault-class", streaming= True)
277
  for sample in iter(data['train']):
278
  print(sample)
279
  ```