andylizf's picture
Upload folder using huggingface_hub
5fed0fc verified
"""
Model name utilities for Frontier-CS.
Provides consistent model prefix conversion used across:
- Solution generation (generate_solutions.py)
- Solution matrix checking (frontier-eval check)
- Batch evaluation (frontier-eval batch)
"""
import re
from typing import Dict, List, Optional, Tuple
# Model prefix aliases for backward compatibility
MODEL_PREFIX_ALIASES: Dict[str, str] = {
"grokcodefast1_": "grok4fastreasoning_",
}
def get_model_prefix(model: str) -> str:
"""
Convert model name to the prefix format used in solution folder names.
This is the canonical function for model prefix conversion. All tools
should use this to ensure consistent naming.
Examples:
>>> get_model_prefix("gpt-5")
'gpt5'
>>> get_model_prefix("gpt-5.1-preview")
'gpt5.1'
>>> get_model_prefix("gemini/gemini-2.5-pro")
'gemini2.5pro'
>>> get_model_prefix("claude-sonnet-4-5-20250929")
'claude4.5sonnet'
>>> get_model_prefix("grok-3-fast-reasoning")
'grok3fastreasoning'
Args:
model: Model name (e.g., "gpt-5", "gemini/gemini-2.5-pro")
Returns:
Normalized prefix for solution directory names
"""
original = model
# Remove provider prefix if present (e.g., 'gemini/gemini-2.5-pro' -> 'gemini-2.5-pro')
if "/" in model:
model = model.split("/", 1)[1]
model_lower = model.lower().strip()
# Handle GPT-5 variants
# Keep 'gpt-5.1' distinct so its artifacts prefix as 'gpt5.1'
if model_lower.startswith("gpt-5.1") or model_lower.startswith("gpt5.1"):
return "gpt5.1"
if model_lower.startswith("gpt-5") or model_lower.startswith("gpt5"):
return "gpt5"
# Handle Gemini 2.5 Pro variants
if "gemini-2.5-pro" in model_lower or "gemini2.5pro" in model_lower:
return "gemini2.5pro"
# Handle other Gemini variants (e.g., gemini-1.5-pro -> gemini1.5pro)
gemini_match = re.match(r"gemini-?(\d+\.?\d*)-?pro", model_lower)
if gemini_match:
version = gemini_match.group(1)
return f"gemini{version}pro"
# Handle Claude variants (e.g., claude-sonnet-4-5-20250929 -> claude4.5sonnet)
claude_match = re.match(r"claude-([a-z]+)-(\d+)-(\d+)", model_lower)
if claude_match:
family = claude_match.group(1)
major = claude_match.group(2)
minor = claude_match.group(3)
return f"claude{major}.{minor}{family}"
# Handle Grok variants - keep 'fast' and 'reasoning' in the prefix
if "grok" in model_lower:
sanitized = re.sub(r"[^a-zA-Z0-9]+", "", model_lower)
if sanitized:
return sanitized
# Default: sanitize by removing all non-alphanumeric characters
sanitized = re.sub(r"[^a-zA-Z0-9]+", "", model_lower)
if not sanitized:
raise ValueError(f"Unable to derive model prefix from '{original}'")
return sanitized
def normalize_solution_name(name: str) -> str:
"""
Normalize a solution directory name by applying prefix aliases.
Args:
name: Solution directory name
Returns:
Normalized name with aliases applied
"""
for old_prefix, new_prefix in MODEL_PREFIX_ALIASES.items():
if name.startswith(old_prefix):
return new_prefix + name[len(old_prefix):]
return name
def sanitize_problem_name(problem: str) -> str:
"""
Convert problem path to solution name suffix.
Examples:
>>> sanitize_problem_name("flash_attn")
'flash_attn'
>>> sanitize_problem_name("gemm_optimization/squares")
'gemm_optimization_squares'
Args:
problem: Problem ID (may contain slashes)
Returns:
Sanitized problem name for use in solution directory names
"""
return problem.replace("/", "_")
def parse_solution_name(solution_name: str) -> Tuple[str, str, int]:
"""
Parse a solution directory name into components.
Examples:
>>> parse_solution_name("gpt5_flash_attn")
('gpt5', 'flash_attn', 0)
>>> parse_solution_name("gpt5_flash_attn_1")
('gpt5', 'flash_attn', 1)
>>> parse_solution_name("claude4.5sonnet_gemm_optimization_squares_2")
('claude4.5sonnet', 'gemm_optimization_squares', 2)
Args:
solution_name: Solution directory name
Returns:
Tuple of (model_prefix, problem_slug, variant_index)
"""
# Check for variant suffix
parts = solution_name.rsplit("_", 1)
variant_index = 0
base_name = solution_name
if len(parts) == 2 and parts[1].isdigit():
variant_index = int(parts[1])
base_name = parts[0]
# Split into model prefix and problem slug
# Model prefix is the first part before underscore
first_underscore = base_name.find("_")
if first_underscore == -1:
return (base_name, "", variant_index)
model_prefix = base_name[:first_underscore]
problem_slug = base_name[first_underscore + 1:]
return (model_prefix, problem_slug, variant_index)
def build_solution_name(model: str, problem: str, variant_index: int = 0) -> str:
"""
Build a solution directory name from components.
Args:
model: Model name (will be converted to prefix)
problem: Problem ID
variant_index: Variant index (0 = no suffix)
Returns:
Solution directory name
"""
prefix = get_model_prefix(model)
slug = sanitize_problem_name(problem)
suffix = "" if variant_index == 0 else f"_{variant_index}"
return f"{prefix}_{slug}{suffix}"
def detect_provider(model: str) -> str:
"""
Detect the LLM provider from model name.
Args:
model: Model name
Returns:
Provider name: 'openai', 'google', 'anthropic', 'xai', 'deepseek', 'openrouter'
"""
normalized = model.strip()
if "/" in normalized:
provider_hint, actual_model = normalized.split("/", 1)
else:
provider_hint, actual_model = "", normalized
provider_hint = provider_hint.lower()
actual_lower = actual_model.lower()
if (provider_hint in {"", "openai", "azure", "azure_openai"}) and actual_lower.startswith("gpt"):
return "openai"
if provider_hint in {"gemini", "google"} or "gemini" in actual_lower:
return "google"
if provider_hint == "anthropic" or "claude" in actual_lower:
return "anthropic"
if provider_hint == "xai" or "grok" in actual_lower:
return "xai"
if provider_hint == "deepseek" or "deepseek" in actual_lower:
return "deepseek"
return provider_hint or "openai"
def is_reasoning_model(model: str, override: Optional[bool] = None) -> bool:
"""
Determine if a model is a reasoning model.
Args:
model: Model name
override: If set, use this value instead of auto-detection
Returns:
True if the model is a reasoning model
"""
if override is not None:
return override
prefixes = ("gpt-5", "o1", "o3", "deepseek-reasoner")
if any(model.startswith(p) for p in prefixes):
return True
normalized = model.lower()
if "reasoning" in normalized and normalized.startswith("grok-"):
return True
return False