| """ | |
| Frontier-CS: Evaluation framework for frontier CS problems. | |
| Usage: | |
| from frontier_cs import FrontierCSEvaluator | |
| evaluator = FrontierCSEvaluator() | |
| # Algorithmic problems | |
| score = evaluator.evaluate("algorithmic", problem_id=1, code=cpp_code) | |
| # Research problems (local Docker) | |
| score = evaluator.evaluate("research", problem_id="flash_attn", code=py_code) | |
| # Research problems (SkyPilot cloud) | |
| score = evaluator.evaluate("research", problem_id="flash_attn", code=py_code, | |
| backend="skypilot") | |
| # Batch evaluation with incremental progress | |
| from frontier_cs.batch import BatchEvaluator | |
| batch = BatchEvaluator(results_dir="results/gpt5") | |
| batch.evaluate_model("gpt-5", problems=["flash_attn", "cross_entropy"]) | |
| # Batch evaluation with bucket storage (for SkyPilot) | |
| batch = BatchEvaluator( | |
| results_dir="results/gpt5", | |
| backend="skypilot", | |
| bucket_url="s3://my-bucket/frontier-results", | |
| ) | |
| batch.# Use batch.scan_solutions_dir() or evaluate_pairs() | |
| """ | |
| from .evaluator import FrontierCSEvaluator | |
| from .config import RuntimeConfig, ResourcesConfig, DockerConfig, ProblemConfig | |
| from .runner import EvaluationResult | |
| __all__ = [ | |
| "FrontierCSEvaluator", | |
| "RuntimeConfig", | |
| "ResourcesConfig", | |
| "DockerConfig", | |
| "ProblemConfig", | |
| "EvaluationResult", | |
| ] | |
| __version__ = "0.1.0" | |